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Abstract

Background: The recent advances in next generation sequencing technology have made the sequencing of RNA
(i.e., RNA-Seq) an extemely popular approach for gene expression analysis. Identification of significant differential
expression represents a crucial initial step in these analyses, on which most subsequent inferences of biological
functions are built. Yet, for identification of these subsequently analysed genes, most studies use an additional
minimal threshold of differential expression that is not captured by the applied statistical procedures.

Results: Here we introduce a new analysis approach, ABSSeq, which uses a negative binomal distribution to model
absolute expression differences between conditions, taking into account variations across genes and samples as
well as magnitude of differences. In comparison to alternative methods, ABSSeq shows higher performance on
controling type I error rate and at least a similar ability to correctly identify differentially expressed genes.

Conclusions: ABSSeq specifically considers the overall magnitude of expression differences, which enhances
the power in detecting truly differentially expressed genes by reducing false positives at both very low and high
expression level. In addition, ABSSeq offers to calculate shrinkage of fold change to facilitate gene ranking and
effective outlier detection.
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Background
Transcriptome studies usually aim at understanding
inducible biological functions through an analysis of dif-
ferential gene expression (DE). Since relatively recently,
the variation in gene expression is commonly studied
through RNA sequencing or RNA-Seq, based on next
generation sequencing (NGS) technologies. In these
study approaches, DE is usually inferred from compari-
son of two different treatments, developmental stages, or
different tissues. A key step in these analyses is the reli-
able identification of significant DE. Most current statis-
tical approaches employ a probabilistic model, such as
the Negative Binomial (NB) [1–3], Poisson [4], the
Generalized Poisson (GP) model [5], and use informa-
tion on gene expression variation in the data to account

for ambiguity caused by sample size, biological and tech-
nical biases, overall levels of expression and the presence
of outliers. DE inference is usually based on the null
hypothesis that the means of read counts among condi-
tions are the same or follow the same distribution. These
tests neglect the magnitude of encountered differences
and might report statistically highly significant DE with
arbitrarily small fold change, at least if the number of
sequencing counts is large enough [6, 7]. However, small
fold changes may represent artifacts and often cannot be
validated experimentally (e.g., through Realtime PCR
approaches or functional genetic analysis). Thus, they
might not be worth further investigation. A currently
common solution is sought by combining the statistical
indication (i.e., an FDR-adjusted p-value) with a specified
minimum fold change [8, 9]. This approach has the pos-
sible problem of a high number of identified candidate
genes with low count numbers (which may produce high
fold change by chance) and its dependence on an arbi-
trarily chosen fold-change cut-off value.
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An alternative approach has so far only been estab-
lished for ChIP-Seq data and relies on an analysis of
count differences between test and reference conditions
[10, 11]. In this case, the statistics are based on a meas-
ure that considers the magnitude of count differences
and the level of expression variation across replicates
with the effect that genes with only minor expression
levels and only small fold change are selected against. In
consideration of such potential advantages, such an ap-
proach may prove useful for reliable DE identification in
RNA-Seq data.
Here, we introduce ABSSeq (i.e., differential expres-

sion analysis of ABSolute differences of RNA-Seq data),
which employs an NB distribution to model count
differences between conditions. It permits testing the
magnitude of observed count differences taking into
consideration background expression level variation. In
particular, ABSSeq accounts for heterogeneous disper-
sions in expression level across genes by adding ex-
pected values (pseudocounts) to reads count according
to the smoothed mean-variance relationship [1], which
thus adjusts parameters in the NB distribution (mean
and size). In addition, ABSSeq imposes a penalty on the
dispersion estimation, it uses a new outlier detection
strategy, and it also inroduces a procedure for shrinkage
of fold change to disfavor identification of candidate
genes with abnormal high dispersions and extremely low
expression. Using real and simulated datasets, we dem-
onstrate that our method is highly efficient in reducing
the false discovery rate (FDR) and thus in identifying
truly differentially expressed genes in RNA-Seq data. It
therefore shows an at least similar performance than
several frequently used, alternative approaches like those
implemented in the software packages DESeq [1],
DESeq2 [1, 12], edgeR [3, 13] (referred as edgeR-robust
when applied on data set with outliers), limma [14, 15]
(referred to as Voom), baySeq [2], and EBSeq [16].

Implementation
ABSSeq has been implemented in the software package
ABSSeq for the cross-platform environment R [17].
ABSSeq is released under the GPL-3 license as part of
the Bioconductor project [18] at URL: http://bioconduc-
tor.org/packages/devel/bioc/html/ABSSeq.html.

Results and discussion
We firstly introduce our approach with the help of the
modencodefly and ABRF datasets (see Datasets). There-
after, performance of our method is compared with that
of several previously developed and currently popular
methods (always used under default settings, for ex-
ample limma under eBayes settings and the TMM
normalization for limma and edgeR; see Additional file 1),
including one, EBSeq, which allows to evaluate DE at both

transcript and also gene level [16]. We exlcude Cuffdiff2
[19] from our assessment because it was previously com-
pared with the other available approaches and generally
found to produce higher rates of false positives without an
increase in sensitivity [20]. Method evaluation is based on
two types of data sets. On the one hand, we use simulated
data, for which data structure can be efficiently controlled
and which have been widely used to evalute methods of
differential expression analysis [2, 7, 21–24]. We use the
same strategy and identical simulated data sets as Soneson
et al. [7] and compare method performance according to
two criteria: (i) the ability to control type I error rates; and
(ii) the ability to rank truly DE genes ahead of non-DE
ones. On the other hand, we also evaluate our approach
with the help of real data sets, as described in more detail
below.

Control of type I error rate
Minimizing the type I error rate (i.e., the null hypothesis
is falsely rejected) or false positive rate is a primary goal
of differential expression analysis [20, 25]. Type I error
is often introduced by under-estimation of disperson in
RNA-Seq data and occurs at genes with very low or high
counts [20]. We thus compare the ability of the alterna-
tive approaches to control type I error rates, using two
real data sets and also the simulated data sets from
Soneson et al. [7]. DE genes are defined by a p-value
cutoff of 0.05 for each method except baySeq and EBSeq,
which are excluded from this comparison since they re-
port DE by posterior probalilities instead of a p-value.
The simulated datasets are assumed to lack DE genes,
facilitating computation of the type I error rate by div-
iding the number of DE genes identified by each
method with the total number of genes. Figure 1 sum-
marizes the results from the modencodefly data set
(Fig. 1a and 1b) and two different simulation settings
(Fig. 1c), including data sets of various replicate sample
sizes and, in each case, ten independent repetitions (see
also Additional file 2). Additional file 3 shows the results
for the ABRF data set.
The first comparison is based on a real data set for the

fruitfly Drosophila melanogaster, the modencodefly data
set [26], which characterizes the developmental tran-
scriptome across 30 distinct stages (conditions) with
technical replicates ranging from 4 to 6. We randomly
select 4 replicates for each condition and separate them
into two groups, which should thus only be character-
ized by stochastic variations but not true DE. The results
of our analysis is summarized in Fig. 1a. At the p-value
cutoff of 0.05, ABSSeq identifies an average of 17 DE
genes and thus significantly fewer DE genes than all
alternative methods (Wilcoxon rank test, p < 0.01).
DESeq2 also performs well on this real data set, while
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the highest type I error rate is obtained for limma (873
identified cases of DE).
Next, we examined the distribution of false positives

along absolute log2 fold change and expression level (log
of average counts per million, logCPM, calculated by
edgeR) using the data from Fig. 1a. As shown in Fig. 1b,
false positives with low logCPM (x-axis) tend to have a
high fold change (DESeq, edgeR and Voom), and vice
versa. This skewed distribution is very similar to the
quadratic mean-variance relationship [1, 5, 15], suggest-
ing there might be a general under-estimation of vari-
ance or dispersion for these methods. In contrast,
ABSSeq and DESeq2 both shrink the fold change ac-
cording to variance. As a consequnce, they both exhibit

a pronnounced reduction of false positives at low ex-
pression (logCPM < 0). Morever, ABSSeq also reduces
false positives at high expression level (logCPM > 10),
which likely have a very low smoothed dispersion [1]
and are often inferred to be highly statistically significant
but show only very small fold change.
As the modencodefly data set only allows us to consider

two replicates per group and condition, the resulting stat-
istical power may be limited. Therefore, we repeated this
assessment using another real data set, the ABRF data
set [27] (see Datasets in Methods section), which is
based on an RNA-Seq analysis of the same two sam-
ples across three independent laboraties and thus
comprises for each sample three replicates that should

Fig. 1 Method-dependent variation in type I error. Type I error rates for ABSSeq and five alternative methods using the modencodefly real data set (a)
and two simulation settings: Negative Binomial (NB, c left panel), and NB with random outliers (R, c right panel). b Points show the absolute log fold
change (FC, y-axis) distribution of false positives against the expression level (logCPM, x-axis). c Each boxplot summarizes the type I error rates across 10
independent simulated data sets. Asterisk indicates a statistically significant difference in type I error between ABSSeq and any of the other methods. n
indicates the number of RNA replicates considered in each case (ranging from 2 to 10). Under all conditions, ABSSeq reduced the type I error rate
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only show variation caused by differences among the
laboratories such as library preparation methods or
sample processing procedures (6 comparisons in total,
Additional file 3). The analysis of the ABFR data set
confirms the previous results. It demonstrates that
ABSSeq produces the smallest number of false posi-
tives and especially reduces fold change for the genes
with generally low expression.
Overall, the results from the two real data sets suggest

that ABSSeq has the ability to handle very small expres-
sion changes by considering the magnitude of absolute
differences and penalizing the estimated dispersion (See
Methods). Our results also suggest that the alternative
methods should allow enhanced reduction of the type I
error rate if combined with additional filtering ap-
proaches, such as usage of a fold-change cut-off as
discussed in [28, 29] and also further below.
In addition to the two real data sets, we also compare

the ability of the alternative approaches to control type I
error rates on simulated data (Fig. 1c). Generally, all
methods are able to control type I error rate under 0.05
when applied on the NB distributed data (Fig. 1c left
panel, denoted NB0

0, 0 indicates the number of up or
down-regulated genes) but exhibit high diversity on the
NB distributed data with randomly introduced outliers
(abnormally high counts, multiplying a randomly gener-
ated factor between 5 and 10 with counts of genes
randomly selected with a probability of 0.05, denoted by
S0
0, Fig. 1c right panel). As already highlighted in [7],

DESeq has excellent power to control type I error rates
on NB0

0. The performance of Voom is relatively un-
affected by sample size and outliers, implying advantages
of log-transformation on dealing with high value out-
liers. In contrast, edgeR does not control type I error rates
efficiently when applied on data with outliers. Since both
DESeq2 and edgeR-robust integrate strategies to handle
outliers, they expectedly reduce the type I error rate on S0
0, especially when compared to the earlier program
versions (e.g., DESeq at n = 10 or edgeR at n = 2 or 5).
ABSSeq performs best in both cases (Tukey's, p < 1.0e-3),
but slightly decreases its performance with increasing
sample size (n = 10).
Taken together, ABSSeq is able to efficiently control

type I error rates for the real and simulated data sets
(Fig. 1a-c) and it also reduces type I error rate at
both low and high expression levels. In addition, out-
liers impact the ability of controlling type I error rate
for most methods except ABSSeq and Voom, which
might be caused by shrinkage of the observed disper-
sion (edgeR, edgeR-robust and DESeq2) or replacing
the observed with a smoothed dispersion (DESeq). In
contrast, ABSSeq uses the observed dispersion dir-
ectly, apparently enhancing control of type I errors to
a rate of below 0.05.

Discrimination of DE versus non-DE genes in simulation
studies
An ideal DE inference method should be more sensitive
to DE than non-DE genes, that is, it should be able to
discriminate true DE genes against non-DE ones. Here,
we evaluate the discriminative power of ABSSeq and
other selected methods in terms of the true and false
positive rates and also the area under Receiver Operating
Characteristic (ROC) curve (AUC), using again the sim-
ulated data and general approach of Soneson et al. [7].
The AUC was shown repeatedly to be informative as a
measure of the overall discriminative performance of a
method [30–32]. In particular, for our comparison, we
extract a set of genes from the simulated data set using
a given p-value or posterior probability (baySeq) thresh-
old. Thereafter, the obtained genes are divided into a
truly positive group and a truly negative group according
to pre-defined DE genes in the simulated data. This in-
formation then allows us to calculate the true positive
and the false positive rate for all possible thresholds,
construct ROC curves and compute AUCs using the
ROC package in Bioconductor [18]. For all simulations,
we choose 10 % of the 12,500 genes as DE and symmet-
rically divide them into up- and down-regulated genes
(e.g., 625 up- and 625 down-regulated genes, indicated
below by super- and subscripts, respectively). We
summarize the results using boxplots for four different
simulation settings, including data sets with various rep-
licate sample sizes and, in each case, ten independent
repetitions (Fig. 2, Additional file 2).
When applied on the data set simulated using the NB

distribution (denoted by NB625
625, where the super- and

subscripts indicate the number of up- and down-
regulated genes, respectively; Fig. 2 left), ABSSeq always
performs at least as good as the alternative methods at
the considered replicate sample sizes (denoted by n).
EBSeq performs worse than the other approaches when
applied on data with small sample size (n = 2). The
performance of ABSSeq and the other methods are gen-
erally improved as the sample size increases, revealing a
positive power of sample size on identifying true DEs.
Overall, these results suggest that our NB model fits the
over-dispersion data at least as well as the NB model im-
plemented in other methods.
We next test the influence of outliers, which we intro-

duce into the NB distributed data using a similar approach
as above (denoted by R625

625, Fig. 2 right) and which may
show abnormally high counts, resulting in high fold
changes and also false postives. For these simulated data
sets, ABSSeq shows an advantage (Tukey's, p < 0.01) at all
replicate sizes, especially for the R625

625 data set (Tukey's,
p < 1.0e-6) whose AUC is even greater than 0.9 at n = 10
(Fig. 2c, 2d). This result indicates that ABSSeq outlier
detection is efficient. Interestingly, performance of the
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alternative methods also shows substantial variability.
For example, Voom generally performs better at large
sample size (i.e. higher AUC in R625

625 except ABSSeq),
but similar at small sample size with other methods;
DESeq2 performs better at n = 10 due to outlier detec-
tion but worse at n = 2 and n = 5 (n ≥ 7 required for out-
lier detection); baySeq shows little improvement in
performance as the sample size increases for the R625

625

data set; EBSeq shows lowest AUC at n = 2 and im-
proves performance at large sample sizes (n = 5 or 10);
edgeR-robust (denoted by edgeR-r) shows an improved
ability to handle outliers at small sample size (n = 2 or
5) compared to edgeR.
Overall, ABSSeq is at least as good as alternative

methods in discriminating between DE and non-DE
genes, it is highly robust towards outliers at all sample
sizes, while increasing the sample size improves the
discriminative performance for all methods. The high
performance of ABSSeq on the outlier data sets supports
the efficiency of the implemented approach based on
moderated median absolute deviation (MAD) in outlier
detection even at small sample size (see Methods). To-
gether with the results in Fig. 1, our model on count
differences seems to perform at least as good as other
models using NB distributed data.

Differential expression analysis on qRT-PCR validated real
data
As simulated data are by nature artificial, we further
evaluate method performance on real data sets. The first
of these relate to the MAQC study, for which RNA-Seq-
identified DE genes were validated by quantitative re-
verse transcription PCR (qRT-PCR) [33] based on the
commercially available TaqMan and PrimePCR method-
ologies. Although there is no single “gold standard” for
assessment of RNA-Seq data reliability [29], qRT-PCR
based methods have widely been proposed and applied

as a validation tool for DE results from both microarray
[34] and RNA-Seq studies [35]. Here, we analysed two
qRT-PCR validated data sets from the MAQC study:
the TaqMan data set from MAQC-I, which included
an assessment of a very small fraction of the total
genes (1044 out of more than 50,000 genes from hg19
annotation) and may thus be subject to biases, and
additionally the PrimePCR data set from SEQC
(equivalent to MAQC-III), which covers more than
20,000 genes [29]. These two data sets were used to
derive ROC curves and AUC measures for the com-
pared analysis methods. We consider this approach to
provide at least an indication of the reliability and sen-
sitivity of the analysis approach. We here follow the
general strategy from [36] and [20] and divide the Taq-
Man and PrimePCR gene sets into a DE (true positive)
group and a non-DE (false positive) group based on
whether their absolute log fold change (logFC) is lar-
ger or smaller than a defined threshold. We use a
logFC threshold of 0.5 (1.4 fold change) to derive ROC
curves.
The results for both data sets are essentially identical

(Figs. 3a and 3b). While the alternative methods can
detect approximately half of the TaqMan validated DE
genes without false positives, ABSSeq is even able to
identify more than 75 % of the true DE genes with a
false positive rate of less than 0.25 (Fig. 3a). ABSSeq
reaches the highest AUC of 0.853 among six methods
(baySeq: 0.840, Voom: 0.817, edgeR: 0.802, DESeq: 0.795,
EBSeq: 0.783 and DESeq2: 0.777). For the PrimePCR
data set, the AUC for each method decreases as the
number of validated genes increases (Fig. 3b). Again,
ABSSeq performs best among all seven methods, sup-
porting its ability to discriminate efficiently between DE
and non-DE genes.
Analysis approaches, which do not consider the

magnitude of expression differences, might yield

Fig. 2 AUC comparison on simulated data. Area under the curve (AUC) for ABSSeq and five alternative methods under two simulation settings:
Negative Binomial (NB, left panel) and NB with random outliers (R, right panel). Each boxplot summarizes the AUCs across 10 independently simulated
data sets. Asterisk indicates a statistically significant difference in AUC between ABSSeq and any of the other methods. n indicates the number of
considered RNA-Seq replicates, from 2 to 10. Under all conditions, ABSSeq is highly effective in correctly identifying differentially expressed genes
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highly statistically significant DE for genes with only
small fold change (as shown in Fig. 3c), which may
however often be the result of chance. The number
of these type of DE genes is usually not reduced by
using an adjusted p-value cutoff in the alternative
approaches, even if the cutoff is below 1.0e-8. There-
fore, other cutoff criteria are required such as fold
change, which has the problem that the biologically
relevant cutoff point is not clear. The ABSSeq-based
analysis instead produces high correlation between
the minimal fold change and the inferred adjusted p-
value, indicating that the p-value alone will select
against DE genes with small fold change. Additional
cutoff criteria therefore do not seem to be necessary
for reliable DE gene identification.

Influence of cut-off criteria and confounding factor analysis
procedures
We next investigate the influence of additional cut-off
criteria on DE detection with the help of the ABRF data
set, which is based on RNA-Seq data generated for the
same sample in three different laboratories. We apply
the considered methods on this data set, which only
contains variation caused by differences among the
conisdered laboratories, such as biases during library
preparation [28], but not true DE, thus allowing us to
assess the efficacy of the methods to reduce the number
of false positives ([28]; see also above). In spite of vary-
ing numbers of detected DE genes, ABSSeq reports
lowest number of false positives among all methods,
irrespective of any additional filtering approach (Fig. 3d).

Fig. 3 Comparison of methods using validated real data sets. a-c based on data from the MAQC study; d-e based on the ABRF data set. ROC analysis for
(a) TaqMan and (b) PrimePCR data sets at a qRT-PCR absolute log-ratio (logFC) threshold of 0.5. TPR, true positive rate; FPR, false positive rate. ABSSeq
performs better than other methods in detecting true differential expression. A gene was considered to be not differentially regulated if its logFC was less
than 0.2. c Minimal fold changes under various ajusted p-value cutoffs for the MAQC II data set. d Number of false postives in comparisons of
samples from same condition but different lab sites and (e) number of DE genes in comparison of samples from two conditons under
additional filtering and confounding factor assessment approaches. Symbols in black show results from comparison of conditions from same laboratory
and colored symbols those from comparison of conditions across laboratories. Genes are counted under 5 situations: orginal, without filtering (circle
symbols); Foldchange, with a value greater than 1.5 (star symbols); AveExp, with average logCPM greater than 1 (square symbols); combination of
Foldchange and AveExp (triangle symbols); and svaseq tested only for DESeq2 and Voom (pentacle symbols)
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baySeq and EBSeq also produce small numbers of false
positives then compared to the remaining methods
excluding ABSSeq. For all methods, the number of false
positives reduces dramatically when filtered by fold-
change (>1.5; star symbols in Fig. 3c) but less so when
filtered by expression level (AveExp, logCPM > 1; square
symbols in Fig. 3d). This finding strongly suggests that a
high foldchange cut-off increases power to control the
false positive rate, yet with the problem that the choice
of cut-off value will usually be arbitrary.
In addition, high specificity (i.e., efficient control of the

false positive rate) might lead to low senstitivity (i.e., re-
duced efficiency to detect true positives). To evaluate
the ability of ABSSeq to detect true positives, we apply
ABSSeq and alternative methods on the ABRF data set
whereby in this case we focus on the comparison of the
two considered conditions (i.e., tissues) either within the
considered laboratories (i.e., condition A and B from the
same laboratory are compared) or across the laboratories
(i.e., condition A from laboratory 1 is compared with con-
dition B from laboratory 2, and so on for all possible com-
binations between the two conditions). The results are
shown in Fig. 3e (black for comparison of conditions from
same laboratory and other colors for comparison of condi-
tions across laboratories). All seven methods report simi-
lar numbers of DE genes, especially after fold-change
filtering. This result indicates that ABSSeq retains similar
sensitivity than that shown by the alternative approaches.
Confounding variation can originate from library prep-

aration or other kinds of batch effects. To remove its
influence on DE detection, it can be modeled and thus
integrated into the statistical analysis [28], as imple-
mented in svaseq [37]. To illustrate the possible influ-
ence of such variation, we applied svaseq togethor with
DESeq2 and Voom. Svaseq together with Voom is able
to remove more than 50 % false positves for the ABRF
data set (Fig. 3d, indicated by the pink pentacle sym-
bols), in consistency with the previous application of the
svaseq approach on data from the SEQC study [28].
However, when svaseq is combined with DESeq2 it leads
to only a small decrease in the number of false positives
(Fig. 3d, indicated by light blue pentacle symbols). This
result may suggest that the performance of svaseq
depends on the DE detection method itself and/or the
linear model used in such methods. Moreover, the appli-
cation of svaseq does not decrease sensitivity when com-
bined with Voom and only to a small extent when
combined with DESeq2 (Fig. 3e), suggesting that svaseq
mainly improves removal of false positives but does not
bias detection of true DE. In general, the usage of such
confounding factor assessment procedures, including
svaseq and also PEER [38] can help improve DE detec-
tion. Yet, at the moment, its combination with the vari-
ous DE analysis methods is not straightforward, because

both svaseq and PEER produce non-integer values,
whereas several of the current DE analysis methods
(including ABSSeq) rely on integer count data. It thus
represents a promising challenge to further develop
these procedures as integrated modules of the common
DE detection methods.

Assessment of statistical power via signal to noise ratio
To evaluate the statistical power of each method in
measuring the magnitude of DE in dependence of its
variance, we repeated above comparison using genes
that are exclusively expressed in only one condition of
the MAQC-II data set following the approach from [20].
The magnitude of DE of genes expressed in only one
condition is ideally shown as a signal-to-noise (SNR)
ratio (mean over standard deviation), which should be
monotonically correlated with the p-value [20]. A poor
correlation between SNR ratio and p-value might lead
to reduced sensitivity (type II error) by assigning a large
p-value to small SNR ratio (i.e. high variance). The
monotonic dependency between predictor (SNR ratio)
and response (adjusted p-value) is inferred through an
isotonic regression on 1514 paired variables (genes).
Results are shown in Fig. 4. All methods but DESeq
and edgeR exhibit the desired monotonic behavior be-
tween SNR ratio and adjusted p-value, in consistency
with previous results from [20]. Two empirical Bayes
based approaches: baySeq and EBSeq yield quite similar
correlations between SNR ratio and posterior probabil-
ities. In addition, Voom assigns a more significant
adjusted p-value for one specific gene with high SNR
ratio but low expression (marked by green elipse in
Fig. 4) whereas alternative methods produce adjusted
p-values of around 0.05 (gray dashed line), suggesting
Voom is more sensitive to DE at low expression level.
Since DESeq2 and Voom test DE on log fold change,
we postulate that the closer correlation between
SNR ratio and adjusted p-value of ABSSeq is due to
modelling directly the magnitude of DE difference.
Overall, these results suggest that ABSSeq seems to
model the magnitude of count difference with higher
accuracy, which might help DE inference by redu-
cing false positives.

Differential expression analysis of real data with
unbalanced designs
Another real data set (HapMap-CEU) is taken from [39],
consisting of 41 highly dispersed cDNA samples from 17
females and 24 males. DE genes are inferred from male–
female comparisons. Following [23], a sensitivity analysis
is predicted to find an over-representation of inferred
DE genes from the sex chromosomes. Indeed, the top
ten DE genes always include genes from sex chromo-
somes (Table 1). All methods except ABSSeq and Voom
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identify DE genes beyond sex chromosomes. This may
indicate that ABSSeq and Voom retain higher specificity
than the remaining methods and that alternative
methods may not well model variance introduced by
unequal smaple sizes. EBSeq produces the lowest num-
ber of DE genes from sex chromosomes but the highest
number from autosomes, confirming the previously
observed lack of power of this method for the analysis of
data with such high dispersion and uneven sample sizes
[13]. Given the unequal sample size in this data set, the
similar performance of ABSSeq to that of alternative
methods also suggests that our model is able to handle
unequal sample sizes and high dispersion. In particular,
in ABSSeq, we attempted to compensate for unequal
sample size by adding expected reads counts to the
smaller group until sample sizes are equal. We always
take the mean reads count of the small group as ex-
pected count, in order to minimize possible biases in
subsequent variance estimations (see also Methods).
This compensation step is likely crucial for

unbalanced data designs, especially in case of even lar-
ger differences than in our test data set. In the future,
it may be worth exploring in more detail alternative
compensation procedures.

Moderating fold change
Fold change often serves as a more informative indica-
tor for biologists to identify DEs. It is also utilized in
gene ranking to select candidates for further investiga-
tion and visualization (e,g, heatmap of several compar-
isons). However, the fold change neglects variance
across samples and might not necessarily be inform-
ative, especially for genes with low counts (see also dis-
cussion above). To overcome this problem, DESeq2
introduces an empirical Bayes shrinkage for fold change
estimation, which moderates the log fold change accord-
ing to gene-specific dispersion [12]. Fold change can also
be represented as a function of absolute count differences
(see Methods), suggesting a potential moderation of fold
change via counts difference (e.g., expected counts differ-
ence). Therefore, we introduce a fold change shrinkage
procedure according to count differences and dispersion.
Figure 5 shows how it works using the Bottomly data set
[40]. Genes with small counts tend to have high raw fold
changes (Fig. 5a), which constrains reliable gene ranking
by fold change at dynamic expression level. Shrinking fold
change by adding pseudocounts according to expression
level (see Methods) removes this trend (Fig. 5b).
However, this shrinkage approach neglects the gene-

specific dispersion and thus shows no effects on non-DE
genes with high dispersion as well as high expression
(Fig. 5a and b, marked by green elipses). After taking
account of gene-specific dispersion (Fig. 5c), the fold

Fig. 4 Correlation between signal-to-noise ratio and p-value with true DE present in only one condition. Evaluation is based on a total of 1514
genes that are exclusively expressed in one condition in the MAQC-II data set. Gray points indicate genes with adjusted p-value value≥ 0.05. The
data point highlighted by the green elipse refers to the gene with high signal-to-noise ratio but low expression. The correlation is inferred using
isotonic regression (black line)

Table 1 Number of DE genes from sex chromosomes
detected by each method in the HapMap-CEU data set at
FDR-ajusted p-value of 0.05

Method Sex/Total Sex in Top 10

ABSSeq 7/7 7

DESeq 7/25 5

edgeR 7/20 7

DESeq2 7/10 7

Voom 7/7 7

baySeq 9/27 7

EBSeq 2/38 2
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changes approximately reflect DE genes (in red under
adjusted pvalue <0.05) and produce nearly evenly dis-
tributed fold change values, apparently improving gene
ranking and visualization. Notably, shrinkage with gene-
specific dispersion only influences a small part of genes
with high dispersion. Unlike the approach in DESeq2,
our shrinkage method on gene-specific dispersion is
based on p-values and therefore does not change the
number of inferred significant DE genes. In practice,
users can obtain all three types of fold change values
(raw, shrinked by smoothed dispersion according to
mean, and shrinked by both smoothed and gene-specific
dispersions) in ABSSeq.

Conclusions
Here we introduce a new method for differiential
expression analysis of RNA-Seq count data, ABSSeq.
Distinct from other current methods, ABSSeq infers DE
genes through the absolute differences in gene expres-
sion and assumes the differences to be influenced by
two sources of variation: that found for average gene
expression levels and that found for the magnitude of
differential expression. Our approach employs a NB
distribution to model these two parts and, as a conse-
quence, it is able to detect DE genes more effectively
than existing methods, as demonstrated by our analysis
of both real and simulated data. In particular, ABSSeq
shows an advantage in discriminating DE genes against
non-DE ones, it applies an efficient outlier detection
approach and is thus robust against outliers. Morever,
ABSSeq inferred p-values correlate with the magnitude
of count differences, thus producing a linear relationship
between SNR ratio and p-value. As a result, it reduces
type I error rates at both very low and high expression
level and it also leads to a smaller number of highly sig-
nificant DE genes with small fold change.
In addition, ABSSeq introduces a procedure to shrink

fold change according to the smoothed dispersion across
expression level and observed dispersion (gene-specific),
which permits fold change comparisons across genes

and thus might favor downstream analyses, such as gene
set enrichment analysis by ranking [41], clustering and
visualization (heatmap) or candidate selection. A poten-
tial improvement of our approach in the future may be
to adapt it to allow usage of more complex models
which consider multiple conditions, its combination
with additional normalization procedures, such as those
implemented in PEER and svaseq [37, 38], which can
further help to filter out unwanted variation, and also
adjustment of our approach to allow for analysis of DE
at the transcript level (in addition to the gene level, cur-
rently implemented). In summary, based on our analysis,
we conclude that ABSSeq represents a highly efficient
approach for identification of significant DEs across a
wide range of conditions and may help efficient down-
stram analysis of DEs.

Methods
Datasets
In this study, the performance of methods is assessed
with the help of two types of data sets: simulated and
real. The simulated data sets are derived from the study
of Soneson et al. [7]. Following the approach in [21],
Soneson et al. used the mean and variances from Pick-
rell’s RNA-Seq dataset ([42]; 69 lymphoblastoid human
cell lines derived from unrelated Nigerian individuals) as
parameters to generate read counts for each gene from a
Poisson or NB distribution. The simulated data sets were
generated to follow either a NB distribution (denoted by
NB), half NB and half Poisson (denoted by P), NB with
single sample outliers (denoted by S) and NB with
random outliers (denoted by R). Each set includes 10 in-
dependently repeated simulations of two treatment
groups and different replicate sample sizes of 2, 5 or 10
for each group. A total of 12,500 genes with high expres-
sion (reads count) is considered, for which expression
variation is simulated with or without DE genes accord-
ing to the tests performed.
Five real data sets were considered. Four of these (all

except of ABRF) were downloaded from http://bowtie-

Fig. 5 Moderation of log2 fold change. a Raw data (without shrinkage) of the Bottomfly study. b The same data corrected by expression level. c
The same data corrected by expression level and gene-specific dispersion. DE genes (adjusted pvalue <0.05) are shown in red. Non-DE genes with
high log2 fold change are marked by green elipses
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bio.sourceforge.net/recount/ [43]. The MicroArray Qual-
ity Control (MAQC) study has been used to evaluate the
performance of different gene expression analysis
methods [36]. It is based on replicated RNA samples of
the human whole body (UHR) and brain (BHR) [44, 45].
We use the MAQC II data set for analysis of perform-
ance of DE detection methods. For each group (body or
brain), seven technical replicates are produced. We
filtered out genes with zero read counts across samples
before analysis. The raw data of MAQC-II are available
from the NCBI SRA database under SRA010153. More-
over, we also use two qRT-PCR validated data sets, either
based on the TaqMan methodology, comprising more
than 1000 genes from MAQC I, available at NCBI Gene
expression Omnibus database under GSE5350, and that
based on PrimePCR including more than 20,000 genes
from SEQC (MAQC III), available under GSE56457.
The modencodefly data set served to study gene ex-

pression during the development of Drosophila melano-
gaster [26], covering 30 distinct developmental stages.
Each of the stages consists of 4 up to 6 technical repli-
cates. We subsample from each stage 4 replicates to
construct a 2:2 pairwise study.
The HapMap-CEU data set [39] includes 41 sam-

ples based on immortalized B-cells from 41 unrelated
CEPH grandparents. It contains 17 female samples
and 24 male samples.
The ABRF data set is the Association of Biomolecular

Resource Facilities next-generation sequencing (ABRF-
NGS) study on RNA-seq, which aims to assess RNA-Seq
data across laboratory sites and platforms [27] and relies
on the the same samples used in the Sequencing Quality
Control (SEQC) study [29]. Here we use data from two
samples generated via a ribo-depleted protocol, namely
RNA from cancer cell lines and also RNA from pooled
normal human brain tissues. We thus exclude data from
mixtures of these samples and that based on other pro-
tocols. The raw data and counts tables are available at
the Gene Expression Omnibus database under accession
number GSE48035. This study compared RNA-Seq data
for the same samples assessed in different laboratories.
The Bottomly data set is from a study that character-

ized transcriptomic differences between two inbred
mouse strains (C57BL/6J and DBA/2J) with 10 and 11
replicates each, respectively [40]. We filtered out genes
with zero read counts across samples before analysis.

Data structure and normalization
RNA-Seq data is represented as count of reads (cij) for
genes (i) and samples (j) at different conditions (A, B or
more), which are discrete. Due to technical and other
reasons, the total number of reads varies between sam-
ples or even sequencing lanes. The read count must thus
be normalized before comparison across samples. The

most common practice is to scale the counts according
to the total number of reads of each sample [46, 47].
However, this approach was shown to introduce a bias
in DE inference since DE genes can be responsive for
large variations in total read number [36]. Here, for
ABSSeq, we chose the quantile-based procedure, which
yielded much better concordance with the qRT-PCR
data [36]. In addition, we also offer geometric mean
based normalization procedure in ABSSeq, which we
borrowed from DESeq.

Outlier detection and replacement
Outliers mask the statistical significance by influencing the
estimation of mean and variance. Given extreme high read
counts outliers are often present in one or more RNA-Seq
samples and thus it is essential for DE inference to reduce
the impact of outliers [12, 13, 48]. Since RNA-Seq data
could be treated to be log-normally distributed, ABS-
Seq utilizes the median absolute deviation (MAD) to
detect the outliers in log-transformed read counts.
However, due to typically limited sample size in RNA-
Seq data, MAD could be extremely small or even zero
possibly resulting in over-detection. To solve this
problem, we adjusted the MAD of each gene using the
highest population standard deviation (SD) σ0, that is

M̂iAjjB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAjjBMiAjjB

2 þ n0σ20
nAjjB þ n0

s

ð1Þ
where nA||B is the sample size for each condition and n0
is the weight for σ0. It is similar to empirical Bayes in
limma and shrinks the observed MAD toward the high-
est population SD, thus avoiding small MADs in further
analyses. In practice, we set n0 = 2 and σ0 = σμ=1 due to
the quadratic mean-variance relationship in RNA-Seq
data (highest dispersion at lowest expression level), and
also provide an interface for the user to change these
two values. Thus, the outliers are defined as

log ci;j∈AjjB þ 1
� �

−median log ci;j∈AjjB þ 1
� �� �

−2M̂iAjjB > 0

ð2Þ
and replaced by median log ci;j∈AjjB þ 1

� �� �þ M̂iAjjB . The
natural exponent of the read counts after outlier replace-
ment is then used as input for DE testing in ABSSeq.

Inferring DE genes based on absolute expression differences
between conditions
DE inference relies on an assessment of the difference
of expression levels between two conditions (or more)
as well as the variance across replicate samples. The
popular null hypothesis for testing DE is that the mean
read count for a particular gene is identical between
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conditions. However, the standard analysis of such a hy-
pothesis neglects the magnitude of encountered differ-
ences. Here we use a distinct test statistic: the absolute
difference of read counts between conditions (specific-
ally, A and B), which was firstly applied to detect differ-
ential expression, epigenetics changes and transcription
factors binding sites in the program EpiCenter [10], that
is

Di ¼
X
j∈A

cij−
X
j∈B

cij

�����
����� ð3Þ

When the sample sizes between groups are not equal,
Di introduces a bias by favoring the larger group, which
has a higher likelihood to reach higher sum counts by
chance, thus more likely resulting in non-zero Di). For
this reason, ABSSeq compensates the smaller group with
the most likely read counts: the mean. In these cases, Di

might not be an integer and needs to be rounded to the
nearest integer.
Di is always discrete and apparently overdispersed as

Di inherits variance from
X
j

cij and is less than
X
j

cij (X
j

cij is overdispersed [1, 3]), which suggests that it fol-

lows a NB distribution. Based on this idea, ABSSeq em-
ploys a NB distribution to model Di, which has two
parameters, the mean mi and size factor ri, that is

Di∼NB mi; rið Þ ð4Þ
mi can be treated as the expected value or baseline of

Di which is proportional to average expression level (lar-
ger expected value of Di at higher expression level) or
determined using the coefficient of variation (CV) in the
tested data. Therefore, mi is

mi ¼ αci ð5Þ
where ci and α are larger value of sum counts, general
CV. ri as the size factor is dependent on the mean-
variance relationship and determines the scale of informa-
tion contained byDi. We assumeDi to inherit dispersion
from ci (i.e., the shape of its distribution is similar to
that of ci). As ci could be written as ci = nμi n =max(nA,
nB), μi =max(μiA, μiB) (the μA||B denotes mean of each
condition), we assume ci has the same dispersion under
μi. Therefore, the dispersion of ci becomes

vi ¼
s2iA þ s2iB
� �

−μi
μ2i

ð6Þ

whereby vi and siA||B
2 denote the pooled dispersion factor,

the mean and variance of each condition, respectively. ri
is then given as

ri ¼ 1=vi ð7Þ

As a result, DE detection is based on the magnitude
of Di against its expected value mi and dispersion ri.
ABSSeq also allows DE detection on paired samples
by replacing siA

2 + siB
2 with variance drived directly

from paired differences.

Moderating mi, ri
It is well-known that the mean-variance relationship of
RNA-Seq data is basically quadratic [5], which suggests
a relative higher uncertainty of ci (higher mi) for genes
with low expression levels. To account for the dynamic
uncertainty, we moderated mi by adding pseudocounts
to cij according to the mean-variance relationship, which
has no influence onDi and siA||B

2 but μi and ri, that is

μ̂i ¼ μi þ μ0i ĉi ¼ ci þ nμ0i ð8Þ

μ̂i indeedly represents the upper bound of μi. To esti-
mate μ0i, we firstly construct the mean-variance relation-
ship by applying local regression [49] on the graphffiffiffiffi

vi
p

; μi
� �

with locfit package from R, which has been in-
troduced by DESeq. That is

v̂i ¼ f
ffiffiffiffi
vi

pð Þ2 ð9Þ

Then the smoothed or expected variance for each gene
is given by

ŝ2i ¼ μi þ v̂iμ
2
i ð10Þ

Since the uncertainty of μi always decreases as the ex-
pression level or sample size increases, we assume that
μ̂0i could be written as

μ0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
θ

μi

ŝ2i
n−1

s
θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mean

siA
2 þ siB

2

2

� �s
ð11Þ

where θ serves as background of uncertainty across all
genes.
When the observed variance is 0 (i.e., cij is the same in

all samples), the dispersion of sum counts ci simply be-
comes v̂i=n (combined NB distributed variables with
sum size factor n=v̂i ), which suggests v̂i=n serves as the
background of vi. However, v̂i is usually obained from
part of the tested data (on vi > 0), indicating underesti-
mation of v̂i . To penalize this, we add a basic dispersion
factor v0 to vi, which becomes

r̂ i ¼ 1
vi

vi ¼ v0 þ vi þ v̂i=n ð12Þ

v0 is determined by quantile estimation on vi with vi >
0, that is
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v0 ¼ quantile vijvi > 0;
ffiffiffi
β

p� 	
ð13Þ

where β is the percentage of vi on vi < 0. Generally, it
permits a smaller v0 for lower β.
Notably, the small variance of μi (siA

2 + siB
2 ≤ μi) is not

caused by ri. However, neglecting this variance will
introduce false positives at low expression level since the
small variance has a higher impact on μi when μi is
small. On the other hand, this small variance could be
treated as noise for μi or ci. In light of this, we add a
small value to ci. mi becomes

m̂i ¼ α ĉi þ εð Þ ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni max s2iA þ s2iB; μi

� �q
ð14Þ

Estimating α
After shifting read counts according to the mean-
variance relationship, we simply assume that CVs of all
genes are identical. While the SD of log-transformed
data stands for the CV at original scale, we get α by

α ¼ mean σ ið Þ ð15Þ
where σi is obtained by fitting a linear model to log-
transformed counts from limma. In practice, the esti-
mated α usually ranges from 0.1 to 0,3. α could also
be provided by the user (i.e., testing DEs on prior
threshold).

P-value calling
Following (2), we can calculate the p-value for each gene
by the cumulative distribution function of NB m̂i; ; r̂ ið Þ .
The false discovery rate (FDR) by Benjamini-Hochberg
is used to account for multiple testing as a default.

Moderating log fold change
The log fold change can be described as

FCi ¼ log
ci

ci−Di

� �
ð16Þ

Thus, we can moderate it busing ci or Di. Indeed, in
(7), we moderate ci by adding pseudocounts, which
mainly shrinks fold change in response to uncertainity
across expression level but not gene-specific dispersion
(observed). The gene-specific dispersion r̂ i also deter-
mines the scale of information contained by fold change,
i.e. a high dispersion indicates low information of fold
change, and vice versa [12]. On the other hand, r̂ i also
controls the information contained by Di, indicating a
possible moderation of Di as well as fold change by
shrinkage of r̂ i . Under certain pvalue from NB m̂i; ; r̂ ið Þ,
increasing r̂ i (decreasing dispersion) will reduce expect-
ation of Di and thus fold change. Based on this idea, we
obain a new Di by replacing r̂ i with the dispersion

obtained through the probability quantile function from
the NB distribution, that is

D̂i ¼ qNB pi; m̂i; r0ð Þ r0 ¼ max r i; 1=mean við Þð Þ ð17Þ

where pi is the pvalue for gene i. Notably, the moderation
is only applied on genes with r̂ i less than r0. Using this ap-
proach the log fold change is then calculated by (16) with
ĉi and D̂i, which approximately normalizes fold change to-
ward the common dispersion (mean). In addition, we also
provide an interface for user to change r0.

Software tools
The figures in this study have been plotted using R.

Additional files

Additional file 1: Overview and command lines for differential
expression analysis in R. (PDF 15 kb)

Additional file 2: Tables S1 and S2. On the results of the statistical
comparison of differential expression analysis methods. (PDF 322 kb)

Additional file 3: Method-dependent variation in type I error on ABRF
data set. (PDF 314 kb)
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