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Abstract

Background: Mass spectrometry-based shotgun proteomics experiments rely on accurate matching of
experimental spectra against a database of protein sequences. Existing computational analysis methods are limited
in the size of their sequence databases, which severely restricts the proteomic sequencing depth and functional
analysis of highly complex samples. The growing amount of public high-throughput sequencing data will only
exacerbate this problem. We designed a broadly applicable metaproteomic analysis method (ComPIL) that
addresses protein database size limitations.

Results: Our approach to overcome this significant limitation in metaproteomics was to design a scalable set of
sequence databases assembled for optimal library querying speeds. ComPIL was integrated with a modified version
of the search engine ProLuCID (termed “Blazmass”) to permit rapid matching of experimental spectra. Proof-of-
principle analysis of human HEK293 lysate with a ComPIL database derived from high-quality genomic libraries was
able to detect nearly all of the same peptides as a search with a human database (~500x fewer peptides in the
database), with a small reduction in sensitivity. We were also able to detect proteins from the adenovirus used to
immortalize these cells. We applied our method to a set of healthy human gut microbiome proteomic samples and
showed a substantial increase in the number of identified peptides and proteins compared to previous
metaproteomic analyses, while retaining a high degree of protein identification accuracy and allowing for a more
in-depth characterization of the functional landscape of the samples.

Conclusions: The combination of ComPIL with Blazmass allows proteomic searches to be performed with database
sizes much larger than previously possible. These large database searches can be applied to complex meta-samples
with unknown composition or proteomic samples where unexpected proteins may be identified. The protein
database, proteomic search engine, and the proteomic data files for the 5 microbiome samples characterized and
discussed herein are open source and available for use and additional analysis.
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Background
Precise characterization of the protein components of a
cell or tissue is a powerful technique for assessing a func-
tional state of a system, as direct detection of expressed
gene products can enable more accurate systems-level
analysis of a cellular state than the information gathered
from sequencing genes or transcripts alone [1, 2]. The
method of choice for modern, discovery-oriented

proteomics experiments is tandem mass spectrometry
(MS/MS), which relies on peptide mass, charge state, and
fragmentation to identify proteins in a sample.
MS/MS data is commonly analyzed and assigned to

peptide sequences using software such as SEQUEST,
Mascot, and ProteinProspector [3–5]. A critical compo-
nent in applying these proteomic data analysis tools is
the choice of an adequate collection of protein se-
quences. Peptide candidates for each mass spectrum are
selected from this protein sequence database and scored
against experimental MS/MS data. In this approach,
high-scoring peptide candidate matches are chosen as
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peptide identifications for spectra after rigorous statis-
tical filtering and post-processing [6–8].
For each of these analysis tools, a peptide sequence must

be present in the chosen sequence database for it to be
identified in a biological sample. Spectra corresponding to
peptides that are not present in the sequence database –
including slight variants of database peptides – will be left
unidentified or incorrectly identified. The use of an in-
appropriate or incomplete protein sequence database for a
sample can result in erroneous conclusions following pro-
tein identification. For instance, a recent study reanalyzed
an existing Apis mellifera (honey bee) proteomic dataset
that purportedly contained viral and fungal proteins that
were implicated in honey bee colony collapse. Upon re-
analysis using a larger, more inclusive proteomic search
database, the spectra corresponding to viral and fungal
peptides were reassigned to better-scoring honey bee pep-
tides [9]. This study underscores the value of searching
against a comprehensive database.
When a heterogeneous biological sample, such as a com-

plex environmental or microbiome sample, is assessed by
current proteomic analysis methods there is the potential
for many mass spectra to remain unassigned and subse-
quently for many proteins from the sample to be left un-
identified. Unfortunately, current proteomic analysis
algorithms cannot perform extremely large database
searches in a practical time frame, restricting searches to
more limited protein search databases. Recent high-
throughput genomic sequencing efforts have begun to
characterize variation at the gene and protein sequence
levels, leading to a deluge of publicly available protein se-
quence data [10–15]. The breadth of these types of studies
and the data generated are potentially valuable for thorough
proteomic data analysis [2, 16]. However, such extensive
protein sequence databases derived from enormous panels
of organisms with many protein variants will easily over-
whelm currently available proteomic search methods that
were historically designed to interrogate single proteomes.
An accessible computational search method incorporating
a comprehensive, rapid, and scalable protein sequence data-
base comprised of all known public protein sequences
would greatly advance the burgeoning field of metaproteo-
mics, allowing for proteomic characterization of highly
complex, unculturable biological samples, or for any bio-
logical system where significant protein sequence variation
may be present.
To address these limitations, we designed a method,

ComPIL (Comprehensive Protein Identification Li-
brary), that utilizes high-performance peptide and protein
databases and is scalable to an essentially unlimited number
of protein sequences. ComPIL is tightly integrated with a
modified version of ProLuCID [17], called Blazmass. Add-
itionally, we compiled a ComPIL database consisting of an
enormous amount of high-quality genomic sequence

information (approximately 500x the size of the human
proteome). Here, we validate and evaluate the sensitivity
and specificity of ComPIL using human and individual bac-
terial samples, reanalyze public proteomics data for discov-
ery of new biomedical knowledge, and then demonstrate
the method’s utility in improving protein and functional an-
notation on a number of human microbiome samples.

Results
Organizing large amounts of protein information into
optimized search databases
To account for the immense size of a comprehensive
protein database and optimize for the retrieval of infor-
mation needed for efficient peptide-spectrum scoring,
we organized our protein data into three distributed
NoSQL databases (Fig. 1a) implemented using Mon-
goDB (https://www.mongodb.org/). Protein sequences
were stored in a database termed ProtDB and digested
in silico using trypsin specificity. The resulting peptide
sequences were grouped by identical peptide mass or se-
quence and stored in databases MassDB or SeqDB, re-
spectively (Additional file 1: Figure S1). This design is
readily scalable as more protein sequence information
becomes available (for details on database organization
see Additional file 1: Methods).
Owing to the recent interest in microbiome studies and

the tremendous improvements in sequencing technologies,
a wealth of microbial genome data is now available from
public sequence repositories. A ComPIL database was gen-
erated by amassing protein sequence data from a number of
large, public sequencing projects (Fig. 1b, Additional file 1:
Methods and Table S1). In order to assess false discovery
rate (FDR) using the target-decoy approach, protein se-
quences were reversed and concatenated with their original
protein records to produce a large FASTA file (available for
download, see Additional file 1: Methods). This data was or-
ganized into ProtDB, MassDB, and SeqDB using an efficient
data processing pipeline, producing a total of 165.6 million
protein records and roughly 4 billion unique tryptic peptide
sequences (Fig. 1c and Additional file 1: Methods). Only
0.7 % of all peptide sequences mapped to both real and
decoy proteins, and most of these peptide sequences were
6–8 residues in length (Additional file 1: Figure S2). This is
unlikely to affect the filtering of proteins due to the require-
ment of matching 2 peptides per protein and the relatively
few 6–8 amino acid-containing peptides that are typically
identified. The vast majority of peptide sequences (84 %)
map to three or fewer parent protein sequences (Additional
file 1: Figure S3); therefore, each individual peptide sequence
in the database represents a substantial amount of new pro-
tein information. However, despite the increased search
space provided by ComPIL, the library does not approach
all possible peptide amino acid sequences required for de
novo sequencing, which is many orders of magnitude larger.
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Database searching and scoring
Modern proteomic search software typically incorporate
a pre-processing step on the input FASTA protein data-
base file in order to speed up searches. For example,
ProLuCID pre-processes the FASTA file by in silico
digesting all proteins, grouping the peptides by mass,
and storing them in a local SQLite database, while Crux
similarly utilizes tide-index, storing the data in a binary
file on disk [17, 18]. These greatly speed up searches for
small to medium sized databases; however, they do not
scale to handle the billions of distinct peptide sequences
in a ComPIL search.
In this work, data was stored using MongoDB, which

provides the primary benefits of speed and scalability
over existing pre-processing techniques. MongoDB and
other NoSQL-type databases allow simple “horizontal”

scaling to a computational cluster of machines, meaning
that a database can grow indefinitely by adding more
machines while the querying and retrieval workload are
distributed across all machines. This design is optimal
for distributed analysis as an MS dataset can be divided
into chunks that are processed independently on cluster
nodes, with individual nodes each querying the same
proteomic database over a local network. Using this
method, a local copy of the proteomic search database
does not have to be generated or copied onto each node
of a cluster. ComPIL was deployed as a sharded database
across 8 networked Linux servers (for implementation
details see Additional file 1: Methods).
We modified the ProLuCID query engine to allow in-

tegration with ComPIL databases, or any other Mon-
goDB databases. This was implemented using the Java

Fig. 1 Design, components, and generation of ComPIL databases. a ComPIL utilizes 3 databases that are generated from an input protein FASTA
file. MassDB contains peptide sequences organized by distinct mass; ProtDB contains protein information; SeqDB contains distinct peptide
sequences along with their parent proteins (mapped to ProtDB). b Public protein repositories and numbers of proteins incorporated into ComPIL.
Numbers shown above columns are in millions. c 1) Protein data from various repositories (shown in b) were grouped together in FASTA format.
Protein records were imported into ProtDB. 2) Proteins were in silico digested to peptides using trypsin specificity. 3) Peptides were sorted by
sequence or by mass to group peptides with identical sequences or masses together, respectively. 4) Peptides with identical sequences or
masses were grouped into JSON objects which were imported into MongoDB as SeqDB or MassDB, respectively. For implementation details see
Additional file 1: Methods
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MongoDB driver, a high-level driver that allows asyn-
chronous database operations. Individual search threads
are parallelized within one process, all utilizing the same
MongoDB connection. As is typical for many proteomics
database search engines, a calculated mass from a pre-
cursor ion is first used to query for a list of possible pep-
tide candidates. The peptides are returned as a stream,
implemented using Java’s Iterable interface, and the data
is subsequently streamed from the database to the
worker, reducing memory usage on the worker.
A variety of scores are calculated for each peptide

candidate-spectrum pair in order to determine the best
possible match. Blazmass calculates XCorr, a cross-
correlation score ranging from 0 to 10, for each peptide
candidate-spectrum pair and ranks peptide candidates
for each spectrum in descending order by XCorr value.
This peptide candidate ranking allows a second score
(DeltaCN), a normalized score ranging from 0 to 1
representing the XCorr difference between the first and
second best peptide matches, to be calculated for each
spectrum. Additionally, a Z-score is calculated using the
XCorr of the top hit, which aims to measure if the top
hit is significantly different from the other candidates
[17]. A direct correlation between an increase in devi-
ation from top score to other possible hits in the list in-
creases the likelihood and confidence that the peptide is
a true hit. A combination of these scores is typically used
to assess the quality of a peptide-spectrum match using
DTASelect2, or other post-processing software such as
Percolator [7, 8].
The integration of Blazmass with ComPIL allows for effi-

cient proteomic scoring against extremely large search
spaces. We attempted to benchmark the speed and accur-
acy of this software against SearchGUI, a software package
allowing for the simultaneous use of 8 different proteomic
search engines [19]. Despite extensive effort, we were only
able to search a small section of a mass spectrometry file
with the ComPIL database using one of the proteomic
search engines: Comet [20]. The primary reasons for failure
of the other search engines stemmed from insufficient
RAM required for the database indexing step or significant
limitations in search speeds that prevented timely results.
We compared the performance of Comet to Blazmass by
running each on 100 scans, resulting in a filtered PSM
agreement of 100 %, as defined by both search engines
matching the same peptide without post-translational mod-
ifications as the top match. However, Comet was ~150x
slower in scoring and matching these same 100 scans (for
details see Additional file 1: Methods).

Human peptides are correctly identified within the
expanded search space of ComPIL
A significant concern with larger protein databases is the
accuracy of peptide-spectrum matches [16, 21, 22]. In the

ComPIL database, the overall mass distribution of pep-
tides is similar to peptides derived from the human prote-
ome, but the large database contains ~500x as many
peptides for any given calculated peptide mass, resulting
in a large number of potentially incorrect matches for
each mass spectrum. To assess the accuracy of a ComPIL
search, we designed an experiment in which tandem MS
data from a known proteome would be searched against
both ComPIL and a standard, single-organism protein
database (Fig. 2a). The peptide-spectrum matches (PSMs)
from both searches were compared to assess agreement in
peptide sequence assignment.
We collected tandem MS data from a human HEK293

cell lysate using multidimensional protein identification
technology (MudPIT) [23] and searched the resulting
dataset against both the human proteome alone and the
ComPIL database, which includes the human proteome
as a small subset (0.11 % of ComPIL proteins). Plots of
Blazmass-assigned DeltaCN vs. XCorr values for PSMs
from the ComPIL search revealed that spectra matching
“human” peptides clustered distinctly from both “non-
human” (i.e., generally presumed incorrect for a human
sample) and reverse “decoy” (i.e., false positive) peptide
matches (Fig. 2b). Erroneous non-human and reverse
PSMs clustered together, with both groups having simi-
larly low median XCorr (2.24 non-human, 2.22 reverse)
and DeltaCN (0.03 non-human, 0.03 reverse) values.
The clustering of correctly and incorrectly identified
PSM data closely matches that observed for “forward”
and “reverse” PSMs in a target-decoy search against the
human proteome (Additional file 1: Figure S4), illustrat-
ing that the ComPIL search of a human sample is cor-
rectly differentiating human and non-human PSMs.
We used DTASelect2 to filter PSM data based on a max-

imum 1 % protein FDR and minimum 2 peptide identifica-
tions per protein. The FDR needs to be carefully controlled
at the protein level, as often the protein FDR can exceed
the PSM FDR as the database size increases [21]. Blazmass
scored each HEK293 peptide spectrum against approxi-
mately 500x as many peptide candidates in the ComPIL
search as in the human proteome search, yet the accuracy
of high-quality, filtered peptide matches was strikingly high
in the ComPIL search. We were able to identify the same
peptide for 99.7 % of 25,627 filtered spectra appearing in
both filtered search result datasets. Surprisingly, using the
expanded search space afforded by the ComPIL database,
we also identified peptides corresponding to human adeno-
virus 5 proteins E1A and E1B (Additional file 1: Table S2),
which are known contaminants and historical artifacts of
transformation of the HEK293 cell line [24]. This finding
demonstrates the power of ComPIL in elucidating import-
ant, unexpected protein information that current prote-
omic search methods and narrow-spectrum databases will
be incapable of identifying.
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While PSM accuracy remained high, we observed a 15 %
decrease in sensitivity (number of PSMs appearing in fil-
tered data for human proteome vs. ComPIL search), as has
previously been predicted for large database searches [22].
This loss in sensitivity can be explained by a more stringent
filtering of XCorr scores in the ComPIL search (median =
3.74) compared to the human proteome search (median =
3.51), as well as a decrease in DeltaCN (median = 0.236)
compared to the human proteome search (median = 0.440)
(Fig. 2b and Additional file 1: Figure S4). An overlay of
score distributions (XCorr vs. DeltaCN) for peptides found
in the ComPIL and human proteomes (Additional file 1:
Figure S5) implicates an overall decrease of DeltaCN values
in the loss in peptide identification sensitivity. This de-
crease, expected as database size grows, makes differenti-
ation of true and false peptide matches more difficult.
Notably, 531 additional peptides (a 2.6 % increase) were
found only in the ComPIL search and can be attributed to
several possible sources, such as false hits, proteins from
non-human species sharing high sequence similarity with

humans, incorrectly annotated proteins, and/or contami-
nants such as HAdV5 (Additional file 1: Figure S6).

Bacterial peptides are accurately identified within the
large search space of ComPIL
We next investigated whether human peptides might
somehow be easier to identify than microbial peptides, as
microbial peptides constitute the vast majority of ComPIL
and share limited sequence identity with human peptides
(Fig. 2a). As a second test of PSM accuracy, we performed
a similar experiment by collecting MudPIT data from a
Bacteroides fragilis cell lysate and searched the data
against both a B. fragilis only protein database and Com-
PIL. The B. fragilis proteomic database, like the human
database, constitutes a very small portion of ComPIL
(representing 0.08 % of all ComPIL peptides). As in the
human proteomics experiment, we found that the vast
majority of 14,812 PSMs (98 %) appearing in both fil-
tered datasets mapped to the exact same peptide se-
quence, again highlighting the accuracy of ComPIL-

Fig. 2 Validation of ComPIL with Blazmass searches using human and B. fragilis samples. a Human and B. fragilis proteins were extracted and
tandem MS data was collected using MudPIT. The datasets were searched against ComPIL and either the human proteome or the B. fragilis
proteome. b ComPIL searches of HEK293 cells. Unfiltered PSMs (top) and filtered PSMs (after filtering at 1 % FDR with DTASelect2, bottom) are
shown categorized as forward human matches (left), forward non-human matches (middle) or reverse (e.g., decoy) protein matches (right)
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Blazmass as compared to a database search of a more
restricted proteome. We again observed a decrease in
sensitivity with the larger search space, with a 20 % re-
duction in the number of filtered PSMs appearing in
the final output.

Detection of low-abundant pathogen proteins in human
proteomic samples with ComPIL
Due to the unexpected detection of adenovirus 5 pro-
teins within the HEK293 cellular lysates, we assessed if
unbiased ComPIL searches would be capable of identify-
ing low abundance pathogenic proteins from a sample of
human cells infected with Influenza A. Specifically, we
obtained publicly available proteomic data collected
from an experiment in which Calu-3 human lung cancer
cells were infected with a wild-type Influenza A strain
and harvested after 0, 3, 7, 12, 18, and 24 h for MS-
based proteomic data collection (ProteomeXchange:
PXD002385). Importantly, samples for the proteomics
data collection were not enriched for Influenza proteins
and thus unbiased towards the detection of peptides cor-
responding to Influenza. ComPIL searches detected In-
fluenza A virus peptides in the datasets beginning at 7 h
post-infection and represented the second most abun-
dant genus of proteins in the 18 h sample after human
with approximately 5 % of the total spectral counts
(Fig. 3). In summary, we observe a direct relationship
between an increase in infection time of the Calu-3 cells
with an increase in number and spectral counts of the
Influenza A peptides.

Use of ComPIL yields significantly more peptides and
protein functionalities within the human gut microbiome
We evaluated the performance and proteomic results of
the ComPIL database in comparison to a limited meta-
proteomic search database used to characterize healthy
human microbiota. A library of complete proteomes

(termed “46 proteomes”) based on a previously pub-
lished and validated metaproteomic sequence database
[25] was generated, consisting of 46 bacterial proteomes,
comprising a subset of ComPIL, (described in Additional
file 1: Table S3). For reference purposes, this database
contains 100x fewer peptides and 175x fewer proteins.
MudPIT data collected from the soluble proteome frac-
tions of four healthy human fecal samples was searched
against both databases. After DTASelect filtering, we ob-
served a significant increase in the number of PSMs
identified by the ComPIL search for all four samples,
when compared to the more focused “46 proteomes”
database (Fig. 4a).
Importantly, the increase in high-quality PSMs identi-

fied in our ComPIL search resulted in substantially more
protein locus identifications (Fig. 4b), using ComPIL as
compared to the “46 proteomes” database search. These
results are due to the increasing number of PSMs as well
as to the larger number of proteins within the database
the PSMs match. We find a proportionally larger in-
crease in proteins relative to PSMs, as peptides can
match multiple proteins. After filtering with DTASelect,
>95 % of the PSMs appearing in the smaller database
search mapped to the same peptide sequence in the lar-
ger database search, showing that a limited database
search is generally accurate in its peptide identification,
but fails to assign a large number of spectra. An overlay
of the score distributions (XCorr vs. DeltaCN) from pep-
tides identified with ComPIL or 46 proteome searches
for one fecal sample (H1_1) reveal an overall suppressed
DeltaCN for the larger ComPIL database search (Additional
file 1: Figure S7). This results in a decrease in sensitivity, as
previously shown with the proteomic searches of ComPIL
against the more focused human and B. fragilis proteomics
search databases (Fig. 3 and Additional file 1: Figure S4).
However, a substantial number of MS spectra were
matched to peptides only contained within the ComPIL

Fig. 3 Post-infection detection of Influenza A peptides in Calu-3 cells searched using the ComPIL database. Detected Influenza peptides are shown
mapped to their location within the Influenza A/Anhui/1/2013 proteome as a function of time. The color represents the normalized spectral counts of
peptides found at each residue. Influenza A peptides could be detected from 7 h post-infection, and shown a direct relationship between infection
time and relative quantitation of the peptides. A Jupyter notebook with more details about this figure is available
at https://bitbucket.org/sulab/metaproteomics
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database (Additional file 1: Figure S8). Significantly, these
ComPIL-only peptide matches are evenly distributed
throughout the range of XCorr and DeltaCN scores and af-
firms the use of a large peptide database to accurately iden-
tify protein-derived peptides from a complex proteomic
sample with unknown constituents in comparison to
smaller focused libraries.

ComPIL searches on human distal gut microbiome
samples reveal a tremendous amount of proteomic
diversity
As the ultimate goal of ComPIL is to search complex sam-
ples in an unbiased manner, we collected and prepared 5
human stool samples from healthy volunteers for identifi-
cation of both intracellular and secreted microbial pro-
teins with standard MudPIT data collection methods (see
Additional file 1: Methods). Three technical replicates
were subjected to MS MudPIT data collection and after
filtering with DTASelect2 using the strict parameters of 2
peptides per protein, <10 ppm mass error, and 1 % protein
FDR, we observed an average of >16,000 unique peptides
forming an average >9,000 protein loci per sample (Add-
itional file 1: Table S4). Importantly, our results demon-
strate a vast increase in protein identifications compared
to published methods on similar, related human fecal sam-
ples [25–28].
To facilitate the functional comparison of proteins de-

tected in samples, we used CD-HIT [29] to cluster the
ComPIL database at 70 % sequence identity and formed
“protein clusters”, which share common functionality (see
Additional file 1: Methods). An average of 5,668 protein
clusters was detected in each of the 15 samples with a total
of 17,599 protein clusters identified across all samples
(Additional file 1: Table S4). Proteins from each protein
cluster were annotated with GO terms using InterProScan
[24]. We subsequently quantified the GO categories by the
total protein cluster MS spectral counts associated with

each GO term (Fig. 5). The protein functionalities and
compositions detected are similar to previous studies that
employed shotgun proteomics [27, 28], in that proteins
involved in energy production (GO:0055114 oxidation-
reduction process), translation (GO:0003735 structural
constituent of ribosome), and carbohydrate metabolism
(GO:0005975 carbohydrate metabolic process) are highly
abundant. However, many additional functionalities are
differentially observed, such as signal-transduction
(GO:0016301 kinase activity).

Direct identification, cloning, and exogenous expression
of unannotated proteins with unknown functionalities
Many of the proteins detected in the microbiome samples
have unannotated functions. Such functionalities represent
potentially important proteins that will require additional
investigation to determine biological relevance. To this end,
we searched for proteins detected in the majority of healthy
human fecal sample proteomics results with domains of
unknown function (DUFs). We focused on DUF PF09861,
as this protein was detected among 14 out of 15 samples
and all corresponding peptides specifically mapped to a
protein containing this DUF. In ComPIL, all DUF PF09861
containing proteins are flagged as “hypothetical” or
“uncharacterized” and are found in the genomes of Eubac-
terium and Clostridium species. As a proof-of-concept
downstream analysis of our unbiased, large database prote-
omic searches, we successfully cloned, expressed, and vali-
dated the presence of this DUF PF0986-containing protein
within our healthy human fecal samples (Additional file 1:
Figure S9 and Methods).

Discussion and conclusions
The method presented here utilizing our ComPIL database
integrated with the Blazmass proteomic search engine is a
scalable, efficient approach for protein identification in
highly complex samples potentially containing a large

Fig. 4 Evaluation of ComPIL-Blazmass search of a complex microbiome sample. a Filtered PSMs from four human stool proteome samples after
searching each dataset with either the “46 proteomes” database or ComPIL. b Protein loci identified from four human stool proteome samples
after searching each dataset with either the “46 proteomes” database or ComPIL
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number of proteins. By designing the method around three
databases, each with a distinct schema (Additional file 1:
Figure S1), each database is individually scalable and opti-
mized for a typical workload of proteomic search queries.
For example, MassDB was designed as a relatively lean,
distributed database with peptide sequences organized by
exact mass. We chose this design to ensure that peptide
mass range-based database queries would be fast and effi-
cient. If more proteins are added to ComPIL, new peptide
sequences are appended to existing records in MassDB
without creating additional database records. As a result,
database search time increases linearly as ComPIL scales
to accommodate additional sequences (Additional file 1:
Figure S10).
We therefore anticipate that computational hardware

will not be a limiting factor as the ComPIL database size
increases. However, we do expect a reverse correlation in
peptide matching sensitivity to the increase in database
size, as true PSMs will become more difficult to differenti-
ate from false PSMs, a phenomenon which has been pre-
viously observed [22]. Notably, there are several pre-
database search strategies that can be applied to address
this limitation [16, 21, 30–32], such as reduction of the
peptide search space with pre-filters using peptide se-
quence tag information or physiochemical properties (e.g.,
isoelectric point). Similarly, post-database search strategies
can assist when PSMs become difficult to differentiate, in-
cluding the grouping together of redundant proteins into
“meta-proteins”, which better captures the actual protein
content in a sample.

Although there appears to be a loss in peptide identifica-
tion sensitivity when comparing ComPIL directly against
more focused, traditional database search methods, a rela-
tively well-characterized, culturable protein sample from a
HEK293 or B. fragilis cell culture would not typically be
scored and analyzed using ComPIL. Such experiments
would be analyzed using a more appropriate search data-
base. We anticipate that ComPIL will be most beneficial
for biological systems where accounting for sequence vari-
ability can quickly cause an explosion in database size and
proteomic search time. This method is complementary to
existing peptide sequence tag-based methods for analyzing
peptide sequence variation [32, 33].
Recent proteogenomic approaches have attempted

to circumvent this “big data” problem by coupling
RNASeq- or metagenomic sequencing-derived protein
sequence databases unique to each biological sample
with subsequent proteomics searches against a par-
ticular database [34, 35]. This multifaceted approach
has been successful, but is labor-intensive, as it re-
quires a separate genomic sequencing step for each
sample. The ComPIL and Blazmass methodology uses
existing sequence data and can scale to accommodate
new data generated by RNASeq and other methods.
We feel that a major strength of ComPIL is in identi-
fying unrelated and unexpected peptide sequences
that are present in a sample, as we observed with hu-
man adenovirus 5 proteins in our HEK293 samples
(Additional file 1: Table S2) or Influenza proteins in-
fecting a human tissue culture cell line.

Fig. 5 Functional annotation of five human microbiome proteome samples. Stacked bar chart showing the most abundant GO terms in each
sample quantified by spectral counts. GO terms comprising the top 80 % of spectral counts (on average across all samples) are shown, with the
others GO terms grouped into the “Other” category. Represented are the five healthy human fecal samples subjected to metaproteomics and the
three technical replicates of each sample
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A previous study directly measuring Influenza virus
H1N1 infection in Madin-Darby canine kidney cells [36]
showed a direct relationship between the infection time
of the Calu-3 cells and an increase in Influenza A pro-
teins, in agreement with our results. Furthermore, the
relative abundances of the observed Influenza proteins
generally agree with the previous study, where M1
(matrix protein) and NP (nucleoprotein) are the most
abundant viral proteins after >10 h post infection and
M2 is not observed. Even though the exact Influenza
strain that was used to infect the cells was not in the
ComPIL database, we were able to detect most Influ-
enza proteins due to high sequence conservation be-
tween the Anhui Influenza A strain used to infect
human the Calu-3 cells and related strains contained in
the database. Importantly, these peptides specifically
mapped only to Influenza A proteins and no peptides
erroneously matched Influenza B proteins. We re-
searched the data using a limited, tailored database con-
sisting of only human and the Anhui Influenza A pro-
teomes and confirmed the above results (Additional file
1: Figure S11). Importantly, our reanalysis of this pub-
licly available proteomic data is a proof-of-principle
demonstration for the employment of a large database
proteomic search, where potential organismal contami-
nants in a biological sample would be identified and
would pass undetected with the use of a smaller, focused
protein database. Such a finding would require orthog-
onal methods for validation.
The direct detection of an abundant, conserved, and

universally expressed protein produced by the human
gut microbiome that contain DUFs highlights a primary
utility of untargeted metaproteomics as presented here.
We originally focused on proteins containing DUF
PF09861, as peptides corresponding to this DUF were
ubiquitous among all healthy human stool samples and
this domain was unannotated in the Pfam database.
Despite our efforts to correlate DUF PF09861 with pre-
viously annotated functions, all detected peptides col-
lected from the stool samples only matched proteins
with unknown functions. Proteins containing this DUF
have poor sequence similarity, but a subset have previ-
ously been identified as lactate racemases [37]. While
previously known to be primarily found in Eubacterium
and Clostridium genomes, DUF PF09861-containing
proteins were under-appreciated with regard to their
ubiquitous expression within the context of the healthy
human gut microbiota. Such findings support the use
of metaproteomics with ComPIL databases as a com-
plementary methodology to metagenomics, as DNA
sequencing approaches are incapable of elucidating
protein abundance. Our unbiased proteomic searches
against large ComPIL databases will continue to shed
light on universally and/or differentially expressed

microbiome proteins in health and disease and will
promote new avenues for human gut microbiome
exploration.
The analysis of complex, relatively uncharacterized bio-

logical samples such as the human gut microbiome is an
important application of our ComPIL database and is the
primary driving force for the expansion and improvement
of proteomic search databases. To assess the relationship
between biological and technical replicates, we performed
principal component analysis (PCA) on the samples using
spectral counts in protein clusters as features. Notably,
PCA reveals excellent grouping of technical replicates for
each biological sample (Additional file 1: Figure S12). The
ComPIL database and search methodology can now be
employed to quantify microbiome samples across healthy
individuals as well as gastrointestinal disease cohorts. Re-
sults from these studies will aid in determination of pro-
tein family and protein functional conservation among
constituents of the microbiota of hosts, and hence,
whether conservation in function is preserved in the face
of diversity of the composition of the microbiota within
the microbiomes of different individuals, populations, and
diseases.
We anticipate that ComPIL will allow for large-scale

proteomic annotation of systems with extensive protein
variation, including human microbiomes. As we transi-
tion from the concept of a single ‘reference’ genome or
proteome for a species, proteomic methods must adapt
to incorporate variant sequences to improve their accur-
acy and depth of protein identification. We expect that
the ComPIL approach will prove useful for future meta-
proteomic studies in a variety of research areas as
publicly-available, high-quality gene and predicted pro-
tein sequence data continue to accumulate at an ever-
increasing rate. Metaproteomic studies incorporating
unbiased database libraries will provide an essential
complement to current metagenomic studies and outline
new methodologies that are required to construct a
foundation on which to map the complexity of the hos-
t:microbiome protein interaction network and promote
new avenues for human gut microbiome exploration.

Additional file

Additional file 1: This file contains supplementary figures, methods, and
four supplementary tables: Table S1. Data sources used for generation of
ComPIL database. Table S2. Adenovirus 5 proteins identified by a ComPIL
search of a human HEK293 sample. Table S3. List of proteomes used for
generation of the “46 proteomes” database. Table S4. Statistics summary of
3 technical replicates of 5 human fecal samples. (ZIP 1371 kb)
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