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Abstract

Background: Residual feed intake (RFI) is a powerful indicator for energy utilization efficiency and responds to
selection. Low RFl selection enables a reduction in feed intake without affecting growth performance. However,
the effective variants or major genes dedicated to phenotypic differences in RFI in quality chickens are unclear.
Therefore, a genome-wide association study (GWAS) and RNA sequencing were performed on RFI to identify
genetic variants and potential candidate genes associated with energy improvement.

Results: A lower average daily feed intake was found in low-RFI birds compared to high-RFI birds. The heritability
of RFI measured from 44 to 83 d of age was 0.35. GWAS showed that 32 of the significant single nucleotide
polymorphisms (SNPs) associated with the RFI (P < 107" accounted for 53.01 % of the additive genetic variance.
More than half of the effective SNPs were located in a 1 Mb region (16.3-17.3 Mb) of chicken (Gallus gallus)
chromosome (GGA) 12. Thus, focusing on this region should enable a deeper understanding of energy utilization.
RNA sequencing was performed to profile the liver transcriptomes of four male chickens selected from the high
and low tails of the RFl. One hundred and sixteen unique genes were identified as differentially expressed genes
(DEGs). Some of these genes were relevant to appetite, cell activities, and fat metabolism, such as CCKAR, HSP90BI,
and PCKI1. Some potential genes within the 500 Kb flanking region of the significant RFl-related SNPs detected in
GWAS (i.e., MGP, HISTTH110, HISTTH2A4L3, OC3, NROB2, PER2, STEGALNAC2, and G0S2) were also identified as DEGs in

chickens with divergent RFls.

Conclusions: The GWAS findings showed that the 1 Mb narrow region of GGA12 should be important because it
contained genes involved in energy-consuming processes, such as lipogenesis, social behavior, and immunity.
Similar results were obtained in the transcriptome sequencing experiments. In general, low-RFI birds seemed to
optimize energy employment by reducing energy expenditure in cell activities, immune responses, and physical

activity compared to eating.
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Background

Residual feed intake (RFI) is an effective indicator for
the feed utilization efficiency of animals. Low RFI selec-
tion enables a lower energy intake without sacrificing
growth performance because it is independent of the
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metabolic body weight and daily gain regardless of the
phenotype or genetic level [1, 2]. The feed conversion
rate (FCR) is another synthetic trait that can optimize
energy usage and is negatively correlated with growth
traits [3, 4]. Chinese consumers prefer quality chickens
(also called yellow plumage chickens) with a long feed-
ing time and excellent meat quality but focus less on
body weight at the market. Therefore, RFI selection is
more applicable to non-fast growing chickens for the
genetic improvement of energy metabolism.
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To date, up to 60 quantitative trait loci (QTLs) have
been reported to have significant associations with
chicken feeding traits including dry matter digestibility,
dry matter intake, feeding efficiency, feed intake, RFI
and FCR, of which 20 were associated with RFI (http://
www.animalgenome.org/QTLdb/). However, the above
RFI-related QTLs are difficult to be applied to quality
chickens due to the differences on breeds and trait
measurement time.

Genome-wide association studies (GWAS), at first, are
used to screen candidate markers associated with human
diseases [5, 6]. With the continuous improvement and
reduced cost of genotyping technology, this technique is
being more widely applied to animal breeding and genet-
ics. GWAS-related applications in RFI are primarily con-
centrated on beef cattle [7-9] and pigs [10-12] and have
been applied to laying hens [13] and broilers [14]. The
development of the high density 600 K genotyping array
may provide technical assistance for the identification of
causative and credible single nucleotide polymorphisms
(SNPs) that affect the chicken RFI [15].

The transcriptome is a full set of the RNAs transcribed
in the cell at a certain developmental phase or under a
specific stress condition and possesses spatial and tem-
poral expression characteristics [16]. RNA sequencing
can be a gateway to success in identifying differentially
expressed genes (DEGs), discovering alternative splicing
events, and conducting studies on gene evolution [17-20].
Previous studies showed that the RFI was so complex that
all relevant genes might not operate in a single physio-
logical pathway [21, 22].

The present study combined GWAS with transcriptome
sequencing to identify distinct genes or regions that af-
fected the chicken RFI. Our results lay the foundation
for improvements in energy efficiency and reductions
in feed cost.

Results

Growth characteristics and genetic parameters

The pure line N301 belongs to the dwarfism yellow-
plumage chicken with a medium growth speed. At the
beginning of the feeding trial (44 d of age), the average
body weights of the male and female chickens were
794 (£124) g and 760 (+98) g, respectively. When the
trial was finished (83 d of age), the male chickens
reached 1913 (£230) g and the female chickens
reached 1780 (+160) g. The average daily feed intakes
(ADFIs) of the male and female chickens recorded by
the electronic feeding station were 109 (+15) g and
102 (+15) g, respectively. The linear regression equa-
tion well described the changes in body weight at dif-
ferent ages. The average R> across all birds was
98.4 %. Only four birds had an R® lower than 80 %
(Fig. 1), suggesting that the estimates for average daily gain
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Fig. 1 Distributional R? for regression of body weight against the
day of the test for each chicken. The vertical ordinate denotes the
R? for the growth rate

(ADG) and mid-test metabolic body weight (MMBW) for
each bird were reliable.

The test of fixed effects showed that the gender effect
on RFI was not significant (P> 0.1), but the pen effect
was significant (P < 0.01). One explanation for this result
may be that the chickens were already separated based
on gender when they were arranged in different pens,
thereby turning the nested gender effect into the pen ef-
fect. Next, we compared the growth traits between the
birds with the highest- and lowest-ranked RFIs (Table 1).
No significant difference was found for any growth trait,
which was similar to the results obtained in cattle [23].
However, the ADFI for the lowest RFI-ranked birds was
39 g lower than the ADFI for the highest RFI-ranked
birds (P < 0.01).

Table 1 Growth characteristics (average + S.E) of 10 % of the
chickens with the lowest and highest residual feed intake
rankings

Traits® Lowest 10 % Highest 10%  P-value®
RFI during 44-83-d old (g) —17.40 (£045)  20.16 (£0.56) /

ADFI (9) 87.32 (+0.90) 126.10 (£1.18)  <0.01
Body weight at 44-d old (g) 771.60 (£9.31) 77062 (£10.78) 094
Body weight at 83-d old (g) 1832.92 (£16.07) 185803(x16.07) 0.35
ADG (g) 27.8 (£0.31) 27.98 (+0.46) 0.75
MBW (g) 13183 (£11.69) 13350 (+15.12) 038
FCR during 44-83-d old 331 (x0.03) 4.76 (£0.09) <0.01

°RFI residual feed intake, ADFI average daily feed intake, ADG average daily
gain, MBW mid-test body weight, FCR feed conversion rate
bp-value obtained by t-test
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The heritability estimate for the RFI from 44 to 83 d
of age was 0.35 (Table 2), which fell into the 0.21 to 0.49
range reported for other populations [1, 2]. This result
implied that the RFI was under a moderate level of gen-
etic control. Phenotypic RFI selection provides a method
to reduce feed intake without affecting either the ADG
(rp =0.03) or MMBW (rj, = 0.01). However, RFI selection
had a few consequences over the ADG if only the gen-
etic contribution was considered (rg =0.27), which was
consistent with previous reports [1, 2, 24]. The positive
genetic correlation between RFI and FCR found in our
population (rg = 0.75) was higher than the correlation re-
ported in other domestic animals [24, 25].

Genome-wide association study

The original RFI values calculated from 426 individuals
were examined for compliance with normality prior to
the GWAS using the Anderson-Darling test. The results
showed that the initial distribution deviated from the
normal distribution (P < 0.01) (Additional file 1: Table S1).
After Johnson transformation, the phenotypic data were
subjected to statistical analysis (Fig. 2).

Because the kinship of all tested individuals could not
be entirely eliminated when the IBS matrix was intro-
duced into the mixed model, the genomic control
inflation/deflation parameter (\) was introduced [26]. In
total, 32 SNPs were significantly associated with the RFI
with P-values below the threshold (107%) after correction
by a A equal to 1.005 (Fig. 3); these SNPs accounted for
53.01 % of the additive genetic variance. These signifi-
cant points corresponded to 13 known genes and one
unannotated gene in the chicken genome: SLCI7AS,
COBL, PCDH19, JAKMIP1, ZFYVE2S8, PPPIR7, SEPT2,
RYBP, PDZRN3, CHL1, UTS2R, ZMPSTE24, SYT6 and
LOC101749255 (Table 3).

Table 2 Genetic parameter estimation for the growth and
feeding traits

Traits® Nod Heritability (+S.E)  RFI during44-83-d old (qg)
RFI during44-83-d 1158 0.3542+00701 /

old (9)

ADFI (g) 1158 03950 +0.0749  0.7266%/0.7544 +0.0718°
Body weight at 44-d 1158  0.5598 £0.0848  —0.0293/-0.2059 + 0.1462
old (9)

Body weight at 83-d 1158  0.3683+£0.0765  0.0247/0.0314 + 0.1649
old (9)

ADG (g) 1158 0.3186+£0.0723  0.0286/0.2725 +0.1626
MMBW (90‘75) 1158 04706400821 0.0126/-0.0233+0.1563
FCR during 1158 02159+ 0.0594  0.6558/0.7465 + 0.0902
44-83-d old

?Pearson correlation

bGenetic correlation (average +SE)

“RFI residual feed intake, ADFI average daily feed intake, ADG average daily
gain, MBW mid-test body weight, FCR feed conversion rate

9 Number of samples for estimating heritability
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These SNPs were widely distributed on eight chicken
(Gallus gallus) chromosomes (GGA). GGA18, GGA23 and
GGA26 possessed only one significant SNP each. Two of
the significant SNPs were located in the 3’ untranslated re-
gion (UTR) and downstream of SLCI7A8 on GGA1l, two
were located within a 4.4-4.6 Mb region on GGA9, three
were located within a 81.0-81.1 Mb region on GGA?2, five
were located on GGA4. Notably, more than half of the total
significant SNPs were located within a 1 Mb narrow region
(16.3-17.3 Mb) on GGA12.

This narrow region contained 555 tested SNPs around
eight genes. We observed 99 haplotype blocks extending
from 0 to 64 kb (Fig. 4). The significant SNPs were en-
tirely located within the blocks with the exception of SNP
rs317049993. Three significant points in the RYBP introns
(rs14046165, rs312899555, and rs313947867) had identical
additive effects because they were in a state of complete
linkage. Six haplotypes were found in a block determined
by the SNPs rs14046165 and rs312899555; “GATGA”
occurred more commonly in the other three non-
significant SNPs with a frequency of 31.2 %. Four haplo-
types were found in another block determined by the SNP
rs313947867; “GGGC” was the most common haplotype
in the other three non-significant SNPs with a frequency
of 35 %. Five significant SNPs in complete linkage were
found in the introns of PDZRN3, although they were posi-
tioned in two different blocks.

The proportion of phenotypic variance explained by
rs316570003 in the intron of JAKMIP1 was highest
among the significant SNPs. Because the original RFI
variable was transformed into the normal distribution
data, the increment of the additive effect accompanied
by the minor allele could not accurately reflect its im-
pact on the change in RFL In contrast, the direction of
the additive effect could be used to judge whether the
minor allele would be beneficial to the RFI. The results
showed that nine wild-type mutations were in favor of
decreasing the chicken’s RFI value.

The chip used in the present study had a very high
density. The average interval between two SNPs was
1.8 Kb, which resulted in little chance for recombin-
ation among neighboring SNPs gathered in a limited
range of the chromosome. Linkage disequilibrium (LD)
analysis was performed to determine the extent to which
the causative SNP could generate linkage to the significant
SNP. The pairwise LD measured by R* values for the
present population was calculated for GGA12, where the
most significant SNPs were concentrated. The results
showed that the LD level was high (R? =0.3) at short dis-
tances, slightly decreased (R* = 0.2) when the distances in-
creased to 40—-60 kb and low (R? < 0.15) when the distance
increased to 80-100 kb. Similar trends were found in
GGA2 (Fig. 5). Therefore, 50 kb was accepted as a reason-
able distance to cause moderate LD between two SNPs,



Xu et al. BMC Genomics (2016) 17:594

Page 4 of 14

Normality-95% confidence intervals Normality-95% confidence intervals
99.9 99.9 . Fitness test
L
99 99 )
Normality
95 95 AD = 1.466
P-value <0.005
g 80 g 80
g g
[ e Johnson
0%" 50 u%’ 50 transformation
) ) AD=10.337
20 20 P-value = 0.505
5 5
1 1 .
-
0.1 , . , 0.1 ; ;
-20 0 20 -4 =2 0 2
RFI RFI
Before transformation After transformation
Fig. 2 Probability graph of residual feed intake

and we captured all genes distributed on the 50 kb flank-
ing regions of the significant SNPs for GO analysis.

The results from the first level classification revealed
that 45 GO terms in molecular function, 40 GO terms
in biological process and 27 of GO terms in cellular
component corresponded to the input genes (Additional
file 2: Table S2). A deeper analysis was conducted in the
molecular function GO terms to obtain more informa-
tion. Protein binding (12.5 %) was reflected by eight dif-
ferent genes and might be the major molecular function
that differed in RFI-divergent birds, followed by zinc ion
binding (10 %), calcium ion binding (7.5 %), and ATP bind-
ing (5 %). Protein binding was significant, including the
synthesis of a peptides from amino acid molecules and the
formation of a high-grade protein structure by combining
polypeptide chains. This result indicated that the difference
in protein binding was associated with the rapid growth of
the experimental birds, specifically muscle development.
The chief role of the calcium ion was to compromise po-
tential on two sides of the cell membranes and to maintain
muscle contraction and relaxation, indicating that differ-
ences in motor skills would occur in RFI-divergent birds.
Therefore, differences in ATP binding should not be over-
looked. ATP is the primary source of fuel for every bio-
chemical and physiological process and will induce
metabolic disorders in the event of an exception.

RNA sequencing of the transcriptome

Read mapping

RNA sequencing was performed in four individuals, as
follows: two chickens with the highest RFI values (H1

and H2) and two with the lowest RFI values (L1 and L2).
Among the four samples, H2 had the lowest mapping
rate (total mapped reads/total reads) of approximately
88.4 % compared to the rates above 90 % for the other
three samples (Table 4). Some of these reads had more
than one matching sequence in the genome; these reads
were removed from the subsequent analysis. The clean
reads were evenly distributed across all chromosomes.
Based on the annotation analysis of the clean reads
mapped to the genome, we found that 61 % of these reads
were derived from exons, 32.62—35.56 % were from inter-
genic regions, and only a small number were derived from
splicing and intronic regions.

DEG analysis

Four samples were classed into two groups based on
their RFI rankings prior to the DEG analysis. The
average expression of identical genes in the high-RFI
group was compared with the low-RFI group to
screen for DEGs. Biological replicates of the expressed
genes had a high correlation coefficient (0.936) between
the high-RFI group and low-RFI group (Additional file 3:
Figure S1). As a generalized representation index, RPKM
(reads per kilobase of transcript per million mapped reads)
was used to denote each transcript’s expression quantity
[27]. After bioinformatics assessment and comparison,
119 differentially expressed transcripts were identified
between the high- and low-RFI groups that corre-
sponded to 116 known genes. A total of 74 of the
DEGs were up-regulated in the low-RFI group and the
rest were down-regulated compared with high-RFI group
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(Additional file 4: Table S3). Interestingly, three genes
(CCKAR, LOC395159, and miR-122-1) were only
expressed in the low-RFI group. The expression of miR-
6705 was significantly lower in the low-RFI group than in
the high-RFI group with a fold change of eight. In con-
trast, the expression of PCKI was significantly higher in
the low-RFI group than in the high-RFI group with a fold
change of 39.

MiRDB (http://mirdb.org/miRDB/) and TargetScan
(http://www.targetscan.org/) are two effective websites

for microRNA (miRNA) target prediction. Based on
their prediction results, miR-122-5p and miR-122-3p
were predicted to act on 693 target genes. Three tar-
gets (COL3A1, PER2, and CAV1) were found to be
DEGs. However, these genes were up-regulated in the
low-RFI group, which was not consistent with the
negative regulatory interaction between the miRNA
and its target. MiR-6705-5p was predicted to act on
704 target genes. Nine targets (LPL, GLCCI1, COL3A1,
B3GNT2, ABHD17B, CAV1, RHOBTBI1, CHACI, and
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Page 6 of 14

Locus Chr Position® Effect® P-value® MAF¢ Var(%)© Nearest gene SNP-gene relation
rs313001261 1 47140273 0.35 4.08E-05 0.36 9.52 SLC17A8 UTR-3
rs14820118 1 47142175 0.34 8.75E-05 035 8.53 SLC17A8 downstream
rs313802356 2 81015541 -044 6.90E-05 0.16 2.24 COBL UTR-3
rs316977875 2 81047713 -0.44 6.37E-05 0.16 2.24 COBL intron
rs312370583 2 81093795 -0.44 7.73E-05 0.16 242 COBL intron
rs312326618 4 5197844 -03 7.60E-05 044 48 PCDH19 intron
rs316570003 4 78962129 0.38 8.13E-05 0.22 9.71 JAKMIP1 intron
rs14494646 4 79000778 044 9.74E-05 0.13 6.93 JAKMIP1 upstream
rs312925954 4 82293366 045 1.76E-05 0.16 452 ZFYVE28 intron
1516445177 4 82306738 04 5.39E-05 0.18 4.29 ZFYVE28 intron
15312767762 9 4440306 -053 7.90E-05 0.1 843 PPP1R7 intron
rs16663153 9 4507514 -051 6.10E-05 0.1 8.13 SEPT2 downstream
rs14046165 12 16386012 033 4.20E-05** 0.38 415 RYBP intron
rs312899555 12 16393667 033 5.37E-05%* 0.31 263 RYBP intron
rs313947867 12 16400923 033 4.28E-05** 0.31 263 RYBP intron
rs317049993 12 16423468 032 3.39E-05** 04 438 RYBP upstream
rs315004580 12 16640380 032 3.00E-05* 047 5.54 PDZRN3 intron
rs315162282 12 16648446 032 3.27E-05* 047 554 PDZRN3 intron
rs317287197 12 16660649 032 2.66E-05* 047 5.54 PDZRN3 intron
rs316098097 12 16673403 032 3.86E-05** 047 5.54 PDZRN3 intron
rs314131263 12 16681057 032 345E-05** 047 5.62 PDZRN3 intron
rs14046530 12 16758193 -032 6.89E-05%* 049 4.54 PDZRN3 upstream
rs315238546 12 17083942 03 5.60E-05%* 041 5.94 LOC101749255 downstream
rs315693318 12 17089689 03 8.62E-05** 041 594 LOC101749255 downstream
rs315157887 12 17160768 037 3.92E-06** 0.38 741 LOC101749255 upstream
rs317584843 12 17195875 032 6.31E-05** 03 522 CHL1 upstream
rs314285248 12 17230860 033 6.92E-06** 046 5.08 CHL1 intron
15317278144 12 17239654 035 3.34E-05* 0.25 747 CHL1 intron
rs317188563 12 17260556 028 8.02E-05** 05 1.88 CHL1 intron
rs316897066 18 3599249 0.28 7.54E-05 044 5.18 UTS2R downstream
rs315285389 23 1733290 -038 2.27E-05* 0.24 3.39 ZMPSTE24 upstream
rs315491506 26 3777283 -038 2.65E-05 0.21 9.28 SYT6 intron

#Physical position

bAdditive effect of allele B (minor allele)

P-value corrected for inflation factor A, *FDR <10 %, ** FDR <5 %
dMinor allele frequency

€The proportion of the phenotypic variance accounted by the SNP

LUM) were found to be DEGs. Except for LPL, the
other eight genes were up-regulated in the low-RFI
group, indicating they might be negatively regulated
by miR-6705-5p. Of note, the expression of COL3A1
and CAVI could be impacted by both the miR-122-1
and miR-6705.

Hepatic PCK1 expression was drastically increased by
28-fold compared to its normal expression level. Simi-
larly, the subcutaneous, intercellular, and abdominal fat

contents were increased when a simple orchiectomy was
implemented in capons, implying negative regulation of
hepatic PCK1 expression and abdominal fat content by
testosterone [28].

Discussion

In Koch’s model, b,BW®7 is normally used as metabolic
energy (ME) for maintenance. However, b,BW®7> is most
likely to represent only the ME maintenance output for
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Sample name L2 H1 H2 L1

Total reads® 25313336 25,731,202 20,249,350 28,438,634

Total mapped® 22,702,806 (89.69 %) 23,216,653 (90.23 %) 17,916,485 (88.48 %) 25,601,368 (90.02 %)
Multiple mapped® 681,109 (2.69 %) 690,852 (2.368 %) 575,647 (2.84) 695,892 (245 %)
Uniquely mappedd 22,021,697 (87.00 %) 22,525,801 (87.54 %) 17,340,838 (85.64 %) 24,905,476 (87.58 %)
Reads map to "+ 11,365,825 11,622,304 8,966,742 12,813,376

Reads map to "~ 11,336,981 11,594,349 8,949,743 12,787,992

“Total reads: the number of clean reads

PTotal mapped: the number of clean reads that could be mapped to the chicken genome
“Multiple mapped: the number of clean reads corresponding to a plurality of locations in the genome
dUniquely mapped: the number of clean reads corresponding to a unique location in the genome

®Reads map to “+": reads mapped to the sense strand
fReads map to “~": reads mapped to the antisense strand

[29]. In reality, high-RFI birds tried to replenish their en-
ergy by eating more; thus, the redundant energy might be
exploited by stress or physical activity [30]. We speculated
that the low-RFI birds had less governable overall energy
to expend on stress and physical activity. In the present
study, the low-RFI birds spent less time eating (ry = 0.49)
(data not shown), indicating that they reduced the ME de-
mand at the expense of less physical activity related to
feed intake.

Four significant SNPs on GGAl and GGA9 in the
present study did fall into the reported QTLs for chicken
RFI [31]. However, only the significant SNPs on GGA12
passed chromosome-wise FDR threshold of 5 %, prob-
ably because of limited sample size resulting in low
power to detect a QTL by testing the marker effect. An-
other possible cause was the low RFI phenotypic vari-
ability in sex-linked dwarf chicken used in the present
study. The RFI values of 426 individuals ranged from
-25.6 g to 25.6 g. The standard deviation of the RFI was
simply 8.36 g, which was much less than that observed
in normal meat-type chickens [2].

In the present study, we identified eight genes located
in a 1 Mb narrow region, and almost all of the signifi-
cant points in GGA12 were located in introns. The SNPs
in the introns could play negative, positive, or bidirec-
tional regulatory roles in gene expression and affect al-
ternative splicing [32, 33]. PDZRN3 was reported to
exert a negative effect on lipogenesis. In mouse 3 T3-L1
preadipocytes, up-regulation of STAT5b and C/EBPp
was observed in response to PDZRN3 silencing, result-
ing in increased expression of PPARy at both the mRNA
and protein levels and the promotion of 3 T3-L1 cell dif-
ferentiation into adipocytes [34]. As a candidate gene for
human schizophrenia and mental deficiency, CHLI is
relevant to learning behavior and reorganization of the
frame of thinking. The CHL1-deficient mice displayed
reduced enthusiasm for fresh food hunting and a block-
age in social contact that was attributed to chaos in the

neural circuits that connected the brain’s limbic system
to the cerebral cortex [35]. JAKMIPI was of special con-
cern because its intronic SNP rs316570003 explained the
highest phenotypic variance. This gene was reported to
be associated with microtubule polymers and to partici-
pate in cytoskeleton rearrangement, cell polarization,
and intracellular trafficking [36].

These findings combined with the implications of the
GO analysis provided hints that RFI-related genes im-
proved energy utilization efficiency by adjusting cellular
procedural activities, thereby assisting muscle and neural
development and growth and eventually improving and
enhancing energy efficiency.

Transcriptome sequencing helped identify the DEGs
causing the diversity in the RFI phenotypes. In the ab-
sence of mRNA expression, we speculate that there
should be a role for CCKAR in the constant energy use.
Indeed, CCKAR was reported to be associated with ap-
petite control [37, 38]. CCK is a hormone that causes
gallbladder contractions and enables the promotion of
trypsin secretion [39]. Central CCK could be motivated
by a combination of endogenous CCK and its receptor
CCKAR to trigger a feeling of satiety. Indeed, an in-
creased feed intake was detected in CCKAR-deficient
mice [38], and the risk variants of porcine CCKAR were
significantly correlated with feeding traits [40]. The ef-
fect of the CCK gene might be weakened by a lack of its
receptor in high-RFI individuals, resulting in increased
feed intake.

The DEGs were consigned to six different gene-
interaction networks predicted by IPA (Additional file 5:
Table S4). The networks were more comprehensive and
detailed when combined with the function of homolo-
gous genes from humans and mice. For this reason, they
provided redundant information that could not be applied
to chickens, such as cancer or cardiac failure; thus, the re-
lated gene functions were simply suggestive in poultry.
However, these networks provided important clues to
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Table 5 Predictable changes in biological functioning based on DEG analysis in low-RFI individuals

Categories Functions annotation P-value  Predicted Molecules
Cell Death and Survival apoptosis of lung cancer cell lines 5.80E-06 | CAMP, EREG, G0S2, HSPAS5, MCL1, RASDT,
SERPINF1, TNFSF10
apoptosis of tumor cell lines 208E-05 | AR, BCL2AT, CAMP, CAV1, COL18AT, CREM,
CTSD, EREG, G0S2, HSPA5, 1L18, MAOA,
MCLT, NFKBIA, NROB2, PLAU, RASD1,
SERPINF1, TNFSF10, UCHL1
cell death of lung cancer cell lines 321806 | CAMP, EREG, G0S2, HSPAS5, MCL1, NFKBIA,
RASD1, SERPINF1, TNFSF10
cell death of tumor cell lines 275805 | AR, BCL2A1, BTG1, CAMP, CAV1, COL18AT,
CREM, CTSD, EREG, FETUB, GOS2, HSPAS,
IL18, MAOA, MCL1, NFKBIA, NROB2, PLAU,
PPAT, RASD1, SERP
cellular degradation 377E-04 | AR, CACNA1D, CAV1, CREM, CTSD, LYZ,
UCHL1
Cellular Assembly and Organization formation of filaments 1.36E-03 1 AR, CAV1, COL18A1, HSPAS5, PTGDS,
SERPINF1, TTR, TUBB
Organismal Development development of body axis 1.99E-04 1 ANGPTL3, CCKAR, COL18A1, CREM, CTSD,
DIO3, GPR34, HHEX, HSP90BT, INSIGT,
LUM, MAOA, NFKBIA, PLAU, SERPINF1
Immune Cell Trafficking activation of antigen presenting cells 347E-04 | CAMP, GJB1, HNF4A, HSPOOBT, IL18, LECT2,
SERPINF1, TNFSF10
Renal and Urological System Development  cell viability of kidney cell lines 3.05E-04 | CAV1, HSP90B1, HYOU1, NFKBIA
Cardiovascular Disease vascular lesion 294E-07 1 ACAT2, CACNA1D, COL18AT1, IL18, LPL,

MGP, mir-221, NFKBIA, PLAU, TNFSF10

improve the energy balance from the perspectives of gen-
etics, nutrition and bio-pharmaceuticals.

Low RFI selection made dramatic changes in some
biological pathways possible (Table 5). For example, the
cell death and apoptosis of tumor cell lines, activation of
antigen presenting cells (APCs) and cell viability of kid-
ney cell lines were decreased during low RFI selection.
Additionally, chickens with low RFI were more prone to
vascular lesions. Every change was a result of the mutual
action of DEGs.

Apoptosis and APC viability warranted attention be-
cause they were tightly linked to immunity.

Apoptosis was effectively under the control of genes.
When low-RFI birds suffer from Avian Leukosis Virus,
Marek’s Disease or reticuloendotheliosis, related DEGs
might be responsible for blocking the energy supply to
tumor cells, thereby slowing apoptosis and accelerating
tumor formation.

APCs are capable of ingesting and processing patho-
genic microorganisms by phagocytosis or pinocytosis,
which in turn produces peptide fragments that contain
antigenicity domains [41, 42]. Decreased activation of
APCs in low-RFI birds might cause a delay in the im-
mune response or a reduced ability to kill pathogens.
HSP90B1 is an important immune protein that is in-
volved in cell protection under heat stress. Increased
HSP90B expression in response to heat stress causes
various reductions in cell damage and even repairs

damaged proteins [43]. The reduced HSP90B1 expres-
sion in low-RFI birds signified a weaker ability to resist
the effect of environmental factors compared to high-
RFI birds.

Additionally, the changes in some DEGs were found
to function in the regulation of fat metabolism (Fig. 6).
For low-RFI birds, 13 DEGs were predicted to facilitate
the concentration of lipids, 10 were predicted to play a
pivotal role in the activation of lipid synthesis, and 5
were associated with the activation of fatty acid metabol-
ism. Although a few DEGs had inhibitory effects, the
above three specific physiological functions seemed to
be enhanced overall. The results in the present study
showed that low-RFI birds could achieve greater syn-
thetic metabolism of lipids compared to high-RFI birds,
whereas the results of another study showed that they
displayed weaker catabolic abilities [44]. The faster anab-
olism of fat than catabolism in low-RFI birds might
cause abnormal storage of fat and a decrease in heat
release.

Among the lipometabolism-related DEGs, PCK1 was
particularly noteworthy because it was remarkably in-
creased in the low-RFI group. The PCKI gene is associ-
ated with obesity, insulin resistance, and type II diabetes
in mammals [45-47]. Abdominal fat content was as-
sumed to be positively correlated with PCKI mRNA
expression in birds [28]. Thus, high PCK1 expression in
low-RFI birds might signal a concurrent increase in the
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Fig. 6 Predictable changes in fat metabolism based on DEG analysis in low-RFI individuals

abdominal fat mass. Interestingly, AR expression was
significantly lower in the low-RFI birds than in the
high-RFI birds. The interaction of androgen with its
receptor (AR) was closely related to bone metabolism
in birds [48]. The AR in the cytoplasm enters the nu-
cleus by integrating with androgen and then binding
to the androgen responsive element, leading to the ac-
tivation of androgen [49]. Low AR expression interferes
with the positive physiological effect of androgen, lead-
ing to high PCKI expression.

A systematic analysis of the GWAS and RNA sequen-
cing results was performed. The results showed there was
no overlap of the genes within the 50 kb flanking region
containing the significant SNPs detected by GWAS and
any DEG detected by RNA sequencing. One explanation

is that the actual linkage distance between the QTLs and
the significant SNP is larger than 50 kb. However, we
stopped measuring the RFI when the chickens were 83 d
of age, whereas the liver sample collection was performed
at 91 d of age. During this time, the RFI ranking may have
slightly changed, resulting in a mismatch. Nonetheless,
when the search scope was broadened [11] we still found
that some potential genes within the 500-kb flanking re-
gion of the significant RFI-related SNPs in GWAS
were identified as DEGs in chickens with divergent
RFIs, including MGP, HISTIHI110, HISTIH2A4L3 and
OC3 near two SNPs (rs313001261 and rs14820118) in
GGA1, NROB2 near the SNP rs315285389, PER2 near
the SNP rs16663153, ST6GALNAC2 near the SNP
rs316897066, and GOS2 near the SNP rs315491506.
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Notably, the concurrent genes involved in GWAS and
RNA sequencing played critical roles in a wide spectrum
of biological processes. Therefore, their relationships with
RFI need to be verified.

Conclusions

The heritability of RFI during the period from 44 to 83 d
of age was moderate. The RFI was particularly affected
by 32 significant SNPs that could explain 53.01 % of the
additive genetic variance. Seventeen RFI-related SNPs
were located in a 1 Mb region (16.3-17.3 Mb) of GGA12.
This region was identified as a key candidate region affect-
ing the energy utilization efficiency of chickens because it
contained genes associated with lipogenesis, social behav-
ior, and immunity. Although they obtained less metabolic
energy, low-RFI birds maintained normal growth that was
comparable to that of the high-RFI birds by allocating less
energy to cell activity, the immune response, and physical
activity in relation to eating and thus optimizing the use of
the limited resources. Nevertheless, low-RFI selection can-
not mobilize spare energy to withstand environmental
stress and causes potential health risks that should not be
ignored. At the same time, the low-RFI birds tended to be-
come fatter.

Methods

Animals and measurement of feeding traits

The yellow-plumage dwarf chicken line N301 was used
in the present study. Chicks with common characteris-
tics of incompetent physical conditions (chicks that were
malnourished or crippled) were eliminated after birth.
The chickens were raised in a closed house to control
the temperature and illumination during the early growth
stage (0—4 wk of age). At the end of week 4, electronic
chips were placed below the jaw and in the middle of the
wattles. Then, the chickens were transferred to a half-
open vertical ventilation hoop house. A total of 620 male
chickens were maintained in three fence-separated pens
on one side of the house, and 538 female ones were main-
tained in three fence-separated pens on the other side of
the same house. Each pen had 17 feeding stations and 5
hanging water fountains in a 20 x 6 square meter area.
The animals were fed a diet containing 2837 kcal/kg ME
and 200 g CP/kg during the early growth stage. Then, the
diet was switched to a high-energy diet containing
2900 kcal/kg ME and 190 g CP/kg. Daily feed intake and
body weight were recorded for each bird throughout the
feeding trial from 44 to 83 d of age.

Calculation of residual feed intake

The ADG and MMBW for each individual were estimated
based on the traditional model that was previously pre-
sented [50] and applied [23]. Age was expected to be
linearly related to body weight because the experimental
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birds were in a period of rapid growth. Thus, their rela-
tionship was in compliance with the following equation:
BW =y +axDOT + e, where p was the intercept, was the
regression coefficient that represented ADG, DOT was
the day of the test, and e was the residual. The mid-test
body weight (MBW) was the predicted body weight on
day 21 of the test, whereas MMBW was the MBW raised
to the 0.75th power. ADFI was the mean of the daily feed
intake throughout the 40 d of the experiment. The RFI
was calculated from the subsequent model when all of the
above parameters for each bird were estimated as follows:
ADFI = b0 + b1 x MMBW + b2 x ADG + RFI, where b0 was
the intercept, bl and b2 represented the partial regression
coefficients for MMBW and ADG, respectively, and RFI
was the residual of the model.

To better understand the difference in the growth and
feeding characteristics among individuals with divergent
RFI values, data from the 10 % highest- and 10 %
lowest-ranked RFI birds were pooled and t-tests were
performed on the variables. Given the uncertainty of the
gender or pen impact on the RFI, the RFI was corrected
once the fixed effect was significant (P<0.01) after it
was calculated for the entire population.

The restricted maximum likelihood method imple-
mented by the DMU package was used to obtain estimates
of the phenotypic and genetic (co)variance and heritability
[51]. The basic model was: y=Xb + Za + e, where y was
the vector of the observations, a was the vector of the ani-
mal additive genetic effect, b was the vector of the fixed
effects, including gender (two levels) and pen (six levels), e
was the vector of random residuals, and X and Z were the
incidence matrices. 1158 individuals were included.

SNP genotyping and quality check

Blood samples from 435 male chickens randomly se-
lected from the entire population were collected for
DNA extraction using the EZNA Blood DNA Kit
(Omega Biotek, Doraville, GA). The DNA samples were
qualified and standardized into a final concentration of
50 ng/pl. Genotyping was performed with the Affymetrix
600 K genotyping array by Biotechnology Corporation
(Shanghai, China). The genotyping quality control was
evaluated in the GenABEL package in the R software
(Additional file 6: Figure S2). A total of 415,154 SNPs
and 426 individuals were involved in the final GWAS.

Statistical analysis of the single marker GWAS

A general linear mixed model was used for the SNP-
phenotype association as follows: Y=Xb+Sa+ Zu +e,
where Y was the vector of the RFI values after normal
transformation and b was the estimator of the fixed ef-
fect. Because the pen effect did not exert a significant
influence on the normal-transformed RFI in the male
chickens, the fixed effects were ignored in this model. a
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was the SNP substitution effect and u was the random
additive genetic effect following the multinomial distri-
bution u~N (0, G)Gé ); here, ® was the relationship
matrix and 0% was the polygenetic variance. The gen-
omic kinship matrix was used for the adjustment for
population structure due to its better ability to estimate
true covariance between individual genomes [52]. S and
Z were the incidence matrices for a and u. e was a vector
of residuals with a distribution of N (0, 16?); here, 02 was
the residual variance.

The level of significance

Because sub-structures could still exist in the popula-
tion, the P-value was corrected using the genomic
control inflation/deflation parameter (\) as a simple and
rational option to solve the family data issue [26]. The
significant threshold P-value after A correction was 1074
based on a hint by The Wellcome Trust Case Control
Consortium and some articles [53, 54]. A chromosome-
wise false discovery rate (FDR) method was used for veri-
fying significant SNPs. The p-values of each SNP were
sorted in ascending order, and the following formula was
applied to obtain FDR for each SNP: mP(i)/i, in which m
is the total number of SNPs, and P is the p-value of the ith
SNP [55].

Haplotype analysis

Linkage disequilibrium analysis was implemented in the
region where multiple significant SNPs clustered using
the Haploview software [56]. A pairwise strong LD was
defined as the case when the one-sided upper and lower
95 % confidence limits of D’ exceeded 0.98 and 0.7, re-
spectively. The block was constructed in cases when
over 95 % of the informative SNPs in a region displayed
a strong LD to identify potential regions of causal muta-
tion for RFI [57].

Phenotypic and additive variants analysis

The fraction of phenotypic variance explained by the
significant SNPs was computed by the following
model: y=p+SNP +e, where y was a vector of the
RFI values, g was the population mean, SNP was a
vector of the genotypes in different individuals with
regards to the significant SNP (fixed effect), and e
was a vector of random errors. The proportion of the
phenotypic variance explained by the SNP was
reflected by the determination coefficient (R*) in the
linear model. The proportion of additive variance ex-
plained by the SNP was computed in a similar man-
ner; the only difference was that the phenotypic
values were substituted for the breeding values.
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RNA extraction and RNA sequencing

Total RNA was extracted from the liver samples using the
TRI reagent (Ambion, Applied Biosystems) according to
the manufacturer’s instructions. The ND-2000 (NanoDrop
Technologies) was used to verify the RNA integrity, and
the Agilent Bioanalyzer 2100 (Agilent Technologies) was
used to measure the concentration of the RNA samples.
An RNA integrity number larger than 8.0 was considered
to be acceptable for cDNA library construction.

Four samples (two with the highest RFI values and two
with the lowest RFI values; Additional file 7: Table S5)
were selected for ¢cDNA library construction for RNA
sequencing using the TRIzol reagent following the manu-
facturer’s instructions (Invitrogen). Purified mRNA was
fragmented into 200-500-bp fragments and then reverse
transcribed into cDNA. The samples were sequenced on a
Genome Analyzer IIx (Illumina). The 2 x 100 bp sequen-
cing strategy was adopted.

After sequencing, the generated raw reads were proc-
essed to clean reads by filtering low quality reads and
adaptor dimers. After presenting the statistical distribu-
tions of the GC content and base quality, the filtered
reads were mapped to the chicken reference genome
using TopHat [58]. The parameters for mapping were as
follows: reads-mismatches =2 and reads-gap-length = 1.
The clean reads were assembled and conjoined into con-
tigs using Trinity (http://trinityrnaseq.github.io). The
resulting contigs were connected into unigenes and an-
notated by ANNOVAR [59]. The expression of each
gene represented by RPKM was estimated by the DEGseq
package in R [60]. Differentially expressed transcripts or
genes were identified when the threshold Benjamin g-
value was below 0.05 (cut-off at a 5 % false discovery rate)
and |log, (fold change) | 21, respectively.

Gene network construction
The DEGs were uploaded to the IPA database (http://
www.ingenuity.com) for function and interaction analysis.

Additional files

Additional file 1: Table S1. Normality test for residual feed intake.
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Additional file 2: Table S2. GO mapping for genes within the 50 bp
flanking regions of the significant RFl-related SNPs. (XLS 31 kb)
Additional file 3: Figure S1. Biological replicates of the expressed
genes in the two RFI-divergent groups. (PNG 162 kb)

Additional file 4: Table S3. Differentially expressed genes identified in
RNA sequencing in divergent RFI individuals. (XLS 37 kb)

Additional file 5: Table S4. Networks constructed using the
differentially expressed genes predicted by IPA. (XLS 1284 kb)
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control for the SNPs and individuals. (PNG 97 kb)
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