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Abstract

Background: The continuous and non-synchronous nature of postnatal male germ-cell development has impeded
stage-specific resolution of molecular events of mammalian meiotic prophase in the testis. Here the juvenile onset
of spermatogenesis in mice is analyzed by combining cytological and transcriptomic data in a novel computational
analysis that allows decomposition of the transcriptional programs of spermatogonia and meiotic prophase substages.

Results: Germ cells from testes of individual mice were obtained at two-day intervals from 8 to 18 days post-partum
(dpp), prepared as surface-spread chromatin and immunolabeled for meiotic stage-specific protein markers (STRA8,
SYCP3, phosphorylated H2AFX, and HISTH1T). Eight stages were discriminated cytologically by combinatorial antibody
labeling, and RNA-seq was performed on the same samples. Independent principal component analyses of cytological
and transcriptomic data yielded similar patterns for both data types, providing strong evidence for substage-specific
gene expression signatures. A novel permutation-based maximum covariance analysis (PMCA) was developed to map
co-expressed transcripts to one or more of the eight meiotic prophase substages, thereby linking distinct molecular
programs to cytologically defined cell states. Expression of meiosis-specific genes is not substage-limited, suggesting
regulation of substage transitions at other levels.

Conclusions: This integrated analysis provides a general method for resolving complex cell populations. Here it
revealed not only features of meiotic substage-specific gene expression, but also a network of substage-specific
transcription factors and relationships to potential target genes.
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Background
Spermatogenesis is a complex developmental process with
a unique cell division, meiosis, as a major defining event.
The entire process includes maintenance of a small popu-
lation of spermatogonial stem-cells, mitotic divisions of
differentiating spermatogonia, meiotic prophase and ensu-
ing divisions of spermatocytes, and post-meiotic differenti-
ation of spermatids, by a process known as spermiogenesis.
In mammalian testes, spermatogenesis occurs within

seminiferous tubules, where all germ cells associate with
one kind of somatic cell, the Sertoli cell, which provides
the appropriate niche and microenvironment for the sper-
matogenic process. The adult testis is characterized by
presence of all of the cells types in the spermatogenic
lineage, with waves of differentiation throughout the testis
propelled by retinoic acid signaling [1]. In mice, the first
wave of spermatogenesis is initiated by spermatogonia
shortly after birth, producing a sequential and orderly
appearance of each of the more differentiated stages at
regular intervals though the first four weeks of life. Al-
though semi-synchronous with respect to the advancing
wave of the most differentiated cells, the juvenile onset of
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spermatogenesis also includes regular and asynchronous
initiation of subsequent waves of spermatogenic differenti-
ation. This asynchronous and continuous process of
spermatogenesis has made it difficult to achieve molecular
characterization of specific cell types in the lineage. This
has been particularly the case with respect to analysis of
the defining process of gametogenesis, meiosis, which oc-
curs in spermatocytes. The complex events of meiosis I
prophase include recombination, homologous chromo-
some pairing, and synapsis, taking place as spermatocytes
progress through the leptotene, zygotene, pachytene and
diplotene substages. These events culminate in the first
meiotic division, a reductive division in which homolo-
gous chromosomes are separated, producing secondary
spermatocytes that rapidly undergo the second, equa-
tional, meiotic division to produce haploid round sper-
matids. Because of the genetic importance of meiotic
recombination for the production of chromosomally
normal gametes and offspring, there has been great
interest in elucidating the molecular hallmarks and
their underlying transcriptional signatures that define
the meiotic spermatocyte substages.
Toward the goal of achieving a molecular understand-

ing of spermatogenesis, considerable effort has been de-
voted to separation of specific germ-cell differentiation
substages from the histologically complex seminiferous
epithelium. A widely used approach, commonly known
as the “STA-PUT” sedimentation process [2–4], involves
enzymatic dissociation of germ and somatic cells and
enrichment for specific stages by cell-size-based sedimen-
tation at unit gravity on a bovine albumin gradient. Rea-
sonably good enrichment of the most uniquely sized cells
(large pachytene spermatocytes and small round sperma-
tids) can be obtained from testes of adult mice. However,
many cells of interest (spermatogonia, early meiotic pro-
phase spermatocytes) are not retrieved from adults be-
cause of their anatomical position bounded by Sertoli cell
tight junctions. While these early cell types can be re-
trieved from juvenile testes, the amount of biological ma-
terial required is daunting and enrichment is not robust.
Isolation of specific cell types by fluorescence-activated
cell sorting, FACS [5–8] is promising and becoming more
widely applied; however sample sizes are small. Finally,
rather than cell separation, total testis germ-cell popula-
tions can be collected in a developmental continuum dur-
ing the first two to three weeks of juvenile development of
mouse testes, to take advantage of the first wave of sperm-
atogenesis. In this way, molecular features have been de-
fined with respect to the sequential appearance of more
advanced cell stages of spermatogenesis. This approach is
useful primarily for correlating the appearance of a mo-
lecular entity to the developmental appearance of a spe-
cific cell type. However, the degree of resolution has been
suboptimal, because gene or protein expression has not

been related to absolute frequencies of cell stages, a chal-
lenge we tackle in this study.
Together, these methods for enriching or inferring

spermatogenic (and meiotic) substages have contrib-
uted to studies over the past decade on the develop-
mental transcriptome of mammalian spermatogenesis,
as recently reviewed [9]. Most such studies have taken
advantage of microarrays querying known coding se-
quences [6, 10–12], and thus sequence-biased, but also
provided interesting views of alternative splicing and
other features of the spermatogenic transcriptome [13],
and identified previously unknown potential targets for
contraception and fertility [14]. More recently, methods
for unbiased high-throughput deep sequencing of the tran-
scriptome by RNA-seq have been employed [5, 15–19].
These studies have revealed unappreciated regulation of
piRNAs [17], and global whole-genome views of the male
germ-cell transcriptome [5, 18, 19]. However, the challenge
for all transcriptomic analyses, particularly RNA-seq
approaches, has been to computationally deconstruct the
entire testis or germ-cell transcriptome into substage-
specific transcriptomes. This is an important goal, given
both the abundance and complexity of RNA species in the
testis, particularly with respect to the imputed contribu-
tion of both coding and non-coding RNA from spermato-
cytes and spermatids [19]. In one example of such a
computational approach, frequencies of specific germ-cell
stages throughout the first wave of spermatogenesis previ-
ously published in another analysis [4] were used to esti-
mate cell type-specific expression patterns in a separate
data set [18]. While coming closer to the goal of substage-
specific transcriptomes, this study relied on a low sample
size and on integrating non-contemporaneous data. Other
approaches [5, 6], employed cell sorting by FACS and
subsequent validation of purity by meiotic markers. While
these studies have yielded important insights into global
gene expression switches, they rely on FACS, not always
available or practical for small samples, such as from
infertile mutant models.
Here we have tackled the problem of deconvolving tran-

scriptomes of complex germ-cell populations into stage-
specific transcriptomes by computationally integrating
highly detailed and combinatorial cytological staging of
the same cell samples as subjected to RNA-seq analysis.
Deep and accurate cell stage phenotyping was conducted
using antibodies to STRA8, SYCP3, phosphorylated
H2AFX, and HISTH1T, all exhibiting meiotic substage
specificity of expression and/or localization. By collecting
highly enriched germ-cell populations from testes at two-
day intervals through the first wave of spermatogenesis,
and by multiple sampling of individual mice (30 total) for
both cytological composition and RNA composition by
high-throughput sequencing, we developed an unusually
deep data set that portrays variation in cell substage
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composition and transcript abundance. To decompose
these data into substage-specific transcriptome patterns in
an unbiased way, we chose a nonparametric solution with
minimal assumptions about data structure, thus develop-
ing a novel permutation-based maximum covariance ana-
lysis. This method enabled us to assign co-expressed
transcripts to one or more meiotic substages, thereby link-
ing distinct molecular programs to cytologically defined
cell states. Moreover, to better understand the regulation
of each germ-cell substage transcriptome, we integrated
transcription factor information to identify some of the
key molecular regulators driving these cell stages. This ap-
proach provides a model for deconvolving transcriptomes
of complex cell populations with well-defined cytological

attributes. Together, these data provide an unprecedented
view of the complexity of meiotic transcription programs
and their coordinate regulation.

Results
Experimental design
Germ cells were obtained from individual mice at two day
intervals from 8 dpp to 18 dpp (N = 5 biological replicates
at each age; N = 30 samples total) and divided into two
aliquots, one for cytology and one for RNA-seq (Fig. 1a).
For the C57BL/6J (B6) strain used in this study, this de-
velopmental window captures the initial differentiation
of spermatogonia into early leptonema, through the
stages of pachynema and diplonema. For each sample,
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Fig. 1 Decomposition of meiotic cells and gene expression. a Experimental design. Germ cells were isolated from whole testes from each of five
juvenile male mice at 8, 10, 12, 14, 16 and 18 dpp. Each sample was analyzed for both cytology and gene expression by RNA-seq. PMCA was
developed to identify the meiotic substage-specific transcriptomes. b Cytological classification and cellular populations. Isolated germ cells were
immunolabeled for stage-specific maker proteins: STRA8, expressed in differentiating spermatogonia; SYCP3, a component of synaptonemal complex
shows meiotic substage-specific labeling morphology; phosphorylated histone H2AFX (γH2AFX), marking DSBs throughout early prophase nuclei and
restricted to the XY chromosomes during pachynema and diplonema; and histone HISTH1T, expressed in post-mid-pachytene spermatocytes. Nuclei
were counter-stained with DAPI. c Meiotic cell composition during the first wave of spermatogenesis. The contribution by specific germ-cell stages for
each developmental time point and mouse is shown, with colors representing specific meiotic substages. Abbreviations: Sp’gonia = spermatogonia,
Prelep = pre-leptonema, Early Lep = early leptonema, Lep = leptonema, Late Lep = late leptonema, Zyg = zygonema, Early Pach = early pachynema,
Late Pach = late pachynema, Dip = diplonema. d Concordance of expression and cytological data. Principal component 1 (PC1) versus principal
component 2 (PC2) from independent PCA of cytological and RNA-seq data. Colors correspond to time points and icon shape corresponds to
data type as indicated

Ball et al. BMC Genomics  (2016) 17:628 Page 3 of 17



we determined the relative numbers of cells of each sub-
stage by cytological criteria (N = about 400 germ cells per
mouse, for a total of 11,990 germ cells scored cytologically
by criteria described below); by scoring germ cells from
each individual mouse, we captured variability between
mice. The purity of germ cells in each sample, computed
as germ-cell count divided by total DAPI-stained cell
count, was greater than 90 % for all samples. Upon in-
spection of both cytological and RNA-seq data, two
germ-cell samples collected at 8 dpp revealed poor con-
cordance with age-matched samples, likely due to in-
sufficient cell numbers for successful RNA-seq library
preparation (Additional file 1: Table S1); thus these
samples were omitted from all subsequent analyses
(final N = 28).

Cytological deconvolution of the meiotic substage
composition of germ cells during the first wave of
spermatogenesis
Germ-cell substage frequencies in each cytological prepar-
ation were determined by combinatorial immunolabeling
with antibodies to meiotic substage marker proteins, scor-
ing 400 germ cells per mouse. Marker proteins assessed
were STRA8, a meiosis-initiating factor [20] present in
differentiated spermatogonia and some leptotene sper-
matocytes; SYCP3, a synaptonemal complex (SC) protein
present in the chromosomal axes of leptotene and zygot-
ene spermatocytes, in the lateral elements of the mature
SC in pachytene spermatocytes, and disassembling in
diplotene spermatocytes [21, 22]; the phosphorylated form
of histone H2AFX (PH2AFX, also known as γH2AX),
which localizes to chromatin surrounding DNA double-
strand breaks (DSBs) in characteristic patterns that dis-
criminate early meiotic prophase from the pachytene
and diplotene stages [22, 23]; and the testis germ cell-
specific histone H1 variant HIST1H1T (herein referred
to by its common designation of H1T), which is a
marker of the mid-to-late pachytene stage [22]. The
combinatorial labeling patterns for each marker protein
allowed categorization of germ cells of each sample into
eight substages, achieving a higher degree of meiotic

substage discrimination than previous transcriptome
analyses (Table 1 and Fig. 1b).
Together, these data provide a comprehensive picture of

postnatal spermatogenic progress through meiotic pro-
phase of the first wave of differentiating cells for compari-
son to data previously obtained by histological analyses [4].
At every time point in the current data, greater than 50 %
of the retrieved germ cells were spermatogonia (Fig. 1c),
reflecting continually initiating separate waves of spermato-
genesis. Representation of these cells decreased over time
(Fig. 1c), likely due to initiation of additional waves of
meiotic cells, increasing numbers of post-spermatogonial
spermatocytes, and establishment of cell junctions that im-
pede cell retrieval. Throughout this period, due in part to
initiation of subsequent waves of spermatogenesis, the
average contribution to the total germ-cell population by
preleptotene and leptotene spermatocytes remained rela-
tively constant (Fig. 1c), thus reducing the power to iden-
tify transcripts specific to just these substages. The first
appreciable numbers of H1T-negative early pachytene
spermatocytes were observed at 12 dpp, and H1T-positive
late-pachytene cells were abundant by 16-18 dpp, consist-
ent with previously published data [24]. By 18 dpp, less
than 10 % of the cells had progressed to the diplotene
stage, and only about 0.1 % to metaphase. Overall substage
frequencies were similar at 8 and 10 dpp, and also at 12
and 14 dpp (Fig. 1c). For computational analyses (below),
we combined substages that exhibited similar frequency
patterns across the developmental time span, specifically
late leptotene and zygotene substages, and late pachytene
and diplotene substages.

High concordance of gene expression and
cytological data
To assess the feasibility of associating gene expression with
cytologically-defined substages, we performed independent
principal component analyses (PCA) on each data set. The
high concordance between the cytological frequency of cell
substages and RNA expression data (Fig. 1d) suggested
that changes in gene expression in pooled germ cells can
be explained by variation in cytological proportions of the

Table 1 Immunolabeling criteria for cell types and meiotic substages

Substages SYCP3 γH2AX STRA8 H1T

Spermatogoniaa None Negative Positive Negative

Preleptonema Patches Negative Positive Negative

Early Leptonema Patches Positive Positive Negative

Late Leptonema Fine foci Positive Weakly positive Negative

Zygonema Partially paired Patches Negative Negative

Early Pachynema Paired Restricted to XY body Negative Negative

Late Pachynema Paired Restricted to XY body Negative Positive

Diplonema Partially dissociated Restricted to XY body Negative Positive
aSpermatogonia are a separate mitotic stage, not a meiotic substage
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differentiation states during spermatogenesis. Although
cells in different substages may contribute different
amounts of RNA to each sample, this analysis demon-
strates an overall quantitative agreement between the
two data types. This supported the validity of combin-
ing these two datasets to identify meiotic substage-
specific transcriptional programs.

Meiotic substage-specific gene expression derived by
covariance analysis
To identify signatures for meiotic substage-specific gene
expression, we developed a novel permutation-based max-
imum covariance analysis (PMCA), which maps groups of
co-expressed genes to combinatorial cytological marker-
based staging based antibodies to STRA8, SYCP3,
phosphorylated H2AFX, and HISTH1T. This statistical
approach demonstrates concordance of distinct cellular
programs to each meiotic substage based on the simi-
larity of “cyto-pattern” and “gene-expression pattern”
across samples. In brief, the concordant patterns are
derived from the most preeminent features of covari-
ance between cytological and transcriptome data across
all samples (Methods). In this RNA-seq dataset, a total
of 15,025 Ensembl genes (http://www.ensembl.org) and
5267 NONCODE lncRNA genes [25] were detected (at

a Transcripts per Million (TPM) ≥ 3) in at least one sam-
ple of the isolated germ cells. We also detected piRNA
precursors transcripts that had previously been identified
[17] with appropriate substages, although they are not the
focus in the current study. Through PMCA, we identified
1235 spermatogonia genes and 6052 meiosis substage-
specific genes. Expression of many transcripts could not
be assigned to distinct substages and instead, were shared
across several consecutive substages; 131 genes were
shared among late leptotene, zygotene, and early pachy-
tene stages while 106 genes were shared among early
pachytene, late pachytene, and diplotene stages (Fig. 2;
Additional file 2: Figure S1; Table 2; Additional file 1:
Table S2). Notably, increased numbers of expressed
genes were observed at 16 dpp when cells first reach
the late pachytene stage (Table 2; Additional file 1:
Table S2).
In addition to identifying genes concordant with specific

substages, PMCA also identified genes that were nega-
tively concordant with specific substages. The negatively
concordant genes have patterns of expression that are
opposite to the cytological patterns; thus negatively con-
cordant defines gene expression that is lower when the
cytological proportion of a specific substage is higher and
vice versa (Fig. 2; Additional file 2: Figure S2; Table 2;
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Additional file 1: Table S2). Genes detected as negatively
concordant with one stage are often detected as concord-
ant with another substage. For example, genes negatively
concordant with spermatogonia are genes expressed
across the meiotic cell substages, but not enriched in
spermatogonia. Not surprisingly, the 1694 genes nega-
tively concordant with spermatogonia were enriched for
known meiotic genes. Indeed, among all genes expressed,
many of those with known meiotic function and/or Gene
Ontology annotation for meiotic function were not con-
cordant with any single meiotic substage, but were
expressed across meiotic substages.

Validation of substage-specific gene expression patterns
We bolstered and validated these computationally de-
rived results in three distinctly different ways. First,
gene expression analyses by qRT-PCR supported the
RNA-seq expression data. Second, the validity of the
PMCA procedure was queried by analysis of genes
expressed in a highly enriched cell population of mid-
to late-pachytene spermatocytes retrieved from adult
testes by unit gravity sedimentation. Finally, we used
our data to confirm a known pattern of male germ-cell
specific gene expression, X-chromosome silencing dur-
ing meiotic prophase.
We compared transcript expression patterns detected

by RNA-seq to independent qRT-PCR assays. We tested
representative genes among those increasing, decreasing,
or showing little change in expression across the sequen-
tial time points, as well as genes known to be highly
expressed in pachynema. Germ cells of 10 and 16 dpp
males were subjected to qRT-PCR to determine expres-
sion of each tested gene relative to a reference house-
keeping gene (Actb); data are shown in Additional file 2:
Figure S3. The qRT-PCR assays reflected RNA-seq find-
ings. For example, in 16 dpp samples we found elevated
expression of pachytene-enriched genes and of genes
shown by RNA-seq to increase in expression throughout

the juvenile period tested (Additional file 2: Figure S3).
Overall, patterns of gene expression are mostly concord-
ant between the two different quantification methods
and between sample sets, although, as expected, RNA-
seq provides finer resolution and higher information
content.
We further validated the PMCA-derived meiotic sub-

stage transcriptomes by comparison to highly enriched
adult pachytene spermatocytes obtained by sedimentation
at unit gravity [2–4, 26], which sorts cells based on size,
not cytology or DNA content (N = 4 samples, each from
germ cells pooled from testes of 6 mice at 9 weeks of age).
The purity of late pachytene/diplotene spermatocytes in
this preparation was 90 % based on cytological im-
munostaining with antibodies to stage-specific proteins
phosphorylated H2AFX, SYCP3, and HIST1H1T. RNA
isolated from the size-enriched pachytene spermatocytes
was subjected to RNA-seq, allowing us to compare genes
expressed in the pachytene spermatocytes to the meiotic
substage-specific gene lists derived by PMCA. Cross-
referencing from this dataset, there was a highly significant
enrichment of pachynema-expressed genes among the
gene lists from later meiotic substages (hypergeometric
tests, all p < 2.86 x 10-18), but there was no enrichment for
pachytene genes in the gene lists for spermatogonia or the
early substages of meiosis (Table 3). In fact, 99 % of the
genes in the late pachytene/diplotene list were also found
in the enriched adult pachytene spermatocyte samples.
Finally, we queried the meiotic substage-specific pat-

terns of gene expression determined by PMCA by con-
firming meiotic sex-chromosome inactivation (MSCI), a
well-known feature of meiotic gene expression. In sper-
matocytes, most of the axial length of X and Y chro-
mosomes, which are non-homologous, is not paired or
synapsed. By the onset of the pachytene stage of meiotic
prophase, the unpaired regions of the sex chromosomes
become transcriptionally inactivated [11, 27, 28]. We

Table 2 Substage-concordant and negatively concordant genes

Substage Number of genes Number of genes

concordant negatively concordant

Spermatogoniaa 1235 1694

Preleptonema 55 12

Early Leptonema 92 49

Late Leptonema/Zygonema 742 556

Late Leptonema/Zygonema/
Early Pachynema

131 159

Early Pachynema 922 1068

Early Pachynema/Late
Pachynema/Diplonema

106 221

Late Pachynema/Diplonema 4004 4366
aSpermatogonia are a separate mitotic stage, not a meiotic substage

Table 3 Representation of enriched pachytene spermatocyte
genes in meiotic substages

Substage Number represented/
total concordant

p-value

Spermatogoniaa 614/1235 1

Preleptonema 17/55 1

Early Leptonema 28/92 1

Late Leptonema/Zygonema 550/742 1.2 x 10-09

Late Leptonema/Zygonema/
Early Pachynema

97/131 9.0 x 10-03

Early Pachynema 809/922 2.0 x 10-62

Early Pachynema/Late
Pachynema/Diplonema

102/106 1.3 x 10-15

Late Pachynema/Diplonema 3955/4004 <1.0 x 10-62

aSpermatogonia are a separate mitotic stage, not a meiotic substage
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assessed expression of X-linked genes from our RNA-seq
data; overall, 788 X-linked genes (and 24 Y-linked genes)
were detected in the substage-associated gene lists. Of
these, only 190 genes were detected in the highly enriched
adult pachytene spermatocytes, providing evidence of ro-
bust MSCI. These 190 transcripts, which do not show any
specific regional localization on the X chromosome, might
reflect ongoing transcription and escape from MSCI, but,
perhaps more likely, may represent stable transcripts
persisting after inactivation. In the developmental tran-
scriptome, the strongest X-linked gene signals are those
represented in the negatively concordant gene lists
(Table 4), that is, genes with expression pattern oppos-
ite to the cytologically determined frequencies of each
substage. This strong signal is particularly apparent for
genes in the late-pachytene negatively concordant list,
which exhibit relatively constant expression from 8 to
14 dpp but then sharply decrease in expression at 16
and 18 dpp; this is evidence for pachytene substage MSCI.
In addition to MSCI being revealed by the negatively con-
cordant gene lists, there is also diminished representation
of X-linked genes in gene lists concordant with later stages
of meiotic prophase (Table 4). Overall, 730 X-linked genes
appear to be down-regulated by pachynema to late pachy-
nema, or even earlier (Fig. 3a) and only 58 X-linked genes
with early expression are detected at later stages (Fig. 3b).
In conclusion, evidence from both MSCI and the tran-

scriptome of highly enriched adult pachytene spermato-
cytes validates the PMCA-derived substage- transcriptome
signatures derived by PMCA. Moreover, as discussed
below, we find good concordance among our stage-specific
gene lists and functions with those derived by other
studies.

Enrichment analysis of meiotic substage gene expression
The PMCA-derived meiosis substage-specific gene lists,
coupled with Gene Ontology (GO) analysis [29], can
provide insight into meiotic and spermatogenic function.
Genes assigned to each substage were ranked by their
similarity score, a measure of how closely the gene’s

expression pattern follows the substage’s cytological
pattern. Using ranked lists, we performed a ranked GO
analysis in GOrilla [30]; these ranked lists provide ap-
proximations of meiotic substage gene ontology. Signifi-
cantly, many meiosis-specific genes are not prominently
represented among the meiosis substage-specific gene
lists derived by PMCA. However, GO terms for genes
negatively concordant with spermatogonia were pre-
dominantly meiotic terms (16 out of 31 GO terms for
process, all p < 9.97 x 10-4), confirming that meiotic
genes tend to be expressed across multiple meiotic sub-
stages and not unique to a particular meiotic substage
(Additional file 1: Table S3). Thus meiotic substage
transitions are probably not acutely regulated at the
level of transcription of many of the known meiotic genes,
although among late leptonema/zygonema-associated GO
terms, 8 out of 10 GO “biological process” terms were as-
sociated with meiosis regulation (all p < 8.6 x 10-4), and
similar GO terms were also identified in the early pa-
chynema gene list (13 out of 33 GO terms for process, all
p < 5.56 x 10-4) (Additional file 1: Table S4). We extracted
447 genes for M. musculus that are associated with any
GO terms containing “meiosis” or “meiotic” (www.mouse
mine.org), and of these genes we considered the 404 genes
which are expressed in our developmental time series
(those genes not expressed in our time series might in-
clude female meiosis-related genes). We found that 229
(57 %) genes were not concordant with any specific
substage, while 26 (6 %) were concordant with late lepto-
nema and zygonema, 43 (11 %) were concordant with
early pachynema, and 92 (23 %) were concordant with late
pachynema and diplonema. Of meiotic terms that were
negatively concordant with substages, 67 (17 %) were
negatively concordant with spermatogonia and 97 (24 %)
were negatively concordant with late pachynema and
diplonema (Additional file 1: Table S5). GO terms for
genes expressed in late meiotic prophase were signifi-
cantly enriched for spermatogenesis, spermiogenesis
and fertilization, reflecting transcription of mRNAs to
be stored for later translation during the haploid phase

Table 4 Substage-specific X-linked gene analysis

Substage X-linked
Concordant

Y-linked
Concordant

X-linked
Negatively Concordant

Y-linked
Negatively Concordant

Spermatogoniaa 28 0 55 2

Preleptonema 2 0 0 0

Early Leptonema 2 0 1 0

Late Leptonema/Zygonema 34 2 6 0

Late Leptonema/Zygonema/Early Pachynema 3 0 1 0

Early Pachynema 21 1 41 0

Early Pachynema/Late Pachynema/Diplonema 0 0 13 0

Late Pachynema/Diplonema 14 3 329 9
aSpermatogonia are a separate mitotic stage, not a meiotic substage
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of spermatogenesis [31]. For example, early pachynema
gene lists are enriched for GO terms associated with
spermiogenesis (5 out of 33 GO terms for process, all
p < 7.39 x 10-4), and the majority of late meiotic pro-
phase- or late-pachynema/diplonema-associated genes
were associated with spermiogenesis or fertilization-
related GO terms (11 out of 16 GO terms for process,
all p < 7.11 x 10-4) (Additional file 1: Table S4). Although
genes concordant with early leptonema had transcription-
related GO terms in 11 out of 32 GO terms for process
(all p < 1.00 x 10-10), we found that many genes negatively
concordant with leptotene through zygotene substages
have GO terms for transcription and related processes
(Additional file 1: Table S3), possibly reflecting the cyto-
logically diminished incorporation of RNA precursors
during the earliest meiotic prophase substages [32].
Also among the genes lists for these early stages we
found extracellular membrane- or molecular transport-
related GO terms prominently represented (Additional
file 1: Table S4), which may related to the fact that
these cells transit through the Sertoli cell junctions that
create the blood-testis barrier [33].
Additionally we performed feature enrichment analysis

with the hypergeometric test on the substage-specific gene
lists. Interestingly, protein-coding genes are enriched in
gene lists concordant with the late-leptotene/zygotene
stages (p = 4.52 x 10-18) and the early pachytene stage
(p = 1.19 x 10-8). Moreover, they are enriched in the set
of genes that is negatively-concordant with late-pachy-
tene and diplotene substages (p = 5.94 x 10-167). However,
the genes concordant with late-pachytene and diplotene
substages are not depleted in protein-coding gene, which
comprise the expected majority of this gene set. This sug-
gests that while certain protein-coding genes are abundant
in the Late Pach/Dip substage, large numbers of other
protein-coding genes are downregulated in this stage,
perhaps reflecting cessation of mRNA transcription in

preparation for the meiotic division stage, or, alternatively,
post-transcriptional regulation by PIWI-interacting RNAs
(piRNAs). Recent studies show that piRNAs play im-
portant roles in genome stability by suppressing
harmful transposons as well as by regulating mRNAs
[34], and future analyses could integrate piRNA ex-
pression with these data.

Transcription factor analysis
Because our results point to a large and diverse meiotic
germ-cell transcriptome, also noted by others [19], we
inferred the underlying regulatory networks accounting
for these patterns, using the iRegulon bioinformatic ap-
proach to identify transcription factors (TFs) potentially
regulating substage-specific genes (Methods). TFs were
identified for each substage-specific gene list with high
normalized enrichment scores (NES ≥ 4), corresponding
to an estimated false discovery rate of less than 0.01
[35]. We then determined which TF genes were unique
to, or shared among, the substages. As can be seen in
Additional file 1: Table S6 and Additional file 2: Figure S4,
mRNA transcripts for some TFs are substage-specific.
For example, Pou5f1 transcript is specific to the prelep-
totene stage while Zbtb33 transcript is specific to the
pachytene/diplotene substages. Other TF transcripts,
similar to meiosis-specific genes in general, are shared
across substages but may be specific to early or late
meiosis (Additional file 2: Figure S4); Zfp143 transcript
is shared across late meiosis substages while Tpbl1
transcript is common to the preleptotene (in the “Jazf1
+ 3” cluster) and late leptotene/zygotene/early pachy-
tene (in the “Mybl* + 9” cluster) substages. We also
found that some TFs, for example MYBl1, also have tar-
get genes that are negatively concordant with substages
(Additional file 2: Figure S5; Additional file 1: Table S7).
We used the MGI bioinformatics Batch Query tool to de-
termine that 160 of the 181 TFs in this analysis were

Fig. 3 X-linked gene expression during the first wave of spermatogenesis. a Boxplots of the difference from mean gene expression at 8 dpp are
shown for each time point, with genes on the autosomes in purple and those on the XY chromosomes in green. Gene expression is log2(TPM + 1).
b Heatmap of X-linked gene expression at each time point. Genes are clustered based on the pattern of expression: an increase of expression at 12
dpp and then stable throughout (Stable), steadily decreasing over time (Decreasing), or low expression from 8-10 dpp and high expression from 12-14
dpp followed by low expression at 16-18 dpp (Transient). Gene expression is shown as average log2(TPM+ 1) over time-point replicates

Ball et al. BMC Genomics  (2016) 17:628 Page 8 of 17



previously found to be highly expressed specifically
and/or significantly in the testis or male germ cells and
39 are annotated to male-reproduction-related pheno-
types (Additional file 1: Table S6).
To gain a deeper insight into the regulatory patterns of

meiosis, we selected the highest scoring TF genes for fur-
ther analysis, based on iRegulon’s NES score which corre-
sponds to a low false discovery rate. Of these highest
scoring TFs, half of them are annotated to meiosis-related
functions: ETV4, E2F1, GATA2, RFX4, and ZFP143. We
included four other well-known meiosis TFs: RARG,
MYBL1, ETV5, and TBPL1. We compared the mRNA ex-
pression pattern of these TF genes with the expression
patterns of their target genes in order to identify putative
regulatory relationships, an analysis that is based on the
assumption that a relevant TF protein appears more or
less contemporaneously with its transcript (i.e., no transla-
tional delay). In cases where the expression pattern of the
TF gene had the opposite expression pattern of its target
genes, we infer that the TF acts as a repressor on these tar-
gets; but in cases where the expression patterns of the TF
gene and its target genes were concordant, we postulate
that the TF enhances expression of its targets. For TFs
with genes that did not change over our time course, such
as the known candidate NRF1, we could not infer a rela-
tionship to target genes and excluded them from further
analysis.
Following these assumptions, as illustrated in Figs. 4

and 5, we suggest that OVOL2 and YY1 act as repressors
of target genes in early leptonema and ETV5, ETV6, and
ZFP143 act as repressors on target genes after initiation of
meiosis, beginning with the late leptotene and zygotene
substages. Evidence suggests that ZBTB33, GATA2, and
ETV4 also act as repressors on gene targets in pachynema
(Fig. 4 and Additional file 2: Figure S6); while RFX4
appears to be an enhancer of target genes in late pachy-
tene and diplotene substages (Additional file 2: Figure S6),
but may repress its target genes in preleptonema, although
this relationship is less clear. Interestingly, these under-
lying assumptions based on relative expression levels
suggest that MYBL1, TBPL1, and E2F1 act as both en-
hancers and repressors of their target genes. MYBL1 and
TBPL1 appear to repress target genes in early meiosis
while enhancing target genes in late meiosis, while E2F1
has the opposite pattern and may repress target genes in
late meiosis while enhancing target genes in early lepto-
nema (Additional file 2: Figure S6). Similar regulatory
switching has been shown to result from changes in pro-
tein co-factors [36] and post-translational modifications
[37]. Moreover, genes for some of the TFs described above
are also themselves target genes associated with specific
substages. By considering these relationships, we inferred
candidate regulatory interactions among TFs; for example,
ZFP143 and ETV5 suppress Mybl1 gene expression, while

MYBL1 enhances expression of Rfx4, Ovol2, Yy1, and
Tbpl1 genes (Fig. 5).
Overall, 41 % of the genes associated with specific

meiotic substages (2483 of 6052 genes) are predicted tar-
gets of one or more of these eight meiosis-related TFs.
This noteworthy observation suggests that this concise
regulatory network can account for a substantial portion
of the meiotic program of transcription.

Discussion
Here we identify a male meiotic germ-cell transcriptome
using a novel analysis based on a dense dataset of cyto-
logical substage-specific signatures. The high concord-
ance between RNA-seq expression data and cytological
proportions of isolated germ cells across all samples we
analyzed allowed us to develop a novel PMCA to iden-
tify the substage-specific transcriptomes for meiotic pro-
phase. This computational method does not require the
use of FACS or sedimentation sorting of cells and can be
applied to other complex cell populations for which
there are well-defined cytological criteria.

Cytological deconvolution of RNA-seq data from the first
wave of spermatogenesis
In mammalian males, spermatogenesis is continuous
and asynchronous, ensuring daily capacity to deliver
sperm backed up by a testis comprised of abundant
numbers of germ cells at all stages of spermatogenesis.
While advantageous to reproductively active males, this
biological imperative has frustrated attempts to isolate
stage-purified spermatogenic cells. Methods for stratifi-
cation of cell samples by either sedimentation [3, 4] or
flow cytometry [7, 8] enrich specific spermatogenesis cell
stages, while the juvenile first wave of spermatogenesis
(used in this study) provides a leading edge of differentiat-
ing cells against a background of less differentiated cells.
In the laboratory mouse, meiosis is initiated at about 8
dpp in a subset of spermatogonia by retinoic acid stimula-
tion of STRA8 [1, 20]; however, initiation of subsequent
waves of meiosis make the cellular population increasingly
heterogeneous (Fig. 1c), resulting in a complex histology
[4]. The cell-stage frequencies presented here (Fig. 1c) are
based on a powerful combinatorial application of anti-
bodies recognizing well-characterized and highly stage-
specific marker proteins. We find a continuous and
relatively constant background of the earliest spermato-
genic cells, namely, spermatogonia and the preleptonema
and leptonema (Fig. 1c), and, not surprisingly, these “back-
ground” spermatogenic cells are the ones most refractory
for computational assignment of a substage-specific tran-
scriptome. On the other hand, pachytene spermatocytes
are not present at the earliest juvenile stages, and appear
in a discrete time period; consequently, it was possible to
assign a robust gene list to this stage.
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Gene assignments to specific substages were guided by
the covariance of transcriptomic data and the cytological
data. Assignment of expressed transcripts to cellular
subpopulations in heterogeneous samples has long been
a computational challenge [18, 38–40]. In this study, we
exploited the advantage of paired RNA-seq and cyto-
logical data to develop the novel PMCA approach that
isolates changes of gene expression specific to each mei-
otic substage. Maximum covariance analysis (MCA) was
first developed in the meteorological sciences [41] and
was popularized in the climatological sciences in the
1990s [42, 43]. More recently, an MCA approach has
been used in a bioinformatics context to clarify relation-
ships between gene and protein expression [44]. While
MCA is often an effective tool for detecting common
signals in two sets of variables, it can be limited by a
tendency to fit spurious patterns when faced with in-
creased sampling variation [45, 46]. Current methods
[47] employ a parametric smoothing model using prin-
cipal component regression, which requires a normality
assumption or rely on GO analysis [44]. We developed
a novel PMCA method that not only overcomes the
spurious pattern identification liability but that does so
without the need for any parametric assumptions or re-
liance on GO analysis. Our PMCA approach is broadly
applicable to multi-dimensional data derived from a
common set of samples.

Substage specificity of meiotic gene expression and
regulation
Historically, meiotic prophase substages are characterized
by the morphology of chromatin, and correlated genetic
mechanisms have been revealed in the past decades [48]. It
is known that there is widespread transcription of protein-
coding genes in the testis [19], and indeed, we found that
among germ cells alone, more than 15,000 genes are tran-
scribed, suggesting that a significant portion of testis tran-
scriptional complexity is due to germ cells. Using PMCA,
we successfully identified genes with expression patterns
that matched the “cyto-patterns” of stage-specific cell fre-
quencies determined by antibody labeling (Fig. 1c). Some
genes were shared among substages; for example, late
leptotene and zygotene shared 131 genes with early pachy-
tene and early pachytene shared 106 genes with late pachy-
tene and diplotene. Due to the strong temporal signal of
contribution of the late pachytene germ cells, which do not
appear until 16 dpp and greatly increase in representation
by 18 dpp, we identified over 4000 late pachytene genes.
However, since the proportion of preleptotene and early
leptotene cells did not vary greatly over time, we were
unable to deconvolve stage-specific transcriptomes for the
earliest meiotic substages as confidently as for the later
substages.
We compared these substage-specific gene lists to those

developed in other recent analyses of the germ-cell testis
transcriptome. The striking increase in number of genes
unique to the pachytene stage was also observed by
Soumillon, et al. [19], where, in fact, greater numbers
of genes were considered expressed than in this study.
However, we have used a more stringent cutoff (TPM ≥ 3)
to eliminate from the data transcripts expressed at low
levels. When we relaxed this requirement and compared
the number of genes expressed with a cutoff of TPM > 0,
we found the number of expressed transcripts to be simi-
lar to that reported by Soumillion, et al. [19]. We also
compared the substage-specific gene lists to the relevant
clusters identified by Margolin, et al. [18]. In their study,
gene lists were temporally clustered from single samples
taken at 6, 10, 12, 14, 16, 18, 20, and 38 dpp. While our
study was based on multiple replicates at each time point
as well as fine-grained cytological analysis, our PMCA
gene lists substantially overlapped with their derived gene
list clusters (Additional file 1: Table S8). In all, 4013 of the
4077 genes in clusters identified by Margolin, et al. [18]
were also expressed in our dataset.
We also compared our results with those derived from

flow-cytometry based methods of sorting by DNA con-
tent [5, 6]. For both of these studies, we found overall
concordance in genes assigned to meiotic substages
(Additional file 1: Table S9). These similarities were es-
pecially pronounced for late pachytene and diplotene
substages due to the large numbers of genes in these
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sets. However, we also observed a broader trend of align-
ment between early and late substages. Furthermore, our
use of multiple markers to cytologically characterize cells
paired with our PMCA analysis allowed for more precise
substage assignment than possible by cell sorting. For in-
stance, our spermatogonia and pre-leptotene sets were
the top two strongest overlaps with the “secondary sperm-
atocyte” (2C) cell fraction in da Cruz, et al. [5] (hypergeo-
metric test p = 4.5 x 10-4 and p = 1 x 10-3, respectively),
but split these assignments to provide improved substage
resolution. Similarly, our joint late-leptotene and zygotene
genes and early pachytene genes had the two greatest
overlaps with the combined “leptotene and zygotene” and
“pachytene spermatocytes” (LZ + PS) genes (hypergeo-
metric test p = 8.7 x 10-7 and p = 1.4 x 10-3, respectively),
and further partition these transcripts into more precise
substages. Analysis of Fallahi et al. [6] data was limited by
different experimental platforms (microarrays versus
RNA-seq), different assay timing (adult versus juvenile
mice), and generally low numbers of uniquely assigned
genes, but also revealed significant overlaps in late sub-
stages (Additional file 1: Table S9). By assessing functional
concordance by similarity in GO annotations, we deter-
mined that our early leptotene and Fallahi et al. [6] pre-
leptotene sets share a common enrichment in RNA
transcription genes. Finally, the most prominent diver-
gences between our data and these previous results were
in the spermatogonia fraction. We note that cell sorting
techniques are susceptible to inclusion of somatic-cells in
this fraction, whereas our spermatogonia genes were sig-
nificantly negatively-concordant with many standard mei-
osis genes (Additional file 1: Table S3). In sum, these
comparisons suggest that our transcript sets encompass
and substantially expand these previous findings.
In this study, we characterized each meiotic substage

using the list of substage-specific genes from PMCA
analysis. Some meiosis genes were associated to particu-
lar substages. For example, Spata22 [49] and Msh4/5
[50, 51] are both highly associated with late leptotene/
zygotene substages, and both are required for recombin-
ation. However, many canonical meiosis genes were
found throughout all meiotic prophase substages; these
genes include Rad51, Rec8, and Syce2. This may well reflect
a lack of acute transcriptional regulation for these import-
ant transcripts. Rather than transcription at the precise
meiotic substage of use, quality and efficiency of meiosis
may be ensured by having transcripts present and available
for translation throughout meiotic prophase, with substage
transitions regulated post-transcriptionally and/or post-
translationally. Further, although we confirmed that sperm-
atogonia negatively concordant genes are enriched with
meiotic genes, we found several meiotic genes in the gene
list concordant with spermatogonia, including Fign, which
was reported to be required for meiotic recombination

[52], suggesting that some of the meiotic program is set up
prior to meiotic entry.
Not surprisingly, this developmental transcriptome

analysis also revealed that many genes expressed during
meiosis do not have known functions directly contribut-
ing to meiosis. These may instead be part of a parallel
program of spermatogenic gene expression. For example,
many of the genes expressed in early leptonema are as-
sociated with transcription or RNA metabolism, as well
as with cellular processes such as cell-cell interactions,
which are of considerable importance in the biology of
the seminiferous tubule. PMCA also revealed that late
pachytene/diplotene-expressed genes are significantly as-
sociated with GO terms associated with spermiogenic
processes, correlating well with findings of other studies
[5, 6]. During post-meiotic stages of nuclear condensa-
tion, transcription is globally repressed [28, 53], under-
lying the biological rationale for prior transcription to
support the active protein synthesis during spermiogene-
sis. In addition, the late pachytene/diplotene-associated
gene lists are significantly enriched with non-protein-
coding RNAs, including lincRNAs (long intergenic non-
coding RNA) and piRNA precursors.

Meiotic regulatory networks
Analysis of predicted TF targets [35] generated a regula-
tory network that potentially governs the meiotic and sper-
matogenic programs of gene expression identified by this
study (Fig. 5). The protein ZFP143 was central in our net-
work, and is required for embryo development in zebrafish
[54] and human [55, 56]. The human ortholog, ZNF143, is
ubiquitously expressed [57], and binds to the promoter
region of target genes where it is required for formation of
chromatin loops by interacting with POLII and RAD21
[58]. Because RAD21 is differentially expressed after the
pachytene stage of meiosis [59], it is possible that ZFP143
is crucial for spermatogenic processes by regulating the
transcription of genes during pachytene/diplotene sub-
stage, an idea that should be tested experimentally since
our analysis indicates that ZFP143 may target genes
strongly associated with genes in these substages. Reinfor-
cing the validity of our approach, our regulatory network
also involved MYBL1 (also known as A-MYB). Our results
support previous findings that a subset of late pachynema/
diplonema-expressed genes, many involved with the sper-
matogenic and spermiogenic processes, are associated with
MYBL1 [60, 61]. MYBL1 regulates transcription of cell
cycle-related genes. Germ cells with a homozygous muta-
tion in the Mybl1 gene exhibit defects in meiotic chromo-
some synapsis [60]. Moreover, our results suggest that
MYBL1 also is in a network associated with the tran-
scription of genes encoding proteins required for
piRNA biogenesis, including Tdrd1, Tdrd6 and Tdrd7,
consistent with previous reports [62]. Going beyond
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our core regulatory network, we also identified several
other TFs, whose target genes include the Tdrd family
and Piwi genes, potentially involved in piRNA process-
ing: ATF3, ELF1, ELK3, ELK4, FLI1, NFYA, NFYB,
NRF1, PBX3, RFX2, RFX7, SP1, YY1, ZBTB33, ZFP143
and ZFP42. This analysis not only revealed a core net-
work for transcriptional regulation of meiotic progres-
sion (Fig. 5 and Additional file 2: Figures S4 and S5)
but also suggested that a significant proportion of the
genes expressed in the meiotic transcriptome may be con-
trolled by a concise entourage of transcription factors.

Conclusions
This study has untangled in part the complexity and par-
allel process of spermatogenesis and meiosis by focusing
on associating gene expression with highly specific cyto-
logical signatures defining meiotic prophase substages.
This unique and powerful approach to deconvolving
transcriptomes of complex cell populations is applicable
for discovery of transcriptional signals in other such
complex cell populations or heterogeneous tissues.

Methods
Experimental design and mice
All C57BL/6J mice used for this study were obtained
from The Jackson Laboratory (Bar Harbor, USA). All
animal procedures were in accordance with the National
Institute of Health guide and U.S. Department of Agri-
culture standards for animal care and use and were ap-
proved by the Animal Care and Use Committee at The
Jackson Laboratory (Protocol #05004). Mice were eutha-
nized at 8, 10, 12, 14, 16 and 18 days post partum (dpp)
to follow the leading edge of meiotic progression during
the first wave of spermatogenesis. For each time point, 5
biological replicates were sampled and germ cells were
isolated from the pooled two testes of each mouse. A
portion of germ cell sample was used for cytological
analysis and the rest of cells were used for RNA-seq ana-
lysis. Both cytological and RNA-seq analyses were per-
formed on all 30 samples (Fig. 1a).

Cytological methods
Isolation of mixed testicular germ cells
The procedure was as previously described with some
modifications [26]. Briefly, seminiferous tubules were
transferred into 20 ml DMEM (Gibco, Life Technologies,
Carlsbad, CA, USA) containing 0.5 mg of Liberase TL
Research Grade (05401020001, Roche, Basel, Switzerland)
and incubated for 20 min at 32 °C. To remove interstitial
cells, tubules were washed three times with the same
media. In the final wash media, the tubules were pipetted
several times to form fragments, which were digested with
0.5 mg of Liberase and 10 μg of DNase in 20 ml DMEM
for 13 min at 32 °C in shaking water bath. The isolated

cells were further digested by pipetting for 3 min, and
germ cells were isolated by filtering through Nitex mesh
(53-70 μm pore size). The crude germ cells were washed
three times by centrifugation for 7 min at 500 g using
10 ml of the media containing 10 μg of DNase. The cells
were resuspended in 1 ml of ice-cold PBS, and cell con-
centration determined. 1.25 x 105 cells (about 10 % of
total) were used for cytological scoring, with the remain-
der used for RNA-seq (see below).

Isolation of enriched populations of adult pachytene
germ cells
Each enriched population (4 biological replicates) of
pachytene/diplotene spermatocytes was obtained from
the testes of six 9-week-old mice by sedimentation at
unit gravity [3]. Mixed germ-cell suspensions were pre-
pared as described above, and after the three 0.5 % BSA/
KRB washes, cells were separated by cellular sedimenta-
tion at unit gravity in a 2–4 % BSA gradient generated
over 2.5 h in a STA-PUT apparatus (ProScience Inc.,
GlassShop, Toronto, ON, Canada). Following the sedi-
mentation process, 10 ml fractions were collected and
examined using light microscopy and differential inter-
ference contrast Nomarski optics. Cells were identified
based on morphological criteria and size [3]. Fractions
containing pachytene/diplotene spermatocytes of average
purity ~90 % were pooled. For every cell separation, and
for each population of cells collected, an aliquot of cells
was snap-frozen for subsequent RNA extraction as de-
scribed below.

Chromatin spread preparation
Germ-cell suspensions prepared as described above were
fixed in 2 % PFA containing 0.03 % SDS and mixed with
an equal volume of 0.04 % Photo-Flo (Kodak, Rochester,
NY, USA). The cell suspension was applied to wells of 12-
well Shandon slides, and incubated in a humid chamber
for 1 h at RT. After fixation, the cells were briefly air-
dried, and subjected to further fixation: 2 % PFA with SDS
for 3 min and 2 % PFA without SDS for 3 min. The slides
were then washed three times with 0.04 % Photo-Flo. Air-
dried slides were stored at -20 °C for further use.

Immunostaining of spread chromatin
Spread chromatin preparations were incubated with 10 %
ADB blocking solution (ADB: PBS containing 2 % BSA
and 0.05 % Triton-X 100) for 10 min, the same blocking
solution with SDS for 10 min, and the blocking solution
without SDS. Immunolabeling was performed with rat
polyclonal anti-SYCP3 (1:1000 dilution, Handel lab),
mouse monoclonal anti-phosphorylated histone H2AX
(1:200 dilution; 05-636, Millipore, Billerica, MA, USA),
rabbit polyclonal anti-STRA8 (1:1000 dilution; ab49405,
Abcam, Cambridge, England) and guinea pig polyclonal
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anti-H1t antibodies (1:500 dilution; Handel lab). Subse-
quently, secondary antibodies conjugated with Alexa
647, 594 or 488 (Molecular Probes, Invitrogen, Carlsbad,
CA, USA) were used at 1:500 dilution. Nuclei were stained
with DAPI (0.5 μg/mL) for 10 min, and the slides were
mounted with glycerol. Images were observed using a
Zeiss AxioImager.Z2 epifluorescence microscope equipped
with a Zeiss AxioCam MRm CCD camera (Carl Zeiss,
Jena, Germany).

RNA methods
Isolation of RNA and sequencing library preparation
Isolated germ-cell samples were resuspended in QIAzol
Lysis Reagent according to the manufacturer's instruc-
tions, and total RNAs were purified from homogenized
cells using Qiagen RNeasy Mini Kit (74104). The quality
of the isolated RNA was assessed using an Agilent 2100
Bioanalyzer instrument (Agilent Technologies, Santa
Clara, CA, USA) and RNA 6000 Nano LabChip assay
(5067-1511, Agilent Technologies).
The mRNA sequencing libraries were prepared using

the Illumina TruSeq methodology. mRNAs were purified
from total RNA using biotin tagged poly dT oligonucleo-
tides and streptavidin coated magnetic beads. The mRNAs
were then fragmented and double stranded cDNA was
generated by random priming. The library was then ana-
lyzed for quality using an Agilent 2100 Bioanalyzer instru-
ment (Agilent Technologies) and DNA 1000 LabChip
assay.

RNA sequencing
Short 100 bp paired-end reads were generated and se-
quenced using an Illumina® HiSeq (Illumina, San Diego,
CA, USA). Sequenced reads were filtered to keep reads
for which 70 % of the base pair quality score was > 20,
and the 3′ end was trimmed if the base pair quality
score was < 20. Two technical replicates for each paired-
end were run in different lanes and then merged.

RNA extraction and quantitative real-time quantitative
RT-PCR
For real-time RT-PCR, total RNA was isolated from iso-
lated germ cells or enriched germ cells (see above) using
the RNeasy Mini Kit (Qiagen, Hilden, Germany), and 1 μg
RNA was reverse transcribed using QuantiTect Reverse
Transcription Kit (Qiagen) according to the manufacture’s
instruction. The real-time RT-PCR was performed by the
Applied Biosystems 7500 Real-Time PCR system (Foster
City, CA. USA) using the QuntiTect SYBR Green RT-PCR
kit (Qiagen). Transcript levels were normalized to the
levels of Actb by the standard curve method [63], and are
presented as the mean normalized expression in 10 μg
RNA. Data are represented as mean ± estimated standard

deviation. Gene-specific primers are listed in Additional
file 1: Table S10.

Computational methods
Alignment and expression
All RNA-seq samples were aligned with Bowtie 1.0.0
[64] and expression levels were estimated by RSEM 1.2.8
[65]. A Bowtie index was prepared for alignment to a
combined (mm10) transcriptome of Ensembl Genome
Reference Consortium, build 38, release 75 [66], NON-
CODE v4 lncRNA [25], and piRNA precursor transcripts
[17]. The 214 piRNA precursors were obtained from Dr.
Christian Roy. Both the NONCODE lncRNA and piRNA
precursors were converted to mm10 coordinates using
liftOver [67]. For this study, we used log2(TPM+ 1) as the
expression level, where TPM is transcripts per million,
defined by RSEM [65]. A gene was deemed expressed if
TPM ≥ 3 for at least one of the 28 samples.

Principal component analysis
To test the concordance of the expression and cyto-
logical data, independent Principal Component Analyses
(PCA) were performed on each dataset using prcomp(x,
scale = TRUE) in the rgl package [68] in R [69]. To pro-
duce Fig. 1d, the first and second principal components
for both datasets were scaled to have the same range.

Permutation-based Maximum Covariance Analysis (PMCA)
We developed a novel permutation-based maximum co-
variance analysis (PMCA) that not only overcomes the
spurious pattern identification liability of traditional
maximum covariance analysis but also does not require
any parametric assumptions about the data. Instead, we
implemented a permutation procedure that assures the
patterns are valid within a given false positive rate (FPR).
To begin, let

X6�28 & Y 20368�28 ð0:1Þ
be the cytological and gene expression data, respectively.
Then mean center each row, where ~X ; ~Y are mean cen-
tered (Eq. 1.2.)

~xis ¼ xis−
1
28

X28
s¼1

xis; ~yks ¼ yks−
1
28

X28
s¼1

yks ð0:2Þ

i ¼ 1; 2;…; 6; s ¼ 1; 2;…; 28; k ¼ 1; 2;…; 20368

We compute the covariance matrix and the SVD of
the covariance matrix in Eq. 0.3.

C6�20368 ¼ 1
28

~X ~Y
T ¼ UΣVT ð0:3Þ

Because we are interested in mapping the genes of Y
onto substages of X we consider Px 6�28ð Þ ¼ UT ~X , the
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principal components of the covariance matrix that cor-
respond to the substages, and calculate the homoge-
neous and heterogeneous regressions:

Zx 6�6ð Þ ¼ XPT
x; Zy 20368�6ð Þ ¼ YPT

x ð0:4Þ

To allow for direct comparison, each row of Zx, Zy is
divided by its respective root mean square, Eq. 0.5.

Zx ijð Þ ¼ zx ijð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X6
j¼1

z2x ijð Þ=5

vuut

Zy kjð Þ ¼ zy kjð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X6
j¼1

z2y kjð Þ=5

vuut

ð0:5Þ

For each substage cyto-pattern (the row of Zx corre-
sponding to the substage), we find the genes that have a
similar gene expression pattern across the columns of
Zy. Through computation of the SVD, we lose a degree
of freedom so the maximum number of patterns is 5;
there are 6 substages. For each substage cyto-pattern, we
call a gene pattern similar if it is within a certain window
of the substage’s cyto-pattern.
To determine the optimal window width, we devised a

permutation method that iterates through varying win-
dow widths and chooses the optimal width based on the
estimated false positive rate (FPR). We stipulated that
the estimated FPR be less that 0.05 by the third compo-
nent (j = 3). Because the gene lists get finer, and more
specific, as we progress through the components, the
estimated FPR for cyto-patterns 4 and 5 are less that the
specified 0.05. For the substage-specific gene lists de-
scribed in this paper, the estimated FPR < 0.005. A de-
tailed explanation of the PMCA optimal width selection
is provided in Additional file 3.

Bioinformatic analysis
Gene Ontology (GO) analysis
GO enrichment analysis was performed using GOrilla,
Gene Ontology enRIchment anaLysis and visuaLizAtion
tool [30] with ranked gene lists. Gene lists were ranked
for each substage based on a score that measures how
closely each gene pattern follows the substage cytopat-
tern. GO terms was established by the GO Consortium
[70] and used to group genes according to their bio-
logical or molecular functions. A total of 13,363 of the
15,025 genes expressed in our time series have at least
one annotation in GO.

Transcription factor analyses
TFs for substage-concordant and negatively concordant
genes and the TF target genes were identified using iRe-
gulon, Version 1.3 [35] in Cytoscape, version 3.1.0 [71]

with the substage-concordant and negatively concordant
gene lists.

Additional files

Additional file 1: This file contains a mini-website of Tables S1-S10.
The same mini-website is available at http://carterdev.jax.org/dtx/a2/
index.html. Interactive expression plots. Table S1. Number and proportion
of isolated cells for cytological analysis and RNA-seq. Table S2. Gene lists
and gene expression values for each of the substages, separated by
worksheets. An additional worksheet provides results for X-linked genes.
Abbreviations for each substage are as follows: Sp’gonia for spermatogonia,
PL for preleptotene, EL for early leptotene, LL + Z for late leptotene and
zygotene, LL + Z + EP for those genes found in late leptotene, zygotene,
and early pachytene, EP for early pachytene, EP + LP + D for early pachytene,
late pachytene, and diplotene, and LP + D for late pachytene and diplotene.
Sheet names prefixed with “Anti-“correspond to genes that are negatively
concordant with the substage, (e.g., Anti-PL corresponds to genes that are
negatively concordant with preleptotene. Genes are ranked by how closely
the expression pattern follows the substage pattern (rank = 1 is best). Gene
ids and Gene names for piRNA precursors and NONCODE lncRNAs have
prefix “pi-” and “NON”, respectively. Expression is given in log2(TPM + 1).
Table S3. GO analysis for substage-negatively concordant genes.
Abbreviations for each substage are as follows: Sp’gonia for spermatogonia,
EL for early leptotene, LL-Z for late leptotene and zygotene, EP for early
pachytene, and LP-D for late pachytene and diplotene. Table S4. GO
analysis for substage-concordant genes. Abbreviations for each substage are
as follows: Sp’gonia for spermatogonia, EL for early leptotene, LL-Z for late
leptotene and zygotene, EP for early pachytene, and LP-D for late pachytene
and diplotene. Table S5. Analysis of genes annotated to meiosis. Table S6.
TFs for substage-concordant genes. The column names are explained as
follows: “NES” is short for Normalized Enrichment Score in iRegulon,
“ngenes” is the number of substage-concordant genes associated with the
TF, “name” used in the arc-diagram (* indicates a family of genes, e.g., Rfx*
for Rfx1, Rfx2, Rfx3, Rfx4). Bolded TFs are highly expressed in the testis and
those highlighted in red are associated with male reproduction. Table S7.
TFs for substage-negatively concordant genes. The column names are
explained as follows: “NES” is short for Normalized Enrichment Score in
iRegulon, “ngenes” is the number of substage negatively-concordant genes
associated with the TF, “name” used in the arc-diagram (* indicates a family
of genes, e.g., Rfx* for Rfx1, Rfx2, Rfx3, Rfx4). Table S8. Comparison of
substage-concordant gene lists with derived clusters in Margolin, et al. [14].
Table S9. Comparison of substage-concordant gene lists with sets derived
from FACS-sorted cells [5, 6]. Table S10. Primers for qRT-PCR. (ZIP 6513 kb)

Additional file 2: This file contains a mini-website of Figures S1-S6 and
a link to interactive expression plots. The same mini-website is available
at http://carterdev.jax.org/dtx/a1/index.html. Figure S1. Expression of
substage-concordant genes. (A-H) Heat maps show gene expression of
substage-concordant genes at each time point. Gene expression is shown
as average log2(TPM + 1) of time point replicates. Figure S2. Expression
of substage-negatively concordant genes. (A-H) Heat maps show gene
expression of substage-negatively concordant genes at each time point.
Gene expression is shown as average log2(TPM + 1) of time point repli-
cates. Figure S3. Validation of RNA-seq expression pattern by qRT-PCR.
Box plots (top) show gene expression detected by RNA-seq at 10 dpp
and 16 dpp. Bar graphs (bottom) show gene expression detected by
qRT-PCR using isolated germ cells from pooled testes from 3 mice at 10
dpp and 16 dpp. Gene expression for RNA-seq is shown as log2(TPM + 1).
Gene expression for qRT-PCR is shown as fold increase relative to Actb
expression. Figure S4. TF arc diagram illustrating the most significant TFs
across substages for the concordant gene lists. Node color represents the
substage. Node size is related to significance (larger = more significant
but all are highly significant with a iRegulon NES > = 4). Width of arc
corresponds to how many TFs are shared between nodes (wider =more
shared TFs). A node is connected to another node if a node’s TFs are a
subset of the other node’s TFs. Color of the arc (degree) is related to how
many connections the node has. Degree equals the number of connections.
The name of each node is an abbreviation, where an asterisk indicates
multiple members of the TF family are included in the node (e.g., Rfx* for
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Rfx1, Rfx2, Rfx3, Rfx4) and when a node name is followed by + integer, as in
“Mef2* + 1”, it indicates that there are TFs in the Mef2 family plus one other
TF. All TFs associated with each node are listed in Additional file 1: Table S6.
The number in parenthesis next to the node name indicates the number of
substage-concordant genes associated with the TF cluster. Figure S5. TF
arc diagram illustrating the most significant TFs across substages for the
negatively concordant gene lists. Node color represents the substage. Node
size is related to significance (larger =more significant but all are highly
significant with a iRegulon NES > = 4). Width of arc corresponds to how
many TFs are shared between nodes (wider =more shared TFs). A node is
connected to another node if a node’s TFs are a subset of the other node’s
TFs. Color of the arc (degree) is related to how many connections the node
has. Degree equals the number of connections. The name of each node is
an abbreviation, where an asterisk indicates multiple members of the TF
family are included in the node (e.g., Rfx* for Rfx1, Rfx2, Rfx3, Rfx4) and when
a node name is followed by + integer, as in “Mef2* + 1”, it indicates that
there are TFs in the Mef2 family plus one other TF. All TFs associated with
each node are listed in Additional file 1: Table S7. The number in parenthesis
next to the node name indicatea the number of substage-negatively-
concordant genes associated with the TF cluster. Figure S6. Expression of
TF and its target genes for each substage. The difference of mean gene
expression at 8 dpp of the TF and its target genes at each time point. To
illustrate the overall pattern, a smoothed line was fit to the substage-specific
gene expression. Color of lines represents the substage of target genes.
Gene expression is shown as average log2(TPM + 1) across time point
replicates. (ZIP 13261 kb)

Additional file 3: Details of permutation-based maximum covariance
analysis (PMCA). (PDF 150 kb)
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