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Abstract

Background: The identification of genomic biomarkers is a key step towards improving diagnostic tests and
therapies. We present a reference-free method for this task that relies on a k-mer representation of genomes and a
machine learning algorithm that produces intelligible models. The method is computationally scalable and
well-suited for whole genome sequencing studies.

Results: The method was validated by generating models that predict the antibiotic resistance of C. difficile,M.
tuberculosis, P. aeruginosa, and S. pneumoniae for 17 antibiotics. The obtained models are accurate, faithful to the
biological pathways targeted by the antibiotics, and they provide insight into the process of resistance acquisition.
Moreover, a theoretical analysis of the method revealed tight statistical guarantees on the accuracy of the obtained
models, supporting its relevance for genomic biomarker discovery.

Conclusions: Our method allows the generation of accurate and interpretable predictive models of phenotypes,
which rely on a small set of genomic variations. The method is not limited to predicting antibiotic resistance in
bacteria and is applicable to a variety of organisms and phenotypes. Kover, an efficient implementation of our
method, is open-source and should guide biological efforts to understand a plethora of phenotypes (http://github.
com/aldro61/kover/).
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Background
Despite an era of supercomputing and increasingly pre-
cise instrumentation, many biological phenomena remain
misunderstood. For example, phenomena such as the
development of some cancers, or the lack of efficiency of
a treatment on an individual, still puzzle researchers. One
approach to understanding such events is the elaboration
of case-control studies, where a group of individuals that
exhibit a given biological state (phenotype) is compared to
a group of individuals that do not. In this setting, one seeks
biological characteristics (biomarkers), that are predictive
of the phenotype. Such biomarkers can serve as the basis
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for diagnostic tests, or they can guide the development of
new therapies and drug treatments by providing insight
on the biological processes that underlie a phenotype
[1–4]. With the help of computational tools, such studies
can be conducted at amuch larger scale and producemore
significant results.
In this work, we focus on the identification of genomic

biomarkers. These include any genomic variation, from
single nucleotide substitutions and indels, to large scale
genomic rearrangements. With the increasing throughput
and decreasing cost of DNA sequencing, it is now possi-
ble to search for such biomarkers in the whole genomes
of a large set of individuals [2, 5]. This motivates the need
for computational tools that can cope with large amounts
of genomic data and identify the subtle variations that are
biomarkers of a phenotype.
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Genomic biomarker discovery relies on multiple
genome comparisons. Genomes are typically compared
based on a set of single nucleotide polymorphisms (SNP)
[2, 6, 7]. A SNP exists at a single base pair location in
the genome when a variation occurs within a population.
The identification of SNPs relies on multiple sequence
alignment, which is computationally expensive and can
produce inaccurate results in the presence of large-scale
genomic rearrangements, such as gene insertions, dele-
tions, duplications, inversions, or translocations [8–12].
Recently, methods for genome comparison that alleviate

the need for multiple sequence alignment, i.e., reference-
free genome comparison, have been investigated [8–12].
In this work, we use such an approach, by compar-
ing genomes based on the k-mers, i.e., sequences of k
nucleotides, that they contain. The main advantage of this
method is that it is robust to genomic rearrangements.
Moreover, it provides a fully unbiased way of compar-
ing genomic sequences and identifying variations that are
associated with a phenotype. However, this genomic rep-
resentation is far less compact than a set of SNPs and thus
poses additional computational challenges.
In this setting, the objective is to find the most concise

set of genomic features (k-mers) that allows for accurate
prediction of the phenotype [1]. Including uninformative
or redundant features in this set would lead to additional
validation costs and could mislead researchers. In this
work, we favor an approach based on machine learning,
where we seek a computational model of the phenotype
that is accurate and sparse, i.e. that relies on the fewest
genomic features. Learning such models from large data
representations, such as the k-mer representation, is a
challenging problem [13]. Indeed, there are many more
genomic features than genomes, which increases the dan-
ger of overfitting, i.e., learning random noise patterns
that lead to poor generalization performance. In addi-
tion, the majority of the k-mers are uninformative and
cannot be used to predict the phenotype. Finally, due to
the structured nature of genomes, many k-mers occur
simultaneously and are thus highly correlated.
Previous work in the field of biomarker discovery has

generally combined feature selection and predictive mod-
eling methods [1, 14]. Feature selection serves to identify
features that are associated with the phenotype. These fea-
tures are then used to construct a predictive model with
the hope that it can accurately predict the phenotype.
The most widespread approach consists in measuring the
association between the features and the phenotype with
a statistical test, such as the χ2 test or a t-test. Then, some
of the most associated features are selected and given to
a modeling algorithm. In the machine learning literature,
such methods are referred to as filter methods [13, 15].
When considering millions of features, it is not possible

to efficiently perform multivariate statistical tests. Hence,

filter methods are limited to univariate statistical tests.
While univariate filters are highly scalable, they discard
multivariate patterns in the data, that is, combinations of
features that are, together, predictive of the phenotype.
Moreover, the feature selection is performed indepen-
dently of the modeling, which can lead to a suboptimal
choice of features. Embedded methods address these limi-
tations by integrating the feature selection in the learning
algorithm [14, 15]. Thesemethods select features based on
their ability to compose an accurate predictive model of
the phenotype. Moreover, some of these methods, such as
the Set Covering Machine [16], can consider multivariate
interactions between features.
In this study, we propose to apply the Set Covering

Machine (SCM) algorithm to genomic biomarker discov-
ery. We devise extensions to this algorithm that make
it well suited for learning from extremely large sets of
genomic features. We combine this algorithm with the
k-mer representation of genomes, which reveals unchar-
acteristically sparse models that explicitly highlight the
relationship between genomic variations and the phe-
notype of interest. We present statistical guarantees on
the accuracy of the models obtained using this approach.
Moreover, we propose an efficient implementation of the
method, which can readily scale to large genomic datasets
containing thousands of individuals and hundreds of mil-
lions of k-mers.
The method was used to model the antibiotic resistance

of four common human pathogens, including Gram-
negative andGram-positive bacteria. Antibiotic resistance
is a growing public health concern, as many multidrug-
resistant bacterial strains are starting to emerge. This
compromises our ability to treat common infections,
which increases mortality and health care costs [17, 18].
Better computational methodologies to assess resistance
phenotypes will assist in tracking epidemics, improve
diagnosis, enhance treatment, and facilitate the develop-
ment of new drugs [19, 20]. This study highlights that,
with whole genome sequencing and machine learning
algorithms, such as the SCM, we can readily zero in on the
genes, mutations, and processes responsible for antibiotic
resistance and other phenotypes of interest.

Machine learning for biomarker discovery
The problem of distinguishing two groups of living organ-
isms based on their genomes can be formalized as a
supervised learning problem. In this setting, we assume
that we are given a data sample S that contains m learn-
ing examples. These examples are pairs (x, y), where x is
a genome and y is a label that corresponds to one of two
possible phenotypes. More specifically, we assume that
x ∈ {A,T ,G,C}∗, which corresponds to the set of all pos-
sible strings of DNA nucleotides and that y ∈ {0, 1}. In
this work, the label y = 1 is assigned to the case group
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and y = 0 to the control group. The examples in S are
assumed to be drawn independently from an unknown,
but fixed, data generating distribution D. Hence S def=
{(x1, y1), . . . , (xm, ym)} ∼ Dm.
Most learning algorithms are designed to learn from

a vector representation of the data. Thus, to learn from
genomes, we must define a function φ : {A,T ,G,C}∗ →
R
d , that takes a genome as input and maps it to some d

dimensional vector space (the feature space). We choose
to represent each genome by the presence or absence of
every possible k-mer. This representation is detailed in the
“Methods” section.
Subsequently, a learning algorithm can be applied to the

set S′ def= {
(φ(x1), y1), . . . , (φ(xm), ym)

}
to obtain a model

h : Rd → {0, 1}. The model is a function that, given the
feature representation of a genome, estimates the associ-
ated phenotype. The objective is thus to obtain a model h
that has a good generalization performance, i.e., that min-
imizes the probability, R(h), of making a prediction error
for any example drawn according to the distribution D,
where

R(h) def= Pr
(x,y)∼D

[
h(φ(x)) �= y

]
. (1)

Application specific constraints
Biomarker discovery leads to two additional constraints
on the model h. These are justified by the cost of applying
the model in practice and on the ease of interpretation of
the model by domain experts.
First, we strive for a model that is sparse, i.e., that uses

a minimal set of features to predict the phenotype. This
property is important, as it can greatly reduce the cost
of applying the model in practice. For example, if the
model relies on a sufficiently small number of features,
these can be measured by using alternative methods, e.g.,
polymerase chain reaction (PCR), rather than sequencing
entire genomes.
In addition, the model must be easily interpretable by

domain experts. This is essential for extracting useful
biological information from the data, to facilitate com-
prehension, and is critical for adoption by the scientific
community. We make two observations in an attempt to
obtain a clear definition of interpretability. The first is
that the structure of a model can affect its interpretabil-
ity. For example, rule-based models, such as decision trees
[21], are naturally understood as their predictions consist
in answering a series of questions; effectively following a
path in the tree. In contrast, linear models, such as those
obtained with support vector machines [22] or neural net-
works [23], are complex to interpret, as their predictions
consist in computing linear combinations of features. The
second observation is that, regardless of the structure of

the model, sparsity is an essential component in inter-
pretability, since models with many rules are inevitably
more tedious to interpret.

The set covering machine
The SCM [16] is a learning algorithm that uses a greedy
approach to produce uncharacteristically sparse rule-
based models. In this work, the rules are individual units
that detect the presence or the absence of a k-mer in
a genome. These rules are boolean-valued, i.e., they can
either output true or false. The models learned by the
SCM are logical combinations of such rules, which can
be conjunctions (logical-AND) or disjunctions (logical-
OR). To predict the phenotype associated with a genome,
each rule in the model is evaluated and the results are
aggregated to obtain the prediction. A conjunction model
assigns the positive class (y = 1) to a genome if all the
rules output true, whereas a disjunction model does the
same if at least one rule outputs true.
The time required for learning a model with the SCM

grows linearly with the number of genomes in the dataset
and with the number of k-mers under consideration. This
algorithm is thus particularly well suited for learning from
large genomic datasets. Moreover, as it will be discussed
later, we have developed an efficient implementation of
the SCM, which can easily scale to hundreds of millions
of k-mers and thousands of genomes, while requiring a
few gigabytes of memory. This is achieved by keeping the
data on external storage, e.g., a hard drive, and accessing it
in small contiguous blocks. This is in sharp contrast with
other learning algorithms, which require that the entire
dataset be stored in the computer’s memory.
The SCM algorithm is detailed in Additional file 1:

Appendix 1. In the “Methods” section, we propose algo-
rithmic and theoretical extensions to the SCM algorithm
that make it a method of choice for genomic biomarker
discovery.

Results
Data
Antibiotic resistance datasets were acquired for four
bacterial species: Clostridium difficile, Mycobacterium
tuberculosis, Pseudomonas aeruginosa, and Streptococ-
cus pneumoniae. Each dataset was a combination of
whole genome sequencing reads and antibiotic suscep-
tibility measurements for multiple isolates. The M. tu-
berculosis, P. aeruginosa, and S. pneumoniae data were
respectively obtained from Merker et al. [24], Kos et
al. [25] and Croucher et al. [26]. The C. difficile data
were obtained from Dr. Loo and Dr. Bourgault. The
genomes were submitted to the European Nucleotide
Archive [EMBL:PRJEB11776 (http://www.ebi.ac.uk/ena/
data/view/PRJEB11776)] and the antibiotic susceptibility
measurements are provided in Additional file 2.

http://www.ebi.ac.uk/ena/data/view/PRJEB11776
http://www.ebi.ac.uk/ena/data/view/PRJEB11776


Drouin et al. BMC Genomics  (2016) 17:754 Page 4 of 15

The sequencing data, which are detailed in Additional
file 3: Table S1, were acquired using a variety of Illumina
platforms. The genomes were assembled and subse-
quently split into k-mers of length 31 (“Methods”).
Guidelines for selecting an appropriate k-mer length are
provided in “Methods”.
Each (pathogen, antibiotic) combination was considered

individually, yielding 17 datasets in which the number
of examples (m) ranged from 111 to 556 and the num-
ber of k-mers (|K|) ranged from 10 to 123 millions.
Figure 1 shows the distribution of resistant and sensitive
isolates in each dataset. The datasets are further detailed
in Additional file 3: Table S2.

The SCMmodels are sparse and accurate
The models obtained using the SCM were compared
to those obtained using other machine learning algo-
rithms based on their generalization performance and
sparsity. Comparisons were made with rule-basedmodels:
the CART decision tree algorithm [21], linear classifiers:
L1-norm and L2-norm regularized linear support vector
machines (L1SVM, L2SVM) [22], and kernel methods:
polynomial and linear kernel support vector machines
(PolySVM, LinSVM) [27, 28]. CART and support vec-
tor machines are state-of-the-art machine learning algo-
rithms that have been abundantly used in biological appli-
cations [29, 30]. Publicly available implementations of
these algorithms were used: Scikit-learn [31] for CART,
LIBLINEAR [32] for L1SVM and L2SVM, and LIBSVM
[33] for PolySVM and LinSVM.
The following protocol was used to compare the algo-

rithms. Each dataset was split into a training set (2/3 of
the data) and a separate testing set (1/3). 5-fold cross-
validation was performed on the training set to select the
best hyperparameter values. Finally, each algorithm was
trained on the training set and predictions were computed
on the held-out testing set. For each algorithm, the gener-
alization performance was measured by the error rate on
the independent testing set and sparsity was measured by
the number of k-mers that contributed to the model. This

procedure was repeated 10 times, on different partitions
of the data, and the algorithms were compared based on
the average error rate and sparsity. A Wilcoxon signed-
rank test [34] was used to assess the statistical significance
of the comparisons.
The algorithms were also compared to a baseline

method that predicts the most abundant class in the
training set (resistant or sensitive).
Our implementation of the SCM was able to learn from

the entire feature space, that is, all the k-mers. The time
required for training the algorithm varied between 33 sec-
onds and two hours, depending on the dataset, and the
memory requirements were always inferior to eight giga-
bytes. In contrast, the CART, L1SVM, and L2SVM algo-
rithms were unable to learn from the entire feature space.
For these algorithms, the entire dataset had to be stored
in the computer’s memory, generating massive memory
requirements. Hence, these algorithms were combined
with a feature selection step that reduced the size of the
feature space.
The next two sections compare the SCM to two cat-

egories of methods: those that require feature selection
and those that learn from the entire feature space. In both
cases, the SCM was found to yield the sparsest and most
accurate models.

Feature selection
Feature selection was performed using a univariate fil-
ter that measured the association between each feature
and the phenotype [1, 14, 15]. Using the χ2 test of inde-
pendence, the 1 000 000 most associated features were
retained. Results comparing the SCM, which uses all
features, to the univariately filtered algorithms: χ2 +
CART, χ2 + L1SVM, and χ2 + L2SVM, are shown in
Table 1.
In terms of error rate, all the algorithms surpass the

baseline method, indicating that relevant information
about antibiotic resistance was found in the genomes.
The error rate of the SCM is smaller or equal to that of
χ2 + CART on 12/17 dataset (p = 0.074), χ2 + L1SVM

Fig. 1 Dataset summary: distribution of resistant and sensitive isolates in each dataset
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Table 1 Feature selection: Average testing set error rate and sparsity (in parentheses) for 10 random partitions of the data

Dataset SCM χ2 + CART χ2 + L1SVM χ2 + L2SVM χ2 + SCM Baseline

C. difficile

Azithromycin 0.030 (3.3) 0.086 (7.2) 0.064 (20326.0) 0.056 (106) 0.075 (3.0) 0.446

Ceftriaxone 0.073 (2.6) 0.117 (6.8) 0.087 (8114.1) 0.102 (106) 0.111 (3.2) 0.306

Clarithromycin 0.011 (3.0) 0.070 (8.0) 0.062 (36686.1) 0.059 (106) 0.069 (3.5) 0.446

Clindamycin 0.021 (1.4) 0.011 (2.0) 0.009 (598.2) 0.021 (106) 0.008 (2.3) 0.136

Moxifloxacin 0.020 (1.0) 0.020 (1.3) 0.020 (25.6) 0.048 (106) 0.021 (1.1) 0.390

M. tuberculosis

Ethambutol 0.179 (1.4) 0.185 (1.9) 0.153 (201.3) 0.221 (106) 0.174 (3.2) 0.351

Isoniazid 0.021 (1.0) 0.021 (1.1) 0.017 (104.7) 0.125 (106) 0.021 (1.2) 0.421

Pyrazinamide 0.318 (3.1) 0.371 (4.4) 0.353 (481.2) 0.342 (106) 0.366 (5.8) 0.347

Rifampicin 0.031 (1.4) 0.031 (1.5) 0.031 (130.0) 0.196 (106) 0.029 (1.3) 0.452

Streptomycin 0.050 (1.0) 0.052 (1.6) 0.043 (98.8) 0.137 (106) 0.050 (2.1) 0.435

P. aeruginosa

Amikacin 0.175 (4.9) 0.206 (14.1) 0.187 (11514.6) 0.164 (106) 0.164 (9.7) 0.216

Doripenem 0.270 (1.4) 0.261 (1.9) 0.261 (950.0) 0.275 (106) 0.307 (8.5) 0.359

Levofloxacin 0.072 (1.2) 0.076 (1.0) 0.085 (148.9) 0.212 (106) 0.083 (3.5) 0.463

Meropenem 0.267 (1.6) 0.261 (1.0) 0.328 (5368.5) 0.327 (106) 0.331 (9.1) 0.404

S. pneumoniae

Benzylpenicillin 0.013 (1.1) 0.012 (2.3) 0.011 (124.9) 0.013 (106) 0.013 (1.3) 0.073

Erythromycin 0.037 (2.0) 0.047 (3.8) 0.041 (328.8) 0.042 (106) 0.041 (5.1) 0.142

Tetracycline 0.031 (1.1) 0.029 (1.2) 0.032 (1108.5) 0.037 (106) 0.033 (2.2) 0.106

Results are shown for the SCM, which uses the entire feature, and the feature selection-based methods: χ2 + CART, χ2 + L1SVM, χ2 + L2SVM and χ2 + SCM. The baseline
method predicts the most abundant class in the training set. The smallest error rates are in bold

on 11/17 datasets (p = 0.179), and χ2 +L2SVM on 16/17
datasets (p = 0.001). Moreover, the SCM was found to
learn sparser models than these algorithms (χ2 + CART:
p = 0.003, χ2 + L1SVM: p = 0.0003, χ2 + L2SVM:
p = 0.0003).
In addition, the SCM was compared to a variant which

uses univariate feature selection (χ2 + SCM). This com-
parison revealed that the SCM surpasses the χ2 + SCM
in terms of accuracy (p = 0.001) and sparsity (p = 0.054),
highlighting the importance ofmultivariate patterns in the
data (Table 1).
The ability to consider the entire feature space is thus

critical and eliminates the selection biases of feature selec-
tion methods. However, for most machine learning algo-
rithms, this remains impossible due to computational
limitations and the danger of overfitting. The next section
compares the SCM to two methods that learn from the
entire feature space.

Entire feature space
By means of the kernel trick, kernel methods can effi-
ciently learn from very high dimensional feature spaces
[27, 28]. However, as opposed to the SCM, they do not

yield sparse models that can be interpreted by domain
experts.
The SCM was compared to support vector machines

coupled with linear (LinSVM) and polynomial (PolySVM)
kernels. When learning from our binary genomic repre-
sentation (“Methods”), the LinSVM yields a linear model
that considers the presence or absence of each k-mer.
Moreover, the PolySVM yields a linear model that consid-
ers all possible conjunctions of 1 to d k-mers, where d is
a hyperparameter of the kernel. The obtained models are
thus akin to those of the SCM, making this comparison
particularly interesting.
The results, shown in Table 2, indicate that the SCM

models are both more accurate (LinSVM: p = 0.0003,
PolySVM: p = 0.0003) and sparser (LinSVM: p = 0.001,
PolySVM: p = 0.006) than those of the aforementioned
algorithms. Further analysis revealed that the poor per-
formance of LinSVM and PolySVM is due to overfitting
(Additional file 3: Table S3), which likely occurs due to
the immensity of the feature space. In contrast, the SCM
was not found to overfit. This is consistent with the theo-
retical result described in “Methods”, which indicates that
the SCM is not prone to overfitting in settings where the
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Table 2 Entire feature space: Average testing set error rate and sparsity (in parentheses) for 10 random partitions of the data

Dataset SCM LinSVM PolySVM Baseline

C. difficile

Azithromycin 0.030 (3.3) 0.050 (32 752 570) 0.048 (32 752 570) 0.446

Ceftriaxone 0.073 (2.6) 0.079 (25 405 987) 0.076 (25 405 987) 0.306

Clarithromycin 0.011 (3.0) 0.053 (32 752 570) 0.053 (32 752 570) 0.446

Clindamycin 0.021 (1.4) 0.039 (30 988 214) 0.039 (30 988 214) 0.136

Moxifloxacin 0.020 (1.0) 0.054 (32 752 570) 0.048 (32 752 570) 0.390

M. tuberculosis

Ethambutol 0.179 (1.4) 0.215 (9 465 489) 0.221 (9 465 489) 0.351

Isoniazid 0.021 (1.0) 0.117 (9 701 935) 0.119 (9 701 935) 0.421

Pyrazinamide 0.318 (3.1) 0.382 (8 058 479) 0.382 (8 058 479) 0.347

Rifampicin 0.031 (1.4) 0.200 (9 701 935) 0.204 (9 701 935) 0.452

Streptomycin 0.050 (1.0) 0.143 (9 282 080) 0.148 (9 282 080) 0.435

P. aeruginosa

Amikacin 0.175 (4.9) 0.184 (116 441 834) 0.179 (116 441 834) 0.216

Doripenem 0.270 (1.4) 0.288 (122 438 059) 0.281 (122 438 059) 0.359

Levofloxacin 0.072 (1.2) 0.221 (122 216 859) 0.225 (122 216 859) 0.463

Meropenem 0.267 (1.6) 0.329 (123 466 989) 0.331 (123 466 989) 0.404

S. pneumoniae

Benzylpenicillin 0.013 (1.1) 0.015 (8 968 176) 0.015 (8 968 176) 0.073

Erythromycin 0.037 (2.0) 0.046 (9 666 898) 0.047 (9 666 898) 0.142

Tetracycline 0.031 (1.1) 0.039 (8 657 259) 0.037 (8 657 259) 0.106

Results are shown for the SCM and the kernel methods: LinSVM and PolySVM. The baseline method predicts the most abundant class in the training set. The smallest error
rates are in bold

number of features is much larger than the number of
examples.
In summary, it is not only its ability to consider

the entire feature space, but also its sparsity and
high resistance to overfitting that make for the strong
performance of the SCM. In complement to these results,
the mean and standard deviation of the sensitivity, speci-
ficity, and error rate for each algorithm are provided in
Additional file 3: Tables S4, S5, S6.

The SCMmodels are biologically relevant
The biological relevance of the SCM models was inves-
tigated. To achieve this, the algorithm was retrained on
each dataset, using all the available data. This yielded a
single phenotypic model for each dataset. Then, the k-mer
sequences of the rules in the models were annotated by
using Nucleotide BLAST [35] to search them against a set
of annotated genomes.
Moreover, for each rule in the models, rules that the

SCM found to be equally predictive of the phenotype
(equivalent rules) were considered in the analysis. Such
rules are not used for prediction, but can provide insight
on the type of genomic variation that was identified by the
algorithm (see “Methods”). For example, a small number

of rules targeting k-mers that all overlap on a single or
few nucleotides, suggests a point mutation. Alternatively,
a large number of rules, that target k-mers which can be
assembled to form a long sequence, suggests a large-scale
genomic variation, such as a gene insertion or deletion.
The annotated models for each dataset are illustrated

in Additional file 4: Figure S1. Below, a subset of these
models, which is illustrated in Fig. 2, is discussed. For
each genomic variation identified by the algorithm, a thor-
ough literature review was performed, with the objective
of finding known, and validated, associations to antibiotic
resistance.
ForM. tuberculosis, the isoniazid resistance model con-

tains a single rule which targets the katG gene. This gene
encodes the catalase-peroxidase enzyme (KatG), which
is responsible for activating isoniazid, a prodrug, into its
toxic form. As illustrated in Fig. 3, the k-mers associ-
ated with this rule and its equivalent rules all overlap
a concise locus of katG, suggesting the occurrence of a
point mutation. This locus contains codon 315 of KatG,
where mutations S315I, S315G, S315N and S315T are all
known to result in resistance [36, 37]. Amultiple sequence
alignment revealed that these variants were all present
in the dataset. The SCM therefore selected a rule that
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Fig. 2 Antibiotic resistance models: Six antibiotic resistance models, which are all disjunctions (logical-OR). The rounded rectangles correspond to
antibiotics. The circular nodes correspond to k-mer rules. A single border indicates a presence rule and a double border indicates an absence rule.
The numbers in the circles show to the number of equivalent rules. A rule is connected to an antibiotic if it was included in its model. The weight of
the edges gives the importance of each rule as defined by Eqs. (3) and (4). The models for all 17 datasets are illustrated in Additional file 4: Figure S1

captures the absence of the wild-type sequence at this
locus, effectively including the presence of all the observed
variants.
The rifampicin resistance model contains two rules,

which target the rifampicin resistance-determining region
(RRDR) of the rpoB gene. This gene, which encodes the β-
subunit of the RNA polymerase, is the target of rifampicin.
The antibiotic binds to RpoB, which inhibits the elon-
gation of messenger RNA. Mutations in the RRDR are
known to cause conformational changes that result in
poor binding of the drug and cause resistance [37]. Fur-
thermore, one of the rules has a much greater importance
than the other. This suggests the existence of two clusters
of rifampicin resistant strains, one being predominant,

while both harbor mutations in different regions of the
RRDR.
For S. pneumoniae, the first and most important rule of

the erythromycin resistance model targets the mel gene.
The mel gene is part of the macrolide efflux genetic
assembly (MEGA) and is known to confer resistance to
erythromycin [38, 39]. Of note, this gene is found on an
operon with either the mefA or the mefE gene, which are
also part of the MEGA and associated with erythromycin
resistance [38]. It is likely that the algorithm targeted
the mel gene to obtain a concise model that includes all
of these resistance determinants. The second rule in the
model is an absence rule that targets the wild-type version
of the metE gene. This gene is involved in the synthesis

Fig. 3 Going beyond k-mers: This figure shows the location, on the katG gene, of each k-mer targeted by the isoniazid model (rule and equivalent
rules). All the k-mers overlap a concise locus, suggesting that it contains a point mutation that is associated with the phenotype. A multiple
sequence alignment revealed a high level of polymorphism at codon 315 (shown in red). The wild-type sequence (WT), as well as the resistance
conferring variants S315G, S315I, S315N and S315T, were observed. The rule in the model captures the absence of WT and thus, includes the
occurrence of all the observed variants
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of methionine [40]. Alterations in this gene could lead
to a lack of methionine in the cell and impact the ribo-
somal machinery, which is the drug’s target. However,
further validation is required to confirm this resistance
determinant.
For C. difficile, the resistance models for azithromycin

and clarithromycin, twomacrolide antibiotics, share a rule
with the resistance model for clindamycin, a lincosamide
antibiotic. These three antibiotics function by binding
the 50S subunit of the ribosome and interfering with
bacterial protein synthesis [41]. Cross-resistance between
macrolide and lincosamide antibiotics is caused by the
presence of the ermB gene that encodes rRNA adenine
N-6-methyltransferase, an enzyme that methylates posi-
tion 2058 of the 23S rRNA within the larger 50S subunit
[41–43]. The shared rule for the macrolide and the lin-
cosamide models rightly targets the ermB gene. This rule
has 616 equivalent rules, all of the presence type, targeting
ermB. Arguably, the algorithm correctly found the pres-
ence of this gene to be a cross-resistance determinant, in
agreement with the literature [41–43].
Azithromycin and clarithromycin have similar mecha-

nisms of action and, as expected, their resistance models
are identical. They contain a presence rule that targets
a region of the Tn6110 transposon, characterized in C.
difficile strain QCD-6626 [44]. This region is located
136 base pairs downstream of a 23S rRNA methyltrans-
ferase, which is a gene known to be associated with
macrolide resistance [45]. The next rule in the models tar-
gets the presence of the penicillin-binding protein, which
plays a role in resistance to β-lactam antibiotics, such
as ceftriaxone [46]. Among the azithromycin-resistant
isolates in our dataset, 92.7% are also resistant to cef-
triaxone. Similarly, 92.2% of the clarithromycin-resistant
isolates are resistant to ceftriaxone. Hence, this rule was
likely selected due to these strong correlations.
Finally, clindamycin resistance model contains a rule

targeting a Tn6194-like conjugative transposon. This
transposon contains the ermB gene, which is associated
with resistance to this antibiotic [47]. Moreover, it is rarely
found in clinical isolates, which could explain its smaller
importance.

Spurious correlations can be overcome
One limitation of statistical methods that derive models
from data is their inability to distinguish causal variables
from those that are highly correlated with them. To our
knowledge, it is very difficult to prevent this pitfall. How-
ever the interpretability and the sparsity of the obtained
models can be leveraged to identify and circumvent spu-
rious correlations.
One notable example of such a situation is the strong

correlation in resistance to antibiotics that do not share
common mechanisms of action. These correlations might

originate from treatment regimens. For instance, Fig. 4a
shows, for M. tuberculosis, the proportion of isolates that
are identically labeled (resistant or sensitive) for each pair
of antibiotics. More formally, this figure shows a matrix
C, where each entry Cij corresponds to a pair of datasets
(Si, Sj) and

Cij
def= |{(x, y) ∈ Si : (x, y) ∈ Sj}|

|Si| . (2)

Notice the large proportion of isolates in the strepto-
mycin dataset that are identically labeled in the isoni-
azid dataset (95.6%). Consequently, the models obtained
for streptomycin and isoniazid resistance are identical
(Additional file 4: Figure S1). However, these antibiotics
have different mechanisms of action and thus, different
resistance mechanisms.
The following procedure is proposed to eliminate spuri-

ous correlations and identify causal genomic variants:

1. Learn a model using the SCM.
2. Validate the association between the rules in the

model and the phenotype using mutagenesis and
phenotypic assays.

3. If a rule is not rightly associated with the phenotype,
remove the k-mer s of the rule and its equivalent
rules from the data.

4. Repeat until a causal association is found.

In practice, the models can be validated by genetically
engineering mutants that match the k-mer variations tar-
geted by the model. Such mutants can be engineered
by diverse means, such as homologous recombination,
the CRISPR-Cas9 approach [48], or standard molecular
biology cloning. For a conjunction, a multilocus mutant
can be engineered to test the synergy between the pres-
ence/absence of the k-mers. For a disjunction, the rules
must be validated individually, by engineering one mutant
for each rule in the model. Finally, the phenotypes of the
mutants can be experimentally validated using phenotypic
assays. For example, antibiotic resistance can be validated
by using standard susceptibility testing protocols in the
presence of the antibiotic.
Figure 4b shows a proof of concept, where the iter-

ative procedure was applied to streptomycin resistance.
Resistance to this antibiotic is well documented and
thus, a literature review was used in lieu of the experi-
mental validation of mutants. Six rounds were required
in order to converge to a known resistance mecha-
nism, i.e., the rpsL gene [49]. The models obtained
throughout the iterations contained rules targeting the
katG and the rpoB genes, which are respectively iso-
niazid and rifampicin resistance determinants [36, 37].
Again, this occurs due to the large proportion of iso-
lates in the streptomycin dataset that are identically
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a b

Fig. 4 Overcoming spurious correlations: This figures shows how spurious correlations in theM. tuberculosis data affect the models produced by the
Set Covering Machine. a For eachM. tuberculosis dataset, the proportion of isolates that are identically labeled in each other dataset is shown. This
proportion is calculated using Eq. (2). b The antibiotic resistance models learned by the SCM at each iteration of the correlation removal procedure.
Each model is represented by a rounded rectangle identified by the round number and the estimated error rate. All the models are disjunctions
(logical-OR). The circular nodes correspond to k-mer rules. A single border indicates a presence rule and a double border indicates an absence rule.
The numbers in the circles show to the number of equivalent rules. A rule is connected to an antibiotic if it was included in its model. The weight of
the edges gives the importance of each rule

labeled in the isoniazid (95.6%) and rifampicin datasets
(85.9%).
Hence, should the algorithm identify variations that are

correlated with, but not causal of the phenotype, one
could detect and eliminate them, eventually converging
to causal variants. The search for causality is therefore
a feedback between machine learning and experimental
biology, which is made possible by the high sparsity and
interpretability of the models generated using the SCM.

The SCM can predict the level of resistance
To further demonstrate how the SCM can be used to
explore the relationship between genotypes and pheno-
types, it was used to predict the level of benzylpenicillin
resistance in S. pneumoniae. For this bacterium, penicillin
resistance is often mediated by alterations that reduce
the affinity of penicillin-binding proteins [50]. Moderate-
level resistance is due to alterations in PBP2b and PBP2x,
whereas high-level resistance is due to additional alter-
ations in PBP1a. Based on the antibiotic susceptibility data
described in Additional file 3: Table S2, three levels of
antibiotic resistance were defined and used to group the
isolates: high-level resistance (R), moderate-level resis-
tance (I) and sensitive (S). We then attempted to discrim-
inate highly resistant isolates from sensitive isolates and
moderately resistant isolates from sensitive isolates. The
same protocol as in the previous sections was used.
An error rate of 1.3% was obtained for discriminating

highly resistant and sensitive isolates. The obtainedmodel
correctly targeted the pbp1a gene. Based on the protocol
presented in Additional file 1: Appendix 2, all the k-mers
located in this gene were removed and the experiment was

repeated. This yielded a model with an error rate of 1.7%
that targeted the pbp2b gene. These results are consistent
with the literature, since they indicate that alterations in
both genes are equally predictive of a high-level of resis-
tance and thus, that they occur simultaneously in isolates
that are highly resistant to penicillin [50].
An error rate of 6.4% was obtained for discriminating

moderately resistant and sensitive isolates. The obtained
model correctly targeted the pbp2b gene. Again, all the
k-mers located in this gene were removed and the experi-
ment was repeated. The obtained model had an error rate
of 7.2% and targeted the pbp2x gene. In accordance with
the literature, this indicates that alterations in both genes
are predictive of moderate-level resistance. However, our
results indicate that alterations in pbp2b are slightly more
predictive of this phenotype.

Discussion
Wehave addressed the problem of learning computational
phenotyping models from whole genome sequences. We
sought a method that produces accurate models that are
interpretable by domain experts, while relying on a mini-
mal set of biomarkers. Our results for predicting antibiotic
resistance demonstrate that this goal has been achieved.
Biologically relevant insight was acquired for drug resis-

tance phenotypes. Indeed, within hours of computation,
we have retrieved antibiotic resistance mechanisms that
have been reported over the past decades. Of note, we
have shown that the k-mers in the SCM models can be
further refined to determine the type of the underlying
genomic variations. Hence, this method could be used to
rapidly gain insight on the causes of resistance to new
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antibiotics, for which the mechanism of action might not
be fully understood. Furthermore, as our results suggest,
our method could be used to discover resistance mecha-
nisms that are shared by multiple antibiotics, which would
allow the development of more effective combination
therapies.
In terms of accuracy, the method was shown to outper-

form a variety of machine learning-based biomarker dis-
covery methods. For a majority of datasets, the achieved
error rates are well below 10%. Given the inherent noise
in antibiotic susceptibility measurements, it is likely that
these error rates are near optimal. ForM. tuberculosis and
P. aeruginosa, some datasets were shown to have contrast-
ing results, where none of the evaluated methods pro-
duced accurate models. A FastQC [51] analysis revealed
that, of the four species considered, these two species
have the lowest sequencing data quality (Additional file 3:
Table S1). Moreover, for these species only, the data were
acquired using a combination of MiSeq and HiSeq instru-
ments, which could undermine the comparability of the
genomes [52].
We therefore hypothesize that the inability to learn

accurate models on some datasets is either due to the
quality of the sequencing data, an insufficient number of
learning examples, or extra-genomic factors that influ-
ence the phenotype. For instance, epigenetic modifica-
tions have been shown to alter gene expression in bacteria
and play a role in virulence [53, 54]. Assuming the avail-
ability of the data, future work could explore extensions to
jointly learn models from genetic and epigenetic data.
In terms of sparsity, the SCM was shown to produce

the sparsest models. Notably, this was achieved without
negatively impacting the prediction accuracy of the mod-
els. We hypothesize that this is due to the small number
of genomic variations that drive some genome-related
phenotypes.
Hence, we presented empirical evidence that, in the

context of genomic biomarker discovery, the SCM out-
performs a variety of machine learning algorithms, which
were selected to have diverse model structures and lev-
els of sparsity. This suggests that the conjunctions and
disjunctions produced by the SCM, in addition to being
intuitively understandable, are more suitable for this task.
In “Methods”, we provide tight statistical guarantees on
the accuracy of the models obtained using our approach.
Such theoretical results are uncommon for this type of
tool and, together with the empirical results, indicate
the SCM is a tool of choice for genomic biomarker
discovery.

Conclusions
The identification of genomic biomarkers is a key step
towards improving diagnostic tests and therapies. In this
study, we have demonstrated how machine learning can

be used to identify such biomarkers in the context of case-
control studies. We proposed a method that relies on the
Set Covering Machine algorithm to generate models that
are accurate, concise and intelligible to domain experts.
The obtained models make phenotypic predictions based
on the presence or absence of short genomic sequences,
which makes them well-suited for translation to the clin-
ical settings using methods such as PCR. The proposed
method is broadly applicable and is not limited to pre-
dicting drug response in bacteria. Hence, we are confident
that this work will transpose to other organisms, pheno-
types, and even to scenarios involving complex mixtures
of genomes, such as metagenomic studies. The efficiency
and the simplicity of the models obtained using our
method could guide biological efforts for understanding a
plethora of phenotypes.
To facilitate the integration of our method in genomic

analysis pipelines, we provide Kover, an implementation
that efficiently combines the modeling power of the Set
Covering Machine with the versatility of the k-mer rep-
resentation. The implementation is open-source and is
available at http://github.com/aldro61/kover.

Methods
Genome assembly and fragmentation into k-mers
All genomes were assembled using the SPAdes genome
assembler [55] and were subsequently split into k-mers
using the Ray Surveyor tool, which is part of the Ray
de novo genome assembler [56, 57]. Genome assem-
bly is not mandatory for applying our method. Instead,
one could use k-mer counting software to identify the
k-mers present in the raw reads of each genome. However,
with sufficient coverage, genome assembly can increase
the quality of the k-mer representation by eliminating
sequencing errors. This reduces the number of unique
k-mers and thus, the size of the feature space.

Choosing the k-mer length
The k-mer length is an important parameter of the pro-
posed method. Exceedingly small values of k will yield
k-mers that ambiguously map to multiple genomic loci.
Yet, an exceedingly large k will yield very specific k-mers
that only occur in few genomes. To our knowledge, a
general protocol for selecting the k-mer length does not
exist. We therefore propose two approaches to selecting
an appropriate length.
The first consists of using prior biological knowledge

about the organism under study. For instance, the muta-
tion rate is an important factor to consider. If it is expected
to be high (e.g., viruses), small k-mers are preferable. Con-
versely, if the mutation rate is low, longer k-mers can be
used, allowing the identification of additional genomic
variations, such as DNA tandem repeats, which can be rel-
evant for predicting the phenotype [58]. Extensive testing

http://github.com/aldro61/kover


Drouin et al. BMC Genomics  (2016) 17:754 Page 11 of 15

has shown that k = 31 appears to be optimal for bacterial
genome assembly [57] and recent studies have employed
it for reference-free bacterial genome comparisons
[19, 20]. Hence, this value was used in the current
study.
The second method is better suited for contexts where

no prior knowledge is available. It consists of considering k
as a hyperparameter of the learning algorithm and setting
its value by cross-validation. In this case, the algorithm
is trained using various values of k and the best value is
selected based on the cross-validation score. This process
is more computationally intensive, since the algorithm
needs to be trained multiple times. However, it ensures
that the k-mer length is selected based on the evidence of
a good generalization performance.
In this study, both approaches were compared and

shown to yield similar results. Indeed, no significant vari-
ation in accuracy was observed for the models obtained
with k=31 and with k selected from {15, 21, 31, 51, 71, 91}
by cross-validation (Additional file 1: Appendix 3). This
corroborates that k-mers of length 31 are well-suited for
bacterial genome comparisons. Moreover, it indicates that
cross-validation can recover a good k-mer length in the
absence of prior knowledge.

Applying the set covering machine to genomes
We represent each genome by the presence or absence
of each possible k-mer. There are 4k possible k-mers
and hence, for k = 31, we consider 431 > 4 · 1018
k-mers. Let K be the set of all, possibly overlapping,
k-mers present in at least one genome of the training
set S . Observe that K omits k-mers that are absent in
S and thus non-discriminatory, which allows the SCM
to efficiently work in this enormous feature space. Then,
for each genome x, let φ(x) ∈ {0, 1}|K| be a |K| dimen-
sional vector, such that its component φi(x) = 1 if the i-th
k-mer of K is present in x and 0 otherwise. An example
of this representation is given in Fig. 5. We consider two

types of boolean-valued rules: presence rules and absence
rules, which rely on the vectors φ(x) to determine their
outcome. For each k-mer ki ∈ K, we define a presence
rule as pki(φ(x)) def= I[φi(x) = 1] and an absence rule
as aki(φ(x)) def= I[φi(x) = 0], where I[ a]= 1 if a is
true and I[ a]= 0 otherwise. The SCM, which is detailed
in Additional file 1: Appendix 1, can then be applied by
using

{
(φ(x1), y1), . . . ,φ(xm), ym)

}
as the set S of learn-

ing examples and by using the set of presence/absence
rules defined above as the set R of boolean-valued rules.
This yields a phenotypic model which explicitly highlights
the importance of a small set of k-mers. In addition, this
model has a form which is simple to interpret, since its
predictions are the result of a simple logical operation.

Tiebreaker function
At each iteration of the SCM algorithm [16], the rules
are assigned a utility score based on their ability to
classify the examples for which the outcome of the
model is not settled. The number of such examples
decreases at each iteration. Consequently, it is increas-
ingly likely that many rules have an equal utility score.
This phenomenon is accentuated when considering many
more rules than learning examples, which is the case of
biomarker discovery. We therefore extend the algorithm
by introducing a tiebreaker function for rules of equal
utility. The tiebreaker consists in selecting the rule that
best classifies all the learning examples, i.e., the one with
the smallest empirical error rate. This simple strategy
favors rules that are more likely to be associated with the
phenotype.

Exploiting equivalent rules
When applied to genomic data, the tiebreaker does not
always identify a single best rule. This is a consequence of
the inherent correlation that exists between k-mers that
occur simultaneously in the genome, such as k-mers that
overlap or that are nearby in the genomic structure. The

Fig. 5 The k-mer representation: An example of the k-mer representation. Given the set of observed k-mersK and a genome x, the corresponding
vector representation is given by φ(x)
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rules that the tiebreaker cannot distinguish are deemed
equivalent. Our goal being to obtain concise models, only
one of these rules is included in the model and used
for prediction. This rule is selected randomly, but other
strategies could be applied. As it has been demonstrated
in the results, these rules provide a unique approach for
deciphering, de novo, new biological mechanisms without
the need for prior information. Indeed, the set of k-mers
targeted by these rules can be analyzed to draw conclu-
sions on the type of genomic variation that was identified
by the algorithm, e.g., point mutation, indel or structural
variation.

Measuring the importance of rules
We propose a measure of importance for the rules in
a conjunction or disjunction model. Taking rule impor-
tance into consideration can facilitate the interpretation
of the model. Importance should be measured propor-
tionally to the impact of each rule on the predictions of
the model. Observe that for any example x, a conjunction
model predicts h(x) = 0 if at least one of its rules returns
0. Thus, when a rule returns 0, it directly contributes to
the outcome of the model. Moreover, a conjunctionmodel
predicts h(x) = 1 if and only if exactly all of its rules return
1. Hence, in this case, all the rules contribute equally to the
prediction and thus, we do not need to consider this case
in the measure of importance. The importance of a rule r
in a conjunction model is therefore given by:

I∧(r) def=
∑

(x,y)∈S I[ r(x) = 0 ∧ h(x) = 0]
∑

(x,y)∈S I[ h(x) = 0]
, (3)

where r(x) is the outcome of rule r on example x. In con-
trast, a disjunction model predicts h(x) = 1 if at least one
of its rules return 1. Moreover, it predicts h(x) = 0 if and
only if exactly all of its rules returns 0. The importance of
a rule in a disjunction model is thus given by:

I∨(r) def=
∑

(x,y)∈S I[ r(x) = 1 ∧ h(x) = 1]
∑

(x,y)∈S I[ h(x) = 1]
. (4)

An upper bound on the error rate
When the number of learning examples is much smaller
than the number of features, many machine learning
algorithms tend to overfit the training data and thus,
have a poor generalization performance [13]. Genomic
biomarker discovery fits precisely in this regime. Using
sample-compression theory [59–61], we obtained an
upper bound on the error rate, R(h), of any model, h,
learned using our proposed approach. Interestingly, this
bound indicates that we are not in a setting where the
SCM is prone to overfitting, even if the number of features
is much larger than the number of example.

Formally, for any distributionD, with probability at least
1 − δ, over all datasets S drawn according to Dm, we have
that all models h have R(h) ≤ ε, where

ε = 1 − exp
( −1
m − mZ − r

[
ln

(
m
mZ

)

+ ln
(
m − mZ

r

)
+ |h| · ln(2 · |Z|)

+ ln
(

π6(|h| + 1)2(r + 1)2(mZ + 1)2

216 · δ

)])
,

(5)

where m is the number of learning examples, |h| is the
number of rules in the model, Z is a set containing
mZ ≤ |h| learning examples (genomes) in which each k-
mer in the model can be found, |Z| is the total number of
nucleotides in Z and r is the number of prediction errors
made by h on S \ Z . The steps required to obtain this
bound are detailed in Additional file 1: Appendix 4.1.
This theoretical result guarantees that our method will

achieve good generalization, regardless of the number
of possible features under consideration (4k), provided
that we obtain a sparse model (small |h|) that makes few
errors on the training set (small r). Hence, the occurrence
of overfitting is not influenced by the immensity of the
feature space under consideration. This is theoretical evi-
dence that the SCM is a method of choice for genomic
biomarker discovery studies. Moreover, this is reflected
in our empirical results, which indicate that using various
k-mer lengths, and thus feature spaces of various sizes,
does not significantly affect the accuracy of the obtained
models (p = 0.551) (Additional file 1: Appendix 3).
This result is counter-intuitive with respect to classi-

cal machine learning theory and highlights the benefits of
using sample-compression theory to analyze the behavior
of learning algorithms.
Finally, following the idea of Marchand and Shawe-

Taylor [16], we attempted to use the bound value as a sub-
stitute for 5-fold cross-validation. In this case, the bound
value was used to determine the best combination of
hyperparameter values (Additional file 1: Appendix 4.2).
This led to a sixfold decrease in the number of times the
SCM had to be trained and yielded sparser models (p =
0.014) with similar accuracies (p = 0.463).

Efficient implementation
The large size of genomic datasets tends to surpass the
memory resources of modern computers. Hence, there is
a need for algorithms that can process such datasets with-
out solely relying on the computer’s memory. Out-of-core
algorithms achieve this by making efficient use of exter-
nal storage, such as file systems. Along with this work, we
propose Kover, an out-of-core implementation of the Set
Covering Machine tailored for presence/absence rules of
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k-mers. Kover implements all the algorithmic extensions
proposed in this work. It makes use of the HDF5 library
[62] to efficiently store the data and process it in blocks.
Moreover, it exploits atomic CPU instructions to acceler-
ate computations. The details are provided in Additional
file 1: Appendix 5. Kover is implemented in the Python
and C programming languages, is open-source software
and is available free of charge.

Future work
The proposed method is currently limited to the presence
or absence of k-mers. This binary representation leads
to desirable algorithmic properties and allows the use of
highly efficient atomic CPU instructions in the implemen-
tation. Consequently, the proposed method scales linearly
with the number of k-mers and genomes, something that
would not be possible if k-mer frequencies were consid-
ered. In future work, we will explore ways to incorporate
k-mer frequencies, while preserving the scalability of our
method. This new type of model will allow the detection
of k-mers at multiple genomic loci, which could prove
important for modeling phenotypes that are affected by
structural variations, such as copy number variations.
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