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Abstract

Background: Proper cell models for breast cancer primary tumors have long been the focal point in the cancer’s
research. The genomic comparison between cell lines and tumors can investigate the similarity and dissimilarity
and help to select right cell model to mimic tumor tissues to properly evaluate the drug reaction in vitro. In this
paper, a comprehensive comparison in copy number variation (CNV), mutation, mMRNA expression and protein
expression between 68 breast cancer cell lines and 1375 primary breast tumors is conducted and presented.

Results: Using whole genome expression arrays, strong correlations were observed between cells and tumors.
PAM50 gene expression differentiated them into four major breast cancer subtypes: Luminal A and B, HER2amp,
and Basal-like in both cells and tumors partially. Genomic CNVs patterns were observed between tumors and cells
across chromosomes in general. High C>T and C > G trans-version rates were observed in both cells and tumors,
while the cells had slightly higher somatic mutation rates than tumors. Clustering analysis on protein expression data
can reasonably recover the breast cancer subtypes in cell lines and tumors. Although the drug-targeted proteins ER/PR
and interesting mTOR/GSK3/TS2/PDK1/ER_P118 cluster had shown the consistent patterns between cells and tumor,
low protein-based correlations were observed between cells and tumors. The expression consistency of mRNA verse
protein between cell line and tumors reaches 0.7076. These important drug targets in breast cancer, ESR1, PGR, HER2,
EGFR and AR have a high similarity in mRNA and protein variation in both tumors and cell lines. GATA3 and RP56KBI1
are two promising drug targets for breast cancer. A total score developed from the four correlations among four
molecular profiles suggests that cell lines, BT483, T47D and MDAMB453 have the highest similarity with tumors.

Conclusions: The integrated data from across these multiple platforms demonstrates the existence of the similarity
and dissimilarity of molecular features between breast cancer tumors and cell lines. The cell lines only mirror some but
not all of the molecular properties of primary tumors. The study results add more evidence in selecting cell line models
for breast cancer research.
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Background

According to a recent World Health Organization report,
breast cancer is the second most common type of cancer.
Each year there are about 2300 new cases of breast cancer
in men and 230,000 new cases in women in the U.S. [1].
While age and gender are two primary demographic risk
factors in breast cancer, about 5-10 % of breast cancer
risk is attributed to hereditary gene mutations in BRCA1,
BRCA2 and TP53 [2]. Breast cancer is a complex disease.
Its heterogeneous nature has been classified by its mo-
lecular characteristics. The protein expression status of
estrogen receptor alpha (ER), progesterone receptor (PR),
human epidermal growth factor receptor-2 (HER2) decide
the group of breast cancers. It can be subtyped as Luminal
A (ER+/PR+, HER2+), Luminal B (ER+/PR+, HER2-),
HER2amp (HER2 positive) and Basal-like/triple negative
(ER-,PR-, HER2-) [3, 4]. The Basal-like patients are corre-
lated with biologically aggressive disease and often have a
poor prognosis [3]. In Luminal A and Luminal B subtypes,
ER was identified as the therapeutic target, and its tar-
geted hormone therapies (such as tamoxifen and letrazole)
have been well established. In HER2 amplification group,
trasuszumab is the candidate drug. However, basal-like
triple negative tumors still do not have recognizable ther-
apies. The target identification and its subtype classifica-
tion is an important aspect for therapy development in
breast cancer [5, 6].

Cell lines, originated from human tumors, have historic-
ally acted as the primary experimental model to investi-
gate the cancer biology and molecular pharmacology.
Parallel massive drug screening on these cancer cells
characterize the diverse cancer cell reactions to drugs by
genomic features. As a salient example, the Cancer Cell
Line Encyclopedia (CCLE) project conducts a detailed
genetic characterization of a large panel of 997 human
cancer cell lines in DNA copy number, mRNA expression
and mutation [7]. Together with the drug screening data,
CCLE becomes a powerful resource for the drug and
target discovery researches.

Breast cancer is heterogeneous in nature. Cell lines study
is only an interpretation from a context of artifacts intro-
duced by selection and establishment in vitro, and there
exists large differences between cancer cell lines and tissue
samples especially in its molecular genome [8, 9]. Selecting
the right cells model to mimic tumor tissues helps to evalu-
ate proper drug reactions in tumors in vitro [10, 11]. Gene-
expression profiling has become an important tool to
characterize both the similarity and dissimilarity between
cell lines and tumors. A recent work by Ross DT [12] dem-
onstrated the distinctive gene expression signature in breast
cancer tissue: basal, luminal epithelial cell signature, as well
as mesenchymal/stromal. Lacroix M [13] valuated some
widely used breast cancer cell lines as breast tumor models
by a comparative genetic expression features. Besides gene
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expression, CNV has gradually been recognized as import-
ant due to features in predicting cancer progression and
recurrence. Jessica Kao et al. [14] compared the gene ex-
pression profiles and CNVs of breast cancer cells and
tumor tissues to define relevant cell line models. Both
Fridlyand et al. [10] and Richard M. et al. [15] conducted
similar analyses, in which the similarity was further investi-
gated within the breast cancer subtypes. Nevertheless, these
researches provide important information for understand-
ing a molecular mechanism from only one aspect of the
breast cancer genome, such as mRNA or DNA or protein,
but not both. No one has yet attempted to investigate the
correlation between cell lines and tumor tissues from all
CNV, mutation, gene expression and protein expression
between and within breast cancer subtypes systematically.

The Cancer Genome Atlas (TCGA) [15] aims to dis-
cover major cancer-causing genomic alterations. It publicly
provides 1098 breast tumor samples with mRNA expres-
sion profiling, DNA exome parallel sequencing, CNV, and
protein expression. Because of this valuable data, a number
of important breast cancer genes and pathways were de-
tected systematically during the past 3 years [16-18].
However, systematic comparisons between TCGA breast
tumor samples and breast cell line data, such as Cancer
Cell Line Encyclopedia (CCLE), have not yet been con-
ducted. The primary innovation of this comparison is that,
for the first time, four layers of genomic data: CNV, muta-
tion, mRNA expression and protein expression, were in-
vestigated to seek the similarity or dissimilarity between
breast cancer cells and tumors. Secondly, because of better
sensitivity and broader dynamic range of sequencing tech-
nology comparing to the array platforms, genomic data
was better captured in TCGA and CCLE by the platform
data comparison. In this paper, a comprehensive compari-
son in CNV, mutation, mRNA expression and protein
expression between CCLE breast cancer cell lines and
TCGA primary breast tumors is presented separately. At
the end, a total score that integrates four genomic features
will be defined to investigate the overall similarity between
breast cancer cell lines and its tumor tissues.

Results

Sixty-eight breast cancer cell lines were extracted from
CCLE [7] and literature [19]. One thousand seven hundred
five breast cancer tumor samples were obtained from
TCGA and Gene Expression Omnibus (GEO). All of the
datasets are listed in Table 1. Different subsets of samples
were assayed on four different level platforms, including
Affymetrix HU133 and Agilent G4502A_07_3 for mRNA
expression microarrays irrespectively, Affymetrix 6.0 single
nucleotide polymorphism (SNP) arrays for copy number
variation, whole-exome sequencing in TCGA and hybrid
capture sequencing 1651 genes in CCLE for mutation ana-
lysis. Reverse-phase protein lysate microarrays (RPPAs) are
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Table 1 Four molecular profiles datasets for tumor
lines comparison in breast cancer

and cell

Data types Sources Platforms Samples
size
Copy number TCGA,CCLE  Affymatrix SNP 6.0 1033; 59
variation
Mutation TCGA,CCLE  Illumina GAlIx 967, 51
(Exome Sequencing)
Gene expression TCGA; GEO;  AgilentG4502A_07_3  530; 279; 58
CCLE (TCGA); Affymatrix

HU133 Plus 2.0

(GEO; CCLE)
Protein TCGA; CCLE  RPPA 197, 38

used to test basal phosphorylation and protein abundance
in TCGA tumors and cell lines. Please note that not all
samples were characterized on each platform. Different
subsets of tumors and cell lines were analyzed in each plat-
form (Additional file 1: Tables S1 and S2). Each one of the
four platform data analyses focused on the overlapping
genes between tumors and cell lines, and the overall simi-
larity analysis by using all four platforms was conducted
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afterward. Figure 1 describes the overall analysis process
between cell lines and tumors in breast cancer.

Gene expression profiles comparison between breast cancer
cell lines and tumors

PAM50 (Prediction Analysis for Microarrays) [20] is
one of the most common genetic tests for breast cancer
subtyping. The PAMS50 was designed as a RT-qPCR 50-
gene expression signature. It has been acknowledged as
a prognostic gene signature assay by an authoritative
organization, National Comprehensive Cancer Network
(NCCN) (http://www.nccn.org/), in year 2015. Due to
this, many breast tumor and cell line samples lacked of
ER, PR, and HER?2 status for breast cancer treatment
classifications. As for the missing information of HER2
status, it has 182 in 1096 TCGA tumors and 15 in 68
CCLE cell lines. These samples are classified as sub-
types of Luminal A, Luminal B, HER2amp, and Basal-
like using the PAMS50 signature. On the other hand, the
RT-qPCR and mRNA-based PAM50 ER/PR/HER2 clas-
sification results are compared. Figure 2 displays the
PAMS50 gene expression signature predicted subtypes of
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Fig. 1 The whole analysis process between cell lines and tumors in breast cancer using 4 genomic profiles. Sixty eight cell lines and 1375 tumors
are compared in gene expression, copy number variation (CNV), mutation and protein across 10 aspects. A score that integrated four genomic
features was used to evaluate the overall similarity of tumors and cell lines



http://www.nccn.org/

The Author(s) BMC Genomics 2016, 17(Suppl 7):525 Page 284 of 325

a 530 breast invasive carcinoma (BRCA) gene expression of TCGA by PAM50  gg, pr, uer:

D e ————— Status Types
3 0 3 .Positive . Negative

PAMS0
Subtypes

B Luminal A
Luminal B
I Her2amp

Basal-Like

I Other

56 Cell lines gene expression of CCLE by PAMS50 ER, PR, HER2

aakilien Status Types

— T Cell Lines || Positive . Negative [l Other

PAMS0
Subtypes

YMBI
= . Luminal A
Luminal B
I Her2amp
Basal-Like

Gty 0 CNEENCEE NNEER ¢ EONN  CENEERCEE  EOEDEN

o R
z =1

2 zd24
o Soga
s} z=>

ACTR3B
PHGDH
SLC39A6
FOXA1]
MMP11
TMEMA458
HER2

PAMS50 array

Fig. 2 Gene expression PAM50-breast cancer subtype classifications of cell lines and primary tumors for ER, PR, Her2 status. a The PAM50 subtype
classification of 530 invasive breast cancer samples in TCGA, which uses AgilentG4502A_07_3 Array platform. b The PAM50 subtype classification
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cell lines and tumors in breast cancer, and the observed
ER, PR, HER? status. Eight hundred seventy five TCGA
samples have information of ER/PR/HER2 status in
1096 tumors, while 53 cell lines in 68 CCLE samples
have those. Figure 2a shows the PAM50 subtypes of
530 invasive breast cancer patients in TCGA using
AgilentG4502A_07_3 array platform. Comparing to the
standard ER, PR, and HER2 status for classification of
breast carcinoma by using immunohistochemistry stain-
ing (Table 2), 341 tumors with PAM50 classification are in
concordance with the standard classification in 514 tu-
mors, where the normal-like patients (other) are excluded.
The concordance rate is 66.3 %. Figure 2b shows the
breast cancer subtype classification of 56 breast cancer cell
lines in CCLE using 50 genes PAM analysis. Gene expres-
sion profile in CCLE was conducted in Affymetrix Hul33
Plus2.0 Array platform. Thirty-four cell lines with known
classification are in concordance with PAM50 classifica-
tion, and the concordance rate is 60.71 % (34/56). Some
cell lines without ER/PR/HER2 status, such as KPLI,
ZR751, HS742T, HS60T, HS281T, HS343T, HS274, re-
ceived ER/PR/HER2 imputation from the PAM50 predic-
tion. In the follow-up data analysis, we kept the known
classification and imputed PAMS50 for both cell lines and
tumor samples. Additional file 1: Tables S1 and S2 list the
classification results for cell lines and tumors based on
PAM50 gene expression. Interestingly, we observed that
the gene expression pattern of PAM50 between cell lines
and tumors are similarity, but some genes in cell lines are
not as highly expressed as in tumors, such as gene FOXA1
and ESR1.

In order to compare the similarity of the whole gen-
ome expression profiles between primary breast cancer
tumors and breast cancer cells (i.e. CCLE samples), the
breast cancer tumors in Gene Expression Omnibus
(GEO) GSE41998 (279 tumors) were selected because
they shared the same Affymetrics gene expression plat-
form (Additional file 1: Table S3). Figure 3 shows the
correlation distributions of whole genome expression be-
tween breast cancer cell lines and primary tumors. The
56 box plots of the correlations illustrate the similarity
between 56 cell lines and 279 tumors. The correlation
coefficient is around 0.6—0.8 between cell lines and
tumors. These results show that cell lines keep a high

Table 2 Molecular classification of breast carcinoma
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similarity to tumors in whole gene expression profile in
breast cancer even though in different subtypes.

Copy number variations comparison between CCLE breast
cancer cell lines and TCGA breast cancer tumors

CNVs are compared between CCLE breast cancer cell lines
and TCGA breast cancer primary tumors in various breast
cancer subtypes. Figure 4 displays copy number distribution
for both tumors and cell lines across 24 chromosomes. In
Fig. 4a, chromosome 1 and 8 have the highest copy number
amplification frequencies while chromosomes 13 and 16
have the most copy number deletion regions in both cell
lines and tumor tissues. Figure 4b displays the significant
genomic alterations in breast cancer tumors and cell lines.
MYC, PVT1, RAD21 and TRPSI are top four copy num-
ber amplified genes, while MAP2K4, ANKRD11, APRT,
CSMD1 and ZFPML1 are top five genes with copy number
deletions. Some important cancer genes, such as PIK3CA,
BRCA1, BRCA2, and ERBB2, show a mixture of amplifica-
tions and deletions.

The CNVs between cell lines and tumor samples of breast
cancer are compared in sample segmentation mean and
density calculation of copy number Fraction Genome Al-
tered (FGA). Its calculation is presented in the method sec-
tion. Figure 5a demonstrates that cell lines have more copy
number deletions than tumors. In particular, HCC1599,
MDA-MB-361, MDA-MB-157, and UACC893 are the top 4
CNV deletions cell lines. In Fig. 5b, it is evident that the fre-
quency of copy number alteration are significantly higher in
cell lines than in tumors. The mean cell line FGA is wider
than that of tumor FGA. In order to evaluate the similarity
between tumors and cell lines, the Pearson correlations for
the top 10 % CNV in 2094 genes are calculated between 59
cell lines and 1049 tumors. Fig. 5¢ shows the CNV-based
correlation coefficient distribution between cell lines and
tumors in different breast cancer subtypes. We observe that
cell lines HCC2218, MDA-MB-175-VII, ZR-75-30, BT-483,
HCC1569 and MDA-MB-453 are more similar to tumors in
CNV than the other cancer cells. Their correlation coeffi-
cients are larger than 0.55 (p <107'%). On the other hand,
HMEL, Hs 578 T, Hs 274.T, Hs 606.T, Hs 281.T, Hs 739.T,
CAL-51, Hs 343.T and Hs 742.T had negative correlation
coefficients with tumors samples (p < 1072).

Classification Immunoprofile

Other characteristics

Luminal A
Luminal B
HER2-enrichment
Basal-Like

ER-/PR-/HER2+; ER-/PR-/HER2+; ER-/PR-/HER2+
ER-/PR-/HER2-

ER+/PR+/HER2-; ER+/PR-/HER2-; ER-/PR+/HER2-,
ER+/PR+/HER2+; ER+/PR-/HER2+; ER-/PR+/HER2+

Low tumor grade, Low expression of proliferation marker Ki67
High tumor grade, High expression of proliferation marker Ki67
High tumor grade, High expression of proliferation marker Ki67

High tumor grade, High expression of proliferation marker Ki67
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Mutation analysis in cell lines and tumors

CCLE sequenced only 1347 cancer genes in breast cancer,
while TCGA has whole exome sequencing. Our comparative
analysis is only based on those 1347 overlapping genes and
their somatic mutations. In CCLE, in order to remove back-
ground germline mutation, mutations reported in the 1000
Genome Project and dbSNP were filtered out using ANNO-
VAR tool, including the gene-based single nucleotide vari-
ants (SN'Vs) and insertions/deletions [21].

Figure 6 shows the comparisons of somatic mutations
between cell lines and tumors across four aspects: somatic
mutation frequency, somatic mutation density, average
mutation sites distribution per million bases (Mb) in four
subtypes, as well as mutation correlation variation between
cell lines and tumors. Figure 6a illustrates the mutation
frequency per Mb in TCGA and CCLE vs CNV fraction
genome alteration. A subset of cell lines with hyper-
mutated genes is revealed, such as MDAMB361, BT474,
MDAMB453 and HCC1569. These cells of breast cancer
show moderately higher mutation frequency than the tu-
mors. Figure 6b shows the somatic mutation density. The
median somatic mutational frequency for tumors in
TCGA is around 13, while cell lines in CCLE is around 25.
Figure 6¢ shows the somatic mutation distribution among
four subtypes of breast cancer in TCGA and CCLE, where
y-axis is the mutation rate per million bases and x-axis is
mutation gene numbers. The wider the line is, the more
the gene mutation number of samples is. It suggests that
the gene mutation number in Luminal B subtype from
TCGA is the largest. At the same time, its mutation rate is
also higher than the other subtypes. Tumor and cell lines
with Luminal A subtype have the lowest mutation num-
bers and mutation rate. Her2 subtype group in cell lines
has a larger mutation number than the other subtypes.
Figure 6d shows the 1347 somatic mutation genes-based
correlation coefficient distributions between cell lines and

tumors in different breast cancer subtypes. These genes
were firstly denoted as 0 or 1 to illustrate non-mutation or
mutation. The correlation is distributed in the range of
[-0.1, 0.43]; Additional file 2: Table S7 shows the detail
correlation coefficient between cell lines and tumors in
four levels for gene expression, mutation, copy number
variation and protein irrespectively. The top four cell lines
that have the highest mutational correlation with tumors
are: UACC893, JIMT1, EFM19 and HCC1954. The highest
consistency coefficient is 0.4258.

Thirty-one genes, reported in recent TCGA nature and
science papers [16—-18, 22-28], were selected as important
driver mutation genes in the breast cancer. These genes
were further investigated across 51 breast cancer cell lines.
Figure 7 shows a landscape of these functional driver
mutations in these cell lines of breast cancer. According to
the mutation per megabyte base calculation, HCC1569,
MDAMB361, and BT474 are hyper-mutated cell lines,
while HS 281 T, HS 343 T, and ZR 751 are lowly mutated
cell lines. The popular cell lines MCF7 and MDAMB231
have median mutation rates. The top mutated genes in
breast cancer tumors are TP53 (31 %) and PIK3CA (33 %).
TP53 has copy number deletion in almost all cell lines,
and has mixed somatic mutation. CNV has a dominant
role in PIK3CA across 19 cell lines with mixed somatic
mutations. Genome integrity pathway genes, ATM, BAP1,
BRCA2, TTN and TP53, almost all have strong gene copy
number amplification in cell lines mixed with somatic mu-
tation, except for TTN. Similar data has been observed in
genes MAP2K4 and MAP3K1 on MAPK signaling path-
way. Genes PRKCA, PTGS2 and ZNF217 have many copy
number deletions. The important drug biomarkers BRAF
and ERBB2 (HER2) are relatively conservative, which do
not have much somatic mutations.

A comparison of mutation spectra across four subtypes
(Fig. 8) reveals that the mutation transition rates of cell
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lines and tumors are similar within different subtypes. On  version. Figure 8b shows the correlation of six mutation
the other hand, it can be observed that breast cancer con-  categories in tumors and cell lines. It suggests that C>T
tains larger C>T and C> G trans-versions in subtypes and C> G trans-version possess the highest concordance
HER2amp and Luminal B. HER2amp has the highest C>T  between tumors and cell lines. Basal-Like subtypes between
trans-version rate. Luminal A has the highest A > C trans-  cells and tumor tissue are consistent in A>T and C>G
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transition, while only A >G trans-version showed the
correlation between tumors and cell lines in subtypes of
Luminal B.

Comparison analysis of proteins phosphorylation

expression between cell lines and tumors in breast cancer
Quantitative expression of 50 cancer-related proteins,
phosphorylated-proteins by RPPA, were measured on 197
breast tumors and 38 cell lines. Pearson Correlation ana-
lysis and unsupervised hierarchical clustering analyses
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were conducted between cell lines and tumors (Fig. 9).
The correlations in Fig. 9a suggest that all four cell line
subtypes possess different correlation distributions with
tumor samples. Luminal B cells have the highest corre-
lations, while basal cells have the lowest correlations
and also show the largest variations. Figure 9d illus-
trated hierarchy distance among cell lines. It suggests
that the same subtype cell lines usually are closely clus-
tered. Protein expressions for ER and PR have high
concordance, and they are reversely correlated with
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b Mutation rate density
O os 'I
|
| 1 "
Ay | L ICell lines
| |~ Tumors
> |
£ |
=
8 ooz
|
ooy
|
o.oo L _. S —

Average Mutation Rate per‘Mb

d  Mutation correlation coefficient of tumors and cell lines
A

0.4
Subtypes
- Basal-like
. £+ HER2amp
. . £+ Luminal A
0.3 e _
" o1 Luminal B
g les .
.
S .
= 14 *
= *
2 :‘
£ 0201
2 It
aﬂ:) *
S Thle 4
g iH.1
2 *lle s
g 01 $
=}
o <
-
4*H
11 O
4 M1
+

0.0

Coveolin.1 in all subtypes, especially in the Basal-Like
subtype. A similar variation phenomena was observed
in several other groups’ of proteins in different sub-
types: (EGFA, CCNBI1), (4EBP1, MEKI1), (mTOR,
GSK3), and (GATA3, p70s6kp389, AKT). Correlations
between cell lines and tumors are further illustrated in
Fig. 9c. The correlation ranges from -0.61 to 0.84.
Some cell lines, T47D, BT483, and AU565, are the top
three cell lines that have closer correlations to tumors
in protein level, while the most popular breast cancer

cell line, MCF7, is somewhere in the middle. The exact
correlations between cell lines and tumors are presented
in Additional file 1: Table S6 based on 50 phosphor-
proteins.

Figure 10 shows the hierarchical distance between cell
lines and tumors based on the 50 phosphorylated-
proteins. The cell lines and tumors are assembled to-
gether by these proteins. It clearly classifies these breast
cancer samples into four distinctive subtypes. Interest-
ingly, the Basal-like cell lines MDAMB436, SUM139PT
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Fig. 7 The landscape of functional driver mutations in cell lines of breast cancer. Upper rows show the gene mutation frequency and mutation rate per
million bases (Mb) in 967 tumors. Left column shows the popularity of breast cancer cell lines denoted by the publication citation number in Pubmed
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and HCC2185 are similar to protein features of Luminal
A subtypes in tumors. Another discovery is that the
Basal-like cell line MDAMBA453 is close to Luminal B tu-
mors. All details of the result is referred to in Additional
file 2: Table S7, protein RPPA correlation coefficient be-
tween cell lines and tumors.

Correlation analysis of gene expression verse
phosphorylated protein expression between cell lines and
tumors in breast cancer

The correlations of the gene mRNA versus its phosphory-
lated protein was calculated in cell lines and tumors irre-
spectively. The average correlation coefficient (Fig. 11) of

38 genes’ mRNA with their 50 phosphorylated proteins
concentration ranges from -0.3 to 0.9 both in cell lines
and tumors. Nearly 60% of the genes had a positive correl-
ation between mRNA and protein. ESR1 has the highest
correlation coefficient 7—0.89 in 173 TCGA tumors, and r
=0.68 in 29 CCLE cell lines of breast cancer between
mRNA and protein. Drug-target genes, such as PGR,
HER2, EGFR and AR, all have high correlation (r> 0.5, p
<0.01) between mRNA and protein both in TCGA tu-
mors and cell lines. Two important oncogenes, GATA3
and RP56KB1, both have high mRNA- protein correlation.
The correlation for GATA3 is 0.79 in cell lines and 0.81 in
tumors, while the correlation for RP56KB1 is 0.92 in cell
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Fig. 8 Mutation spectra and contexts across 4 subtypes of breast cancer. a Mutation spectrum of six transition (Ti) and transversion (Tv) categories for
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lines and 0.78 in tumors. The small figure in Fig. 11a
shows the linear correlation of the gene-protein be-
tween cell lines and tumors, which the linear correl-
ation coefficient is 0.7076 (p<0.01). This strong
signal indicates the consistency of gene expression
and protein expression in both cell line and tumor.
The potential discrepancy could be due to the stabil-
ity of mRNA, the degradation of protein, the time
dependent and site dependent nature of protein phos-
phorylation, and etc. The interesting result in the
Fig. 11b illustrates the gene expression amount are ir-
relevant to the correlation of mRNA-protein. As a
matter of fact, the highest expressed gene RP56 has a
negative correlation with mRNA-protein correlations
in both cell lines and tumors.

What kinds of cell lines are close to tumors?

Gene expression profiles and proteins phosphorylation
expressions of tumors and cell lines were compared to
further corroborate our observations made on the CNV
and mutation data. The correlations of four different
molecular profiles of all cell line and tumor pairs were
calculated (Fig. 12a). These four correlations differ
greatly from each other. Gene expression-based correl-
ation had the largest correlation, CNV correlation was
the next highest, mutation and protein expression corre-
lations were low. These four correlations were combined
into a total score as formula (2). Figure 12b shows the
ranked cell lines by their average total correlations with
the tumors. BT483, T47D, MDAMB453 are the true top
3 cell lines in breast cancer research.
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Discussion

Breast cancer is a highly complex disease. The subsets of
breast tumors show diverse patterns of gene expression,
CNV, mutation, and protein expression. A considerable
amount of knowledge on breast carcinomas have been

derived from in vivo and in vitro studies performed on
breast cancer cell lines. Whether breast cancer cells are
representative of the tumors remains debatable. In this
study, the comparisons between cell lines and primary tu-
mors from molecular profiles: gene expression, CNV,
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Fig. 11 The comparison between 38 genes mRNA expression and their phosphorylated proteins expression in tumors and cell lines. a The
correlation comparison of mRNA verse phosphorylated protein in cell lines and tumors. b The 38 gene expression average in 29 cell lines
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mutation, and protein expression, show that the cell lines
are similar to some but not all of the primary tumors.
Among them, gene expressions have the highest while the
mutation-based correlation was the lowest.

a) In gene expression-based clustering analysis, cell lines
possess similar clustering as with tumors using
PAMS50. At the same time, cell lines show stable
genomic and expression patterns, as well as high
correlation, with tumors in whole gene expression
profile.

b) From the mutation comparison between cell lines
and tumors, some common features were found: the
chromosome 1 and 8 regions show high frequency
copy number amplification, and chromosome 13 and
16 display high frequency deletions. Some significant
cancer-related genomic alterations: MYC, PVT1,
RAD21, TRPS1, CDH1, RB1, PIK3CA, MAP2K4,
and ANKRD11, are identified in both breast cancer
tumors and cell lines. The results were verified
partially in reference [10].

In the single point mutation comparison, the six trans-
version distribution modes of mutation spectrum

demonstrates the similarity between tumors and cell lines
in four breast cancer subtypes. High frequent C>T and
C> @G transitions are observed in both tumors and cell
lines, while few A > T happens; Basal-like tumors and cells
show the high concordance. These results were confirmed
by Philip J. et al. [22]. They suggested that the underlying
mutation mechanism is related to transcription-coupled
nucleotide excision repair (NER). NER removes bulky
DNA adducts that distort the DNA double helix and intro-
duces a strand bias for mutation. However, little is known
about the trans-version processes of mutation.

In analyzing the cancer landmark genes, gene PIK3CA
and TP53 in cell lines are the top 2 mutated genes that
tumors have [26]. In addition, Luminal A subtype in cell
lines possess hyper mutations in three genes GATAS3,
PIK3CA, and MAP3KI. HER2 subtype cell lines have
72 % and 39 % mutation rates for TP53 and PIK3CA,
respectively. In the recent report [26], similar results in
tumors were reported, in which Luminal A is dominated
with a high PIK3CA mutation frequency and Luminal B
had high PIK3CA and TP53 mutation frequency. HER2
cell lines have a high PIK3CA and TP53 mutations
frequency in company with HER2 amplification [26]. In
addition, important drug biomarkers, such as BRAF,
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ERBB2 (HER2), KRAS, have very low somatic mutation.
All these evidences suggest that the cancer cell lines have
very similar CNVs and gene mutations patterns as tumors.

On the other hand, cell lines have more genetic aberrations
than primary tumors. Amplification, deletion and mutation
are more frequent in the cell lines than in the tumors. This is
consistent with a similar study in ovarian cancer [8]. One po-
tential interpretation is that cell lines may have transformed
numerous passages over the period of cell culture time or get
contaminated with stromal cells [10]. Another interpretation
could be that the cell line is derived predominantly from
early-stage tumors or pleural effusions [10].

¢) In protein expression-based comparison, breast can-
cer subtype proteins ER, PR and HER2 have a high
consistence in cell lines and in tumors. RPPA can
identify breast cancer subtypes clearly and accurately
not only in cell lines but also in tumors according to
these protein statuses. RPPA is a sensitive and accur-
ate technology to evaluate protein expression and
activities. It helps the target identification, validation,
and drug discovery [29, 30]. Some cell lines, T47D,
BT483, and AU565, have much closer protein ex-
pression than the popular MCF7 cell does. On the
other hand, protein expression correlation between
cell lines and tumors in breast cancer vary greatly
ranging from -0.1 to 0.4, it is also true in the same
subtype cell lines and the variation is particularly
high investigated in the basal-like subtype. The
results were supported by Sorger et al. [31], who
investigated the immediate-early signaling that
regulates the AKT (AKT1/2/3) and ERK (MAPK1/3)
pathways in different breast cancer cell types. They
found that cell lines have diverse to ligand sensitivity
and signaling biochemistry. In addition, they found
that the basal-like cells have the largest variations in
responding to growth factors while HER2amp cell
lines have the least variations [31]. Basal-like breast
cancer is a highly heterogeneous group without
proper drug targets yet. Brian D. et al. investigated
the subtypes for basal-like breast cancer and preclin-
ical models for targeted therapy selection [5]. Ac-
cording to BRCA1, AR, PIK3CA and PTEN
mutations, drugs are selected in cell lines to predict
preclinical TNBC targeted therapies.

d) There are many complicated post-transcriptional
mechanisms in turning mRNAs into proteins.
According to correlation analyses between gene
expression and phosphorylated protein expression
in both cell lines and tumors, significant results
are found that important drug targets in breast
cancer, such as ESR1, PGR, HER2, EGFR and AR
show high correlated mRNA and protein levels.
High mRNA-protein correlation. Two oncogenes
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GATA3 and RP56KB1 with high consistency
correlation between mRNA and protein expression
become a promising potential drug targets. On
the other hand, the gene expression variation at
the mRNA level is not necessarily consistent with
its protein level, such as genes TP53, KDR,
DECAM]I, which has been well documented in
the literature [32, 33]. Most interestingly, the
mRNA-protein correlation patterns comparing cell
lines with primary tumors show a great deal of
consistency among 38 investigated genes. How-
ever, the gene expression amount is irrelevant to
the translation processing from mRNA to protein
directly.

e) In the whole score overall comparison, cell lines and
tumors show high gene expression-based correlations,
but the correlations in mutation and protein expression
level are low. The possible reason is that mutation data
is discrete, and mutation rate is low.

According to PubMed search builder (http://www.pub-
med.org) in year 2015, the number of citations for all
breast cancer cell lines at CCLE is sorted (see Fig. 7).
The most commonly studied cell lines are MCEF-7,
MDA-MB-231, MDA-MB-468 and SK-BR-3. They each
have more than 600 PubMed citations. However, the
correlation between these cell lines and tumors lies in
the middle according to a total score of four molecular
profile analyses. On the other hand, less popular cell
lines, such as BT483, T47D, MDAMB453, are in the top
3 for representing breast tumors.

f) Breast cancer subtypes in tumors and cell lines. The
breast cancer cell line classification provides a cell
modeling system to primary tumors. Our study
addresses the classification results for cell lines and
tumors based on PAM50 (Additional file 1: Table S1
and S2). Although some classification results are not
consistent with the known classification in cell lines
and tumors, the whole subtype’s concordance
reaches more than 60 %. Any cell line’s usage as a
tumor’s model depends upon its subtype’s
speculation. A hypothesis based on gene expression
will lead to different cell selection versus another
hypothesis based on mutation.

Conclusion

In this paper, a comprehensive comparison in CNV, muta-
tion, mRNA expression and protein expression between
CCLE breast cancer cell lines and TCGA primary breast
tumors is conducted and presented. The following are our
primary conclusion. (1) PAM50 gene expression differen-
tiated four major breast cancer subtypes, such as Luminal
A and B, HER2amp, and Basal-like, in both cells and
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tumors. Using whole genome expression arrays, strong
correlations are observed between cells and tumors. (2)
Consistent CNV patterns are observed between tumors
and cells across the chromosome. High C>T and C>G
trans-version rates are observed in both cell lines and tu-
mors, while cells have slightly higher somatic mutation
rates than tumors. (3) Although the ER/PR/HER2 show
the consistent patterns between cells and tumors, the
other proteins in the RPPA platforms do not. Clustering
analysis on protein expression data can reasonably recover
the breast cancer subtypes in both cells and tumors. How-
ever, low correlations were observed between cells and tu-
mors in phosphorylated proteins. (4) Nearly 50 % gene
expressions are not consistent with their protein levels
both in tumors and cell lines. The high and low of gene
expression is irrelevant to the translation processing from
mRNA to protein directly. Nevertheless, important drug
targets in breast cancer, such as ESR1, PGR, HER2, EGFR
and AR possess highly correlated in mRNA-protein ex-
pression both in tumors and cell lines. (5) A total similarity
score developed from the four correlations among four
molecular profiles suggests that cell lines, BT483, T47D
and MDAMB453 have the highest similarity with tumors.

Methods

Data collection

Four levels of molecular profiles: mRNA gene expression,
CNV, mutation, and protein expression, were retrieved
from TCGA, CCLE and GEO (Table 1). The study cohort
of breast cancer consists of 1375 patients and 68 cell lines.
Tumors data and annotations were downloaded from
TCGA data portal (https://gdc-portal.ncinih.gov/) with
tumor matched selections and level 3 data. DNA exome
sequencing data was available from 967 tumors. mRNA
expression by AgilentG4502A_07_3 platform test was
collected for 530 samples, while copy number alteration
was detected using Affymetrix 6.0 single nucleotide poly-
morphism array (SNP- array) in 1033 tumors, and protein
expression by RPPA in 197 tumors was obtained. The
total number of breast cancer cell lines in CCLE was 59
[7, 13]. DNA copy number data (59 cell lines), mutation
data (51 cell lines), mRNA expression data (56 cell lines)
and their annotations originate from CCLE websites
(http://www.broadinstitute.org/ccle). According to refer-
ence [26], 38 cell lines of RPPA data was downloaded. ER,
PR, and HER2 genes statuses in cell lines are found from
references [5, 10, 34—36]. To compare the mRNA expres-
sion values between cell lines and tumors of breast cancer,
the same platform datasets in tissue were downloaded
from the GEO data set (GSE41998). It consisted of 279
tumor samples [37] with the entity histopathology infor-
mation. Table 3 shows all of the cell lines samples annota-
tion and classification information which used in this
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paper. Additional file 1: Tables S1-S3 lists all samples
annotation of cell lines and patients in this paper.

Samples are classified as different subtypes

Breast cancer classification, in clinic, is measured according
to these features: histological type, tumor grade, lymph
node status and markers, such as oestrogen receptor (ER),
progesterone receptor (PR) and human epidermal growth
factor receptor 2 (HER2) [4, 6]. Breast cancer could be clas-
sified into at least four subtypes known as Luminal A, Lu-
minal B, HER2-enriched and Basal-like (triple negative,ITN),
according to molecular characteristics which are summa-
rized in Table 2.

PAMS50 (Prediction Analysis for Microarrays) test is a risk
model to identify the intrinsic subtypes in recent 5 years ac-
cording to 50 gene expressions, including gene ESR1(ERa),
PGR(PR) and ERBB2(HER2) [4]. This technique is based
on Nano-string counter technology [38, 39]. PAM50 ana-
lysis was performed in R following the instructions therein
[40]. Here, a threshold of 4.0 was chosen based on the false
discovery rate, resulted in the 50-gene classifier. For the
sake of missing data imputation, the status of ER, PR,
HER?2 and the PAM50 subtype calls were regarded as the
subtype’s classification reference of breast cancer in this
paper. If the sample status of ER, PR, and HER2 is known,
samples classification of breast carcinoma is referenced
to Table 2. Otherwise its subtype is assigned by mRNA
gene expression-based PAMS50 prediction, Additional
file 1: Tables S1 and S2 provide all the classification
information.

Data processing

mRNA expression analysis and clustering between cell lines
and tumors

All raw files of microarray mRNA expression, in the form
of ‘CEL files, were downloaded from GEO GSE36133 and
GSE41998. These raw data were normalized by the Affyme-
trix Microarray Suite 5.0 (MAS5.0) algorithm in accordance
with background adjustments, scaling, and aggregation to
remove non-biological elements of the signal. Common
22,267 probe sets, corresponding to 14,970 genes, are used
comparison analysis for cell line and tumors. All samples in
cell lines and tumors are divided into four subtypes group
based on ER, PR, HER2 status: luminal A, luminal B,
HER2-enrichment and Basal-like as the description before
had shown in Additional file 1: Tables S1 and S2. Mean
correlation value was obtained for each cell line and tumor
in R platform by Pearson correlation analysis. Hierarchy
clustering is analyzed between cell lines and tumors of
breast cancer in GENE-E software.

DNA copy number data analysis
A total copy number of changes of TCGA 1033 tumors
and CCLE 59 cell lines was detected using Affymetrix
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Cell line name

Hist subtypel

Source

PAMS50 mRNA

Our classification

AU565
BT-20
BT-474
BT-483
BT-549
CAL-120
CAL-148
CAL-51
CAL-85-1
CAMA-1
DU4475
EFM-19
EFM-192A
EVSA-T
HCC1143
HCC1187
HCC1395
HCC1419
HCC1428
HCC1500
HCC1569
HCC1599
HCC1806
HCC1937
HCC1954
HCC202
HCC2157
HCC2218
HCC38
HCC70
HDQ-P1
HMC-1-8
Hs 274.T
Hs 281.T
Hs 343.T
Hs 578 T
Hs 606.T
Hs 739.T
Hs 742.T
JIMT-1
KPL-1
MCF7
MDA-MB-134-VI
MDA-MB-157

- m ™m™m ™m™m ™m™m m ™m m m ™Tm m m Tm Tm m m m m m m mM m m m m m m m m m m m m m m m m m m m m m m M

ductal_carcinoma
ductal_carcinoma
ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

ductal_carcinoma
ductal_carcinoma
ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

metaplastic_carcinoma

ductal_carcinoma
ductal_carcinoma
ductal_carcinoma
ductal_carcinoma
ductal_carcinoma
ductal_carcinoma
ductal_carcinoma
ductal_carcinoma
ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

ductal_carcinoma

ATCC
ATCC
ATCC
ATCC
ATCC
DSMZ
DSMZ
DSMZ
DSMZ
ATCC
ATCC
DSMZ
DSMZ
DSMZ
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
DSMZ
HSRRB
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
ATCC
DSMZ
DSMZ
ATCC
ATCC
ATCC

Her2amp
Basal-like
Luminal B
Luminal A
Basal-like
Basal-like
Luminal B
Basal-like
Basal-like
Luminal B
Basal-like
Luminal B
Her2amp
NON
Basal-like
Basal-like
Basal-like
Her2amp
Luminal B
Luminal A
Basal-like
Basal-like
Basal-like
Basal-like
Her2amp
Her2amp
Basal-like
Luminal A
Basal-like
Basal-like
Basal-like
NON
Basal-like
Basal-like
Basal-like
Basal-like
Luminal A
Basal-like
Luminal A
Basal-like
Luminal A
Luminal A
Luminal A

Basal-like

Her2amp
Basal-like
Luminal B
Luminal A
Basal-like
Basal-like
Basal-like
Basal-like
Basal-like
Luminal A
Basal-like
Luminal A
Luminal B
Luminal B
Basal-like
Basal-like
Basal-like
Her2amp
Luminal A
Basal-like
Her2amp
Basal-like
Basal-like
Basal-like
Her2amp
Her2amp
Basal-like
Her2amp
Basal-like
Basal-like
Basal-like
Luminal A
Luminal B
Her2amp
Her2amp
Basal-like
Luminal B
Basal-like
Luminal A
Her2amp
Basal-like
Luminal A
Luminal A

Basal-like
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MDA-MB-175-VII F ductal_carcinoma ATCC
MDA-MB-231 F ATCC
MDA-MB-361 F ATCC
MDA-MB-415 F ATCC
MDA-MB-436 F ATCC
MDA-MB-453 F ATCC
MDA-MB-468 F ATCC
SK-BR-3 F ATCC
T-47D F ductal_carcinoma ATCC
UACC-812 F ductal_carcinoma ATCC
UACC-893 F ductal_carcinoma ATCC
YMB-1 F HSRRB
ZR-75-1 F ductal_carcinoma ATCC
ZR-75-30 F ductal_carcinoma ATCC
HCC2185

HMEL

HCC3153

ZR75B

600MPE

SUM1315MO2

SUM149PT

SUM159PT

SUM225CWN

LY2

+ - Luminal B Luminal A
- - Basal-like Basal-like
+ + + Luminal B Luminal B
+ - - Luminal B Luminal A
- - Basal-like Basal-like
- - - Luminal B Her2amp
- - - Basal-like Basal-like
- - + Her2amp Her2amp
+ + - Luminal B Luminal A
+ - + Her2amp Luminal B
- - + Her2amp Her2amp
+ - - Luminal B Luminal A
Luminal A Her2amp
+ + Her2amp Luminal A
- - - NON Basal-like
NON Basal-like
- - - NON Basal-like
+ - - NON Luminal A
+ - - NON Luminal A
- - NON Basal-like
- - - NON Basal-like
- - - NON Basal-like
- - + NON Her2amp
+ - - NON Luminal A

6.0 single nucleotide polymorphism array (SNP 6.0
array) across 28,918 genes. Copy number was measured
by a probe corresponding to a segment. They were then
inferred and normalized based upon specific linear cali-
bration curves. The circular binary segmentation (CBS)
algorithm was used to normalize the segmentations
(generally, log,(CN/2)) for further analysis. These seg-
mentations were used to identify focal amplification/de-
letions and arm-level gains.

Fraction genome altered calculation CNVs correspond
to relatively large regions of the genome that have been de-
leted and inserted. To quantitate the extent of the genomic
instability in each sample, we calculated the Fraction of Gen-
ome Altered (FGA, the fraction of genome lost and gained)
as formula (1). The equation represents that sum lengths of
all segments (L(i)) whose copy number (CN) segment is
above the set threshold (7) and divide by sum of lengths of
all segments (L(7)) [8]. Hence, the length of a segment having
value equal to or greater than a set threshold are added and
are divided by the sum of length of all segments.

FGA= Y L(i)/ L) (1)

|CNi|>T

Here, the threshold T is set to 0.2 for tumor samples
and 0.3 for CCLE cell line samples. The threshold values
are based on the average distribution density after sam-
ples CNV analysis. Cell lines always keep a copy number
hyper-mutation degree than tumors’.

Copy number correlation calculation With the help of
Bioconductor package called ‘CNTools’ [41], these seg-
ments are mapped to corresponding gene region across
28,918 genes for both TCGA data and CCLE data, seg-
ments file is converted into gene files,then is used for next
step correlation analysis. In order to reduce data contam-
ination, only select the top 10 % CNV in 2094 genes seg-
ments mean for cross-Pearson’s-correlations calculation
between 58 cell lines and 1049 tumors.

DNA exome mutation analysis
The mutation data was obtained directly from DNA se-
quence mutation annotation format (.maf) files where
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[lumina GA platform is used to test. In TCGA, 997 breast
invasive cancer Level 2 somatic data is bulk downloaded
and hybrid capture 1650 genes in CCLE 59 samples are
obtained. According to software ANNOVAR gene-based
annotation [21], gene mutation function is reported accord-
ing to the 1000 Genomes Project and dbSNP database,
somatic and germline mutation are identified in CCLE.
Mutations are limited to somatic mutations and functional
mutations. Hence intronic, silent and other mutations were
ignored and only exonic mutations were considered.

Mutation frequency calculation Gene mutational fre-
quency can be described as a ratio of total number of gene
mutations in samples to total number of samples. Actually,
it is the measure of gene mutations probability in the breast
cancer population.

Mutation rate calculation The mutation number of
bases for TCGA are detected from the bed files. The bed
file contains a number of bases covered for each chromo-
some, in form of start and end location. Subtracting end
from start gives number of bases covered by the reads. All
bases obtained for each sample are summed together to ob-
tain a whole number of bases covered, it is the given sample
mutations rate per million bases (Mb). Bed files derive from
‘Wig’ format file. “Wig’ provides the number of reads for
each region. In case of CCLE, the file can be downloaded
from CCLE data portal. To TCGA, it is available from Syn-
apse websites, a research-sharing platform (https://www.sy-
napse.org/#!Synapse:syn1695394). Hence samples or gene
mutations rates can be calculated through summing up all
bases where read covered as mutations per Mb.

Mutation allele spectrum calculation The patterns of
six trans-version distributions were searched in the se-
quence annotation files from CCLE and TCGA irrespec-
tively by R programming. Then, the mutation allele mode
was obtained in each of the subtypes of breast tumors and
cell lines. The correlation was calculated as mutation allele
spectrum in each subtype between cell lines and tumors by
Pearson-correlation method.

Proteins phosphorylation expression analysis and clustering
All basal phosphorylation and protein abundance data were
obtained by RPPA technology from reference [19] and
TCGA. There are 70 phosphoproteins across 38 cell lines
of breast cancer that were generated by RPPA technology
and pre-processed by the Gordon Mills lab at MD Ander-
son. Seventy phospho-proteins in 197 patient’s tumor of
breast cancer were collected from TCGA in its Level 3
dataset. The common 50 protein expressions across 38
breast cancer cell lines and 197 TCGA tumors were used
as comparison analysis between cell lines and tumors. The
Pearson correlation method and hierarchy clustering was
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used to analyze and compare the similarity and non-
similarity between cell lines and tumors in breast cancer.
The result about how cell lines are close to its correspond-
ing tumors are shown in Additional file 1: Table S6 based
on 50 phosphor-proteins. In mRNA and its 50-protein
phosphorylation comparison for cell lines and tumors, a
gene has multiple isoforms while a protein phosphorylation
has multi-sites. All forms of mRNA and its phosphorylation
protein are compared with Pearson correlation, 38 genes’
average correlation coefficient was calculated and com-
pared between cell lines and tumors in Fig. 11.

The cell line suitability score with breast tumors

The extent to which the breast cancer cell lines match
genetic characteristics shared by the TCGA tumors was
assessed using a whole score by formula (2). The score
can catch a cell line’s whole similarity by four molecular
profiles feature to tumors in breast cancer.

Score=A+B+C+D (2)

Where A is the gene expression similarity between cell lines
and tumors by Pearson-correlation; B is the correlation
with CNV segment mean of breast tumors; C is the correl-
ation of genes mutation variation with breast tumors; D is
the protein expression-based correlation with tumors in
breast cancer. The score serves to identify a better or
poorer cell lines model of breast cancer in entity molecular
level and rank the graduate.

Software tools

All data arranging was operated on Ubuntu Linux operat-
ing system by shell scripting programming. R and
MATLAB was used to perform statistical analysis and
plotting graphs [42]. Integrative Genomics Viewer (IGV)
tools help to visualize large integrated data sets in a single
frame and also supports zooming in to a particular
chromosome or a certain region of the chromosome, and
thus IGV (version 2.3) was used to create copy number
profile plots [43]. GENE-E is a matrix visualization and
analysis platform designed to support visual data explor-
ation. Hierarchy clustering analysis used by GENE-E soft-
ware on website www.broadinstitute.org/cancer/software/
GENE-E/.

Additional files

Additional file 1: Table S1. The list of TCGA tumor samples used on
each platform with associated subtype calls from each technology platforms,
and clinical data. Table S2. The list of cell lines samples used on each
platform with associated subtype calls from each technology platforms, and
its annotation data. Table S3. The list of tumors samples from GEO used on
gene expression comparison with associated ER, PR, HER2 status. Table S4.
Mutation rate per Mb in cell lines and tumors in breast cancer. (Common
genes). Table S5. Top 10 % genes of copy number variation in cell lines and
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tumors. Table S6. The comparison of phosphorylation protein vs gene
expression in cell lines and tumors. (XLSX 2941 kb)

Additional file 2: Table S7. Correlation coefficient r across 4 genomics
level comparison in breast cancer. (XLSX 1527 kb)
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