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signatures with a potential to affect host
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subtypes
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Abstract

Background: The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the
species barrier are complex and yet to be understood completely. Several studies have been published identifying
singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in
addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature,
defining adaptation to hosts.

Results: We used computational rule-based modeling to identify combinatorial sets of interacting amino acid
(aa) residues in 12 proteins of IAVs of HINT and H3N2 subtypes. We built highly accurate rule-based models for
each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found
68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1,
NEP, PA, PA-X, PB1 and PB2 proteins of the HIN1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the
H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among
all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NST,
NEP, PA-X and PA proteins of the HIN1 subtype carry HIN1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the
H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of HIN1 subtype, in addition to HTN1
signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to
carry both H3N2 and H1NT host-specific signatures (HSSs).

Conclusions: To sum it up, we computationally constructed simple IF-THEN rule-based models that could
distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential
to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of
adaptation of IAVs to a new host is more complex than previously suggested. The present study provides a basis
for further detailed studies with the aim to elucidate the molecular mechanisms providing the foundation for the
adaptation process.
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Background

Influenza A viruses (IAVs) have been known for a long
time to cause disease in a wide range of host species,
including humans and various animals. The IAVs are
zoonotic pathogens that can infect a broad range of ani-
mals from birds to pigs and humans. The interspecies
transmission requires that IAVs adapt to the new host
and the whole process is facilitated by their high muta-
tion rates [1] and their ability to readily reassort [2]. This
can result in epidemics and pandemics with severe con-
sequences for both human and animal life. In addition
to the yearly epidemics that proves fatal for at least
250,000 humans worldwide [3], in the 20th century
alone, there has been at least five major pandemics; the
Spanish flu of 1918, Asian influenza of 1957, Hong Kong
influenza of 1968, the age restricted milder Russian flu
of the 1977 [4, 5] and the Swine flu of 2009. Thus, new
flu epidemics and pandemics are a constant threat.
Given our poor understanding of the host adaptation
process of the virus, which can be a major factor for
such epidemics and pandemics, it is very hard to predict
the type of the virus that will cause the coming outbreaks.

The IAVs are usually classified into subtypes based on
the two surface glycol-proteins, hemagglutinin (HA) and
neuraminidase (NA). To date, 18 types of HA (H1-H18)
and 11 types of NA (N1-N11) are known [6-8]. Most of
these subtypes have wild birds as their natural hosts.
However, occasionally the virus can jump and adapt to a
new host species. This cross of the species barrier is
proved by the pandemic HIN1, H3N2, H2N2 and the
most recent H5N1 and H7N9 subtype outbreaks, which
are thought to have evolved from avian or porcine
sources [6, 9, 10].

The HA protein plays a crucial part in defining the
adaptation of the virus to different hosts since it binds
to the receptor providing the entry into host cells. The
avian strains of the IAVs are known to attach to a recep-
tor with a2,3-sialic acid linkages while the human strains
to a receptor with a2,6-sialic acid linkages [11]. How-
ever, other proteins such as the polymerase subunits
have also previously been shown to play a role in the
adaptation of IAVs to different hosts [12, 13].

Computational methods, like artificial neural net-
works, support vector machines and random forests,
have been used previously to predict hosts of IAVs
[14-16]. Furthermore, several other studies have previ-
ously been carried out predicting genomic signatures
specifying different hosts, both computationally and
experimentally [17-23]. Amino acid changes taken one
at a time, i.e. singular aa changes, in viral protein se-
quences between different hosts have been reported by
these studies as host-specific signatures (HSSs), some
of which likely facilitate the host adaptation process.
Despite these findings, the process of adaptation of

Page 2 of 17

IAVs in different hosts is still not completely under-
stood. Given the complex nature of the problem we
suspected that the adaptation process might not only
be dependent on univariate signatures. Essentially, in
addition to the proven effects of singular aa residues,
there might be a combinatorial use of aa residues in
nature that affect the adaptation of IAVs to new hosts.

To this end, for both HIN1 and H3N2 subtypes, we
analyzed aa sequences of 12 proteins expressed by the
viruses. We have restricted our analyses to these two
subtypes because data for both human and avian hosts
for all the proteins under-study was available. We built
high quality rule-based models, based on rough sets
[24], for each of the 12 proteins, predicting hosts from
protein sequences. The models consisted of simple IF-
THEN rules that lend themselves to easy interpretation.
The combinations of aa residues used by the rules were
identified as host-specific signatures having the poten-
tial to affect the host adaptation of IAVs. In additions
to such combinatorial signatures, novel singular signa-
tures were also identified from the rules. The singular
and, especially, the combinatorial signatures provide
novel insights into the complex host adaptation process
of the IAVs.

Results

Feature selection reduces the number of features needed
to discern between hosts

Monte Carlo Feature Selection (MCEFES) [25] was used to
obtain a ranked list of significant features, here signifi-
cantly informative aa positions in all the proteins for
both subtypes, that best discern between the hosts. This
step helped us remove any kind of noise that could have
been in the data. More importantly, the use of MCFS
considerably reduced the number of aa positions to be
analyzed further, as shown in Table 1. The HA protein
had 628 positions to start with and after running MCFS
on the data, we were left with 115 and 88 positions for
HINI and H3N2 subtypes, respectively (81.7 and 86 %
reduction in the number aa positions). On average there
was a 79.8 % reduction in the number of aa positions
across all the proteins for HIN1 subtype and 82.8 % for
the H3N2 subtype (Table 1). Only the significant fea-
tures were used for further analysis in this study. The
ranked lists of the significant features are provided as a
supplementary file (see Additional file 1).

Rule-based models for each protein

Since the number of sequences belonging to human and
avian hosts were not balanced in the training data of ei-
ther subtype (Table 1), we balanced the data sets by a
method called under-sampling, as described in detail in
Methods. For data sets of each protein and each subtype
we created 100 under-sampled subsets. Each of these
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Table 1 The training data
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Nr. of sequences for each subtype

Features after MCFS

HIN1 H3N2
Protein Avian Human Avian Human Total features HIN1 H3N2
HA 214 5205 164 3715 628 115 88
NA 205 3093 173 3412 517 93 79
NS1 150 1258 150 1176 249 98 85
NEP 61 407 54 299 124 31 26
NP 125 839 93 773 506 61 69
M1 45 467 42 355 275 18 15
M2 65 461 64 503 98 25 23
PA 192 1677 143 1358 726 65 47
PA-X 57 164 45 244 252 28 24
PB1 171 1654 132 1347 762 59 33
PB2 184 1817 136 1297 776 52 42
PB1-F2 151 224 112 737 101 64 54

Total Features are the total number of aa positions that are investigated. Features after MCFS are the aa positions that are ranked significant, i.e. having power to

discriminate avian from human sequences

subsets was used to build a classifier, consisting of IF-
THEN rules, whose performance was assessed by a 10-
fold cross-validation (Table 2). HA classifiers for HIN1
and non-structural protein 1 (NS1) classifiers for H3N2
subtypes were the best ones with a mean accuracy of 98
and 98.9 %, respectively. Nuclear export protein (NEP)
classifiers of the HINI subtype and matrix protein 1
(M1) classifiers of the H3N2 subtype had lowest mean
accuracy of 83.4 and 88.8 %, respectively.

For each protein of each subtype a single rule-based
model containing only the most significant rules from
their respective 100 classifiers was inferred (Methods).
We then reclassified the training data of each protein

Table 2 10-fold cross-validation accuracies

Mean accuracy (%)

Protein HIN1 H3N2
HA 98 98.7
M1 87.7 8838
M2 87.6 929
NA 939 986
NP 93 973
NS1 93.1 989
NEP 834 953
PA 95.1 979
PA-X 95.9 97.7
PB1 94.7 95.1
PB1F2 95.5 923
PB2 95.9 975

Cross-validation accuracies of the 100 classifiers were averaged

with its respective rule-based model to get an idea of its
performance in terms of classification of human and
avian sequences. Polymerase acidic protein X (PA-X),
which is a frame-shift product of the third RNA seg-
ment, HA and NEP (NS2) models performed the best
(Matthews correlation coefficient (MCC) =1, MCC =
0.993, MCC =0.988, respectively) among the H3N2
models while HA, NA and NS1 models performed the
best among the HIN1 models (MCC =0.961, MCC =
0.95, MCC = 0.954, respectively) (Table 3). The poor-
est of the HIN1 models was the PA-X protein model
(MCC =0.856) and of the H3N2 models was the poly-
merase basic protein F2 (PB1-F2) protein model
(MCC=0.861). The complete HA HINI1 rule-based
model is shown in Table 4. Models for the remaining
proteins for both subtypes are provided as supplemen-
tary material (Additional file 2).

To further verify the validity of the rule-based models
created, we tested them on new, unseen data. This data
was protein sequences published at the NCBI resource
between 30th of November 2014 and 16th of April
2015. For the HIN1 subtype, the rule-based models of
M1, nucleoprotein (NP), NS1, NEP (also called non-
structural protein 2 (NS2)), PB1-F2, polymerase basic
protein 1 (PB1) and polymerase basic protein 2 (PB2)
provided perfect classification (i.e. all the sequences
were correctly classified). For the H3N2 subtype data,
the models of HA, M1, NP, NS1, NEP (NS2), polymer-
ase acidic protein (PA), PB1 and PB2 also gave a perfect
classification. Table 5 shows the performance of all
rule-based models on the unseen data. A list of names
of the viruses that could not be classified or were miss-
classified for both subtypes is given in Additional file 3.
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Table 3 Performance of the models on their corresponding complete data sets

HIN1 H3N2
Protein Sensitivity Specificity MCC Sensitivity Specificity MCC
HA 0.999 0953 0.961 1 0.987 0.993
M1 1 0.881 0.934 0.994 1 0971
M2 1 0.859 0918 0.996 0.873 0.908
NA 1 0.907 0.95 1 0.908 0.95
NP 1 0.864 092 0.994 0957 0.946
NS1 0.998 0.932 0.954 0.991 0.993 0.96
NEP 0.995 0.883 0912 0.997 1 0.988
PA-X 0.901 1 0.856 1 1 1
PA 0972 0.979 0.892 0.996 0.979 0.969
PB1-F2 091 0.987 0.884 0.999 0.778 0.861
PB1 0.993 093 0923 1 0.879 0932
PB2 0.989 0.984 0.935 0.996 0.985 0.972

Sensitivity is the ability to correctly predict human sequences and specificity is the ability to correctly predict avian sequences where 1 means perfect prediction
and 0 means no correct prediction. Matthews correlation coefficient (MCC) value is a measure of how well the model performs overall where 1 means a perfect

classification, 0 is for a prediction no better than random and —1 indicates a total disagreement between predictions and observations. “na

could not be calculated for the given model

Table 4 Example rule-based model

Rule Accuracy (%) Support Decision
coverage (%)

IF P435 =1 THEN host = Human 99.9 5128 984
IF P200 =S THEN host=Human 99.9 4052 77.8
IF P10=Y THEN host =Human 99.8 3998 76.7
IF P88 =S THEN host = Human 999 3989 76.5
IF P6 =V THEN host = Human 99.8 3936 75.5
IF P222 =R THEN host = Human 99.9 3823 734
IF P220=T THEN host = Human 100.0 3584 68.8
IF P516 = K THEN host = Human 99.9 1818 349
IF P200 =P and P222 =K THEN 91.3 229 97.7
host = Avian

IF P130 =K THEN host = Avian 913 218 93.0
IF P2=E and P222 =K THEN 96.2 208 935
host = Avian

IF P137=A and P544 =L THEN 96.1 205 92.1
host = Avian

IF P78 =L and P435=V THEN 97.1 204 925
host = Avian

IF P9=F THEN host = Avian 98.5 204 939
IF P6 =F THEN host = Avian 982 169 776
IF P14 =V THEN host = Avian 994 165 76.6
IF P173 =T THEN host = Avian 98.7 158 729

The model presented here is for the HA protein of the HIN1 subtypeModels for
the other proteins of both the subtypes are listed in Additional file 2

" means the measure

Predicted host-specific signatures

The rule-based models allowed us to further interpret
them and see how they differentiated viral avian from
viral human sequences. Each of the models was analyzed
separately for HSSs. The constituent rules of a model as-
sociated aa residues at specific positions with an avian or
human host. The confidence in these associations is
shown as the accuracy, support and the decision cover-
age shown in the rule-based models. For the combina-
tions in our models we also calculated a combinatorial
accuracy gain (CAG), which is the percentage points
gain in accuracy of the combination as compared to the
average of the accuracies of its constituent singular con-
ditions when taken independently.

Combinatorial signatures
As expected we found aa combinations, i.e. the com-
binatorial HSSs, in HA, M1, matrix protein 2 (M2), NP,
NS1, NEP (NS2), PA, PA-X, PB1 and PB2 proteins to
be associated with specific hosts in the HIN1 subtype.
In the H3N2 subtype, we found combinations in M1,
M2, NEP, PB1 and PB2 proteins. A complete set of the
combinatorial HSSs for both subtypes is given in a sup-
plementary file (see Additional file 4: Combinations_-
from_rules). Ciruvis diagrams [26] for visualization of
combinations of interacting amino acids were used to
illustrate the cases of three or more combinations in
the models of both subtypes associated with the avian
hosts (see Figs. 1 and 2).

Residues 14G of the M2 HIN1 model and 82 N of
the PB2 H3N2 model were the most connected ones
interacting with six other aa residues each. Amino acid
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Table 5 Performance of the rule-based models on the new,
unseen data

Human sequences Avian sequences

Protein Total Correctly ~ Total  Correctly  Accuracy (%)
classified classified
HA-HTN1 108 105 2 2 973
HA-H3N2 73 73 4 4 100.0
M1-HIN1 25 25 0 0 100.0
M1-H3N2 8 7 0 0 87.5
M2-H1N1 30 26 2 2 87.5
M2-H3N2 22 16 3 3 76.0
NA-HTN1 33 33 2 1 97.1
NA-H3N2 46 46 4 3 98.0
NP-HIN1 13 13 2 2 100.0
NP-H3N2 8 8 4 4 100.0
NST-HIN1 31 31 2 2 100.0
NST-H3N2 19 19 3 3 100.0
NEP-HTN1 12 12 2 2 100.0
NEP-H3N2 8 8 2 2 100.0
PAX-HTN1 18 14 2 2 80.0
PAX-H3N2 7 7 0 0 100.0
PA-HIN1 34 29 2 2 86.1
PA-H3N2 23 23 4 4 100.0
PBTF2-HIN1 3 3 2 2 100.0
PB1F2-H3N2 9 8 4 0 61.5
PB1-HIN1 27 27 1 1 100.0
PB1-H3N2 20 20 1 1 100.0
PB2-H1N1 29 29 2 2 100.0
PB2-H3N2 16 16 3 3 100.0

residues having interactions with more than one other
residue, in both the subtypes are listed in Table 6.
These strongly interacting residues might be relatively
more essential to host adaptation than the less con-
nected ones.

Singular (linear) signatures

Previous studies [17-23] mostly found the adaptation
signatures on the internal proteins and did not look into
surface glycoproteins (HA and NA). In contrast, we
found singular HSSs on all the proteins of both sub-
types, including the HA, NA and the newly discovered
PA-X proteins. In total, 189 singular HSSs were found,
in both subtypes combined. Out of these, 132 signatures
were novel and not reported by the previous studies
(Table 7). A complete list of singular signatures is given
in the supplementary material (see Additional file 4:
singletons_H3N?2, singletons_H1N1).
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Specific aa changes predicted to be associated with

host adaptation

Some of the rules from our models associated different
residues at the same aa positions with avian and human
hosts. This can be seen as a mutation (aa change) poten-
tially affecting the adaptation of the viral proteins to a
specific host. Eight mutations were found for the HIN1
subtype and 10 for the H3N2 one. In the HIN1 subtype,
mutations F6V in HA, P46T and L74V in NA, I6M in
both NS1 and NEP and L58- in PB1-F2 were novel. In
the H3N2 subtype, mutations R78E in HA, A30I, N40Y
and 144S in NA, P28L and R57Q in PA and P28L in
PA-X were not identified in the previous studies. Table 8
shows all such mutations in both subtypes.

HSSs are not specific to phylogenetic sub-clades

within a host

The support and the decision coverage of the rules
showed whether the HSSs identified were specific to
sub-clades or were more general i.e. spread out across
the sub-clades. The higher decision coverage indicated
more generality of the rule. For example, the top five
rules for the avian class have the following very high de-
cision coverage: rulel — 98.5 %, rule2 — 98.5 %, rule3 —
97.8 %, rule4 — 98.5 % and rule5 — 97.8 %. It follows that
the rules are general. To further illustrate this generality,
and to show the diversity in our training data set, a
phylogenetic analysis was carried out (Additional file 5).
Top five rules specifying each host were mapped onto
the created phylogenetic trees, separately for each host,
for all the proteins of both subtypes.

As an example, consider the avian PB2 H3N2 tree
(Fig. 3). 91.4 % of the sequences are covered by rule 1, 2,
3, 4 and 5, which is illustrated by the violet coloring of
the leaves in the tree. Only, 1.4 % of the sequences were
not covered by rule4, yet they were covered by rule 1, 2,
3, and 5, and similarly for the remaining coverage. For
the corresponding human tree, the figures are 89.3 %
coverage for the top five human rules. One can see that
this generality prevails in all other proteins.

Validity of HSSs across HIN1 and H3N2 subtypes

To see whether the HSSs identified in the HIN1 subtype
could predict hosts of the H3N2 subtype aa sequences
and vice versa, we classified H3N2 subtype data with
HIN1 models and HIN1 subtype data with H3N2
models. Good classifications meant that the rules (and
consequently the HSSs) generated for one subtype were
valid for the other one. Bad classifications meant that
the rules of one subtype did not hold for the data of the
other subtype and hence no cross-subtype signatures
validity. Both HA and NA HIN1 models were bad clas-
sifiers for the HA and NA of the H3N2 type data,
respectively since they failed to distinguish avian
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Fig. 1 Ciruvis diagrams of combinations from the rules of HIN1T models. Models having at least three combinations are shown. The outer circle
shows the positions. The inner circle shows the position or positions to which the position of the outer circle is connected. The edges show
these connections. The width and color of the edges are related to the connection score (low = yellow and thin, high = red and thick). The width of an
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sequences in the data in both cases (Sp = 0) (Table 9). It
should be kept in mind that the outcome human was
considered positive outcome and the outcome avian
considered as a negative one. The PA-X HIN1 model
could not recognize human sequences in the PA-X
H3N2 data (Sn=0). Furthermore, the models of PA,
PB1-F2 and PB1 proteins of HIN1 subtype were bad
classifiers of the H3N2 data (MCC = -0.11, MCC = 0.056,
MCC =0.302), specifically failing to identify sequences
coming from human hosts (Sn =0.021, Sn =0.023, Sn =
0.563). This meant that HIN1 HSSs in the models of
HA, NA, PA-X, PA, PB1-F2 and PB1 proteins were not

valid for H3N2 subtype data and these proteins of the
H3N2 subtype carried only H3N2-specific HSSs. Con-
trary to this, the HIN1 models of M1, M2, NP, NSI,
NEP and PB2 proteins were able to distinguish be-
tween H3N2 subtype sequences coming from avian
and human sources reasonably well (Sn =0.97-1.0; Sp
=0.64-0.94; MCC = 0.776-0.941). It proved that these
proteins of the H3N2 subtype, in addition to the
stronger H3N2 HSSs, also carried HIN1 HSSs.

The H3N2 models of HA, NA, NP, NS1, NEP, PA-X
and PA proteins could not classify avian and human
sequences of HIN1 subtype correctly (MCC = -0.004—



Khaliq et al. BMC Genomics (2016) 17:529

Page 7 of 17

P11=T
Br14=G
Wri1s=K
[P20=5s
Wr2s=I
Wr31=s
P54=R
P55=L

[p121=K
Wr212=L

P375=N
Brs576=L
Br741=A

PB1

cover the whole circle [26]
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Table 6 Amino acid residues having the most interactions in
the models of both subtypes

Subtype Protein Positions Number of interactions

HIN1 HA 222K 2
M1 1217 5
M2 14G 6
NEP 575, 60S 2
PA 28P, 277S 3
PA-X 28P 4
PB1 179M, 741A 3
PB2 65E 3

H3N2 M1 101R 2
M2 1T, 14G, 315, 54R 2
NEP 14M 4
PB1 2121 2
PB2 82N 6

0.251). This means that these proteins of the HIN1
subtype carried HIN1-specific HSSs. Whereas the suc-
cessful classifications of HIN1 subtype data of M1,
M2, PB1-F2, PB1 and PB2 proteins by the respective
H3N2 models (MCC =0.788-0.888; Sn =0.956-0.992;
Sp=0.766-0.951) proved that these HIN1 proteins
carried both HIN1 and H3N2 signatures.

For predicting hosts from an aa sequence we analyzed
positions specified by the rules with the remainder of
the sequence not taken into account. This meant the ex-
istence of a sequence in one or the other phylogenetic
clade would not affect the validation of the predicted
signatures across subtypes. To prove this point we in-
cluded sequences of both subtypes into one single phyl-
ogeny for all the proteins. In the M1 phylogeny (Fig. 4)
the human sequences from both the subtypes formed
distinct clades. The avian sequences, on the other hand,
did not form separate clades but formed a single clade.
This meant that the human sequences were relatively
more different between the subtypes than the avian se-
quences. Across subtype validation of HSSs of the M1
protein proved that the HIN1 signatures were valid in
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Table 7 Novel singular aa positions associated to host adaptation

Protein Novel singular positions

HA 6,9,10,14,23,47,66,69,78,88,91,94,130,173,
189,200,220,222,435,516

M1 30,116,142,207,209

M2 13,16,31,3643,51,54

NA 16,18,19,23,30,40,42,44,46,47,74,79,147,150,
157,166,232,285,341,344,351,369,372,389,
397,435,437,466

NP 31,53,98,146,444,450,498

NS1 6,7,14,23,27,28,74,123,152,192,220,226

NS2 6,7,14,32,34,48,83,86

PA 85,323,336,348,362,300

PAX 28,85,210,233

PB1 12,54,59,113,175,212,339,435,576,586,587,
619,709

PB1F2 3,6,12,17,21,25,26,27,28,33,47,52,54,57,58,
60,62,65,32

PB2 54,605,354

H3N2 data, meaning that we could predict the hosts of
H3N2 human sequences using HIN1 signatures. The
reason is that the sequences were similar in the analyzed
positions. The remainders of the sequence, with compara-
tively low sequence similarity, did not affect the prediction
process. On the other hand, we could also predict the
hosts of the H3N2 avian sequences by using HIN1 signa-
tures where the remainders of the sequences had more
sequence similarity. And conversely, the H3N2 signatures
were also valid for HINI.

Furthermore, the clades in the NP phylogeny were more
or less similar to the M1 phylogeny (Additional file 6).
HINT1 signatures were valid for H3N2 sequences but the
converse did not hold, i.e. the H3N2 signatures were not
valid for the HIN1 sequences.

For the HA and NA phylogeny (Additional file 6), the
different subtypes and hosts formed separate clades. The

Table 8 Amino acid changes associated with host adaptation

HINT H3N2
Protein  Position Avian Human Protein Position Avian Human
HA 6 F V HA 78 R E
NA 46 p T NA 30 A \
74 L V 40 N Y
NP 100 R A% 44 I S
NS1 6 I NP 16 G D
NEP 6 I M PA-X 28 p L
PB1-F2 58 L - PA 28 p L
PB2 588 A 57 R Q
PB2 9 D N
64 M T
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cross-subtype validation of signatures failed for these
two proteins. However, this failure was not due to the
underlying phylogeny; rather the signatures of one sub-
type could not predict hosts in the other subtype.

It follows that to predict hosts, our method indeed an-
alyzes specific positions in the sequences as specified by
the rules, and the remainders of the sequences or the
underlying phylogenies do not affect the predictions.

Discussion

Our models performed reasonably well since all of them
had an average accuracy of more than 90 % in the 10-
fold cross validation except NEP (NS2), M1 and M2 pro-
tein models of the HIN1 type (Accuracy: 83.4, 87.7 and
87.6 %, respectively) and M1 protein model of the H3N2
type (Accuracy 88.8 %) (Table 2). The reason for the
somewhat lower accuracies of the above exceptions
could be due to either the lack of training sequences
from which the models learn or to the absence of stron-
ger HSSs in these sequences.

In previous studies [17-23], signatures of adaptation
were mostly found on the internal proteins, especially
in viral ribonucleoprotein complexes consisting of viral
polymerases and NP. The fact that we were able to
build high quality models for all the proteins for both
subtypes, indicated that all the proteins, including the
highly variable HA and NA proteins and the recently
discovered PA-X protein, carry HSSs. A major differ-
ence between our models and the ones previously re-
ported [14—16] is that the previous models were black
box classifiers whereas our models are transparent.
Black box classifiers give classification but do not pro-
vide any straightforward possibility to identify which
parameters and for which values a classification is ob-
tained. Transparent classifiers allow explicit analysis of
the model, ie. the features and their values, for each
classified object. The models created in this study used
aa positions as features and aa residues at those posi-
tions as the values for those features, hence lending
themselves for easy interpretation and further analysis.

In comparison to previous studies, we identified a lar-
ger number of singular HSSs. One reason is that our
method requires aa residue at a particular position to be
more or less conserved/persistent in one host only. The
same position may either have another persistent residue
at this position or not have a persistent residue at all.
For example, if at a given position in human hosts there
is a conserved “Leucine”, our method selects this pos-
ition as a signature of human hosts. The previous stud-
ies required that this position be fully or partially
conserved in the avian hosts, too, which leads them to
having a smaller number of signatures. Furthermore, the
previous studies did not analyze the subtypes and the
proteins separately. Not limiting analyses to particular
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Fig. 3 Phylogeny of PB2 H3N2 protein of avian hosts annotated
with top 5 avian rules form the PB2 H3N2 model. Each sequences is
represented by its GeneBank accession. The violet nodes mark the
sequences that supports rule 1,2,34 and 5, which are 914 % of the
total sequences. Similarly the DarkViolet nodes mark the sequences
that support rule 1, 2, 3 and 4 but lacks support for rule 5, which are
2.2 % of the total sequences. The nodes with a LightBlue background
are the new, unseen sequences. The unmarked nodes do not support
the top 5 rules, and were either supporting rules other than the top 5

or were not classified by the models

subtypes leads to identifying more generic signatures but
may loose signatures that are stronger in a subtype-
specific manner. Analyzing all the proteins at the same
time also results into a smaller number of signatures
since the stronger signatures from some proteins may
shadow the weaker signatures from the other proteins.
We also had more data in some cases. Taubenberger et al.,

Table 9 Performance of the HIN1T models on H3N2 data and

vice versa
Protein  Sensitivity ~ Specificity =~ MCC
H3N2 data - HINT models  HA 1 0 na
M1 1 0.895 0.941
M2 1 0.73 0.84
NA 1 0 na
NP 1 0.882 0.932
NS1 1 0.747 0.85
NEP 1 0.648 0.78
PA-X 0 1 na
PA 0.021 0.93 -0.11
PB1-F2 0.023 1 0.056
PB1 0.563 0.909 0.302
PB2 0.979 0.949 0.873
HINT data - H3N2 models  HA 0 na na
M1 0.957 0.975 0.885
M2 0.987 0.766 0.804
NA 1 0 —0.004
NP 0.364 0.984 0.251
NS1 0.365 0.993 0.237
NEP 0.027 1 0.061
PA-X 0.201 0.982 0.223
PA 0.247 0.995 0177
PB1-F2 0.991 0.804 0.832
PB1 0.992 0.877 0.888
PB2 0.956 0.951 0.786

Sensitivity is the ability to correctly predict human sequences and specificity
is the ability to correctly predict avian sequences where 1 means perfect
prediction and 0 means no correct prediction. Matthews correlation coefficient
(MCQ) value is a measure of how well the model performs overall where 1 means

a perfect classification, 0 is for a prediction no better than random and -1

indicates a total disagreement between predictions and observations. “na” means

the measure could not be calculated for the given model
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Fig. 4 Phylogenetic tree of the M1 protein from sequences of both
subtypes and both hosts. Both the subtypes and the hosts are
combined into a single tree. It can be seen that human sequences
of both the subtypes form their own distinct clades. The avian
sequences, on the other hand, fell into a single clade

[17] had 105, 91 and 83 sequences for proteins PA, PB1
and PB2 while we had 1869,1825 and 2001 in HIN1 and
1501,1479 and 1436 sequences in H3N2 subtype for those
proteins respectively. Finkelstein et al., [20] had ~9 times
less data for HA, ~6 times less for NA and ~4 times less
data for each of the polymerases. Allen et al. [21] had only
281 human sequences and 560 avian sequences for all the
proteins.

In addition to singular HSSs, we also identified com-
binatorial HSSs. Indeed, it is the very first time that com-
binatorial HSSs are reported in this context. These HSSs
are shown as conjunctive rules, i.e., rules with more than
one condition in the IF part. It appeared that some aa resi-
dues were part of more than one combination in our
models. This may suggest that these residues are poten-
tially more important in establishing host adaptation then
the ones appearing in one combination only (Table 6).

In the M2 H1IN1 model, the combinations associated
with avian hosts had a Glycine (G) residue at position
14- while the combinations for human hosts had a Glu-
tamic acid (E) in the same position. Similarly, in PB2
H3N2 model, Arginine (R) at position 340 was associ-
ated to avian hosts while Lysine (K) residue at the same
position to human hosts. It seems that the mutations
GI14E in M2 HIN1 and R340K in PB2 H3N2 model
potentially facilitate the shift of hosts from avian to hu-
man. However, these residues always appear in combin-
ation with other residues and therefore they are HSSs
only in combinations and not individually. The reason
is obvious. The confidence measures (accuracy, support
and decision-coverage) were calculated for the combin-
ation as a whole. We do not report such mutations in
our list of mutations, although they indicate an effect.
The functions of these combinations at a molecular
level are not understood yet, but they provide a novel
and interesting perspective of looking at sequence-
based host adaptation.

The method used in this study is also a sequence-
based method like phylogeny. Phylogeny puts sequences
in clades and sub-clades based on the similarity or dif-
ference of the complete sequences but it does not output
how exactly or at what positions the sequences are dif-
ferent. Our classification method identifies the exact aa
differences (the HSSs) between the sets of sequences.
For the sake of an example, let us assume that at a
given position the avian viruses carry a conserved Me-
thionine and at the same position in the human viruses
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there is a conserved Alanine. This position will be iden-
tified by our method as a host-specific signature. The
remainder of the sequence does not affect the identifi-
cation process. In order to simplify the argument we
consider two extreme cases. a) The remainders of the
sequences are identical. The two sequences will most
likely be put into the same phylogenetic clade. However,
our method will select the afore-mentioned position be-
cause it differentiates avian and human viruses. b) The re-
mainders of the sequences differ entirely. The sequences
will be assigned to different phylogenetic clades, while our
method will select the said position since it nonetheless
differentiates the viruses. It follows that our method is in-
variant of the underlying phylogeny. In practice, however,
since we are predicting the variable host that is not inde-
pendent of phylogeny, some of the HSSs discussed may
inform on the phylogeny.

HA and NA of both subtypes were found to be only
carrying subtype-specific HSSs. This goes well with the
current knowledge that these two proteins are the most
diverse proteins that are specifically adapted to interact
with the host cell. M1, M2 and PB2 are shown to be the
most conserved proteins from the point of view of host
specifying genomic signatures since they carried the
HSSs valid for both subtypes.

The HSSs found in this study were also considered in
other contexts in other studies such as viral viability and
antiviral resistances. For instance, positions 30, 142, 207
and 209 occurring in the HIN1 M1 models have been
previously shown to affect viral production when mutated
[27], while mutation S31N derived from M2 models is a
known marker of amantadine resistance [28—31]. Table 10
lists all the aa residues and their descriptions as found in
different contexts in the literature. All these different con-
texts, that the aa residues from our models are described
in, show that they affect the fitness of the viruses in one or
the other way, which in turn facilitates their adaptation to
the new environment or hosts.

Conclusions

The highly predictive rule-based models built for 12 pro-
teins for HIN1 and H3N2 subtypes suggest that there
are HSSs on all the protein including the diverse HA,
NA and the newly discovered PA-X protein that were
not previously studied in this context. In addition, the
transparent nature of our method allowed us to further
investigate our models for how the predictions were ac-
tually done. This resulted in lists of predicted singular
and combinatorial HSSs. Some of the HSSs identified in
this study were already known while others are novel.
The ability of our methods to capture combinatorial
HSSs that may affect the host adaptation process makes
this study unique. We discovered that the surface pro-
teins HA and NA carry subtype-specific HSSs in both
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subtypes while NP, NS1, NEP, PA-X and PA of the HIN1
subtype and PA-X, PA, PB1-F2 and PB1 of the H3N2
subtype carry subtype-specific HSSs. We showed that
M1, M2, PB1-F2, PB1 and PB2 of the HIN1 subtype
carried HIN1 and some additional H3N2 HSSs, and
vice versa, M1, M2, NP, NS1, NEP and PB2 of the H3N2
subtype carried H3N2 and some additional HIN1 signa-
tures. The computational results presented here will even-
tually require further analysis by testing the host-pathogen
interactions under laboratory conditions. We believe that
the computational analyses provide important support in
the characterization of host-pathogen interactions and the
proper combination of ix silico and in vitro (probably even
in vivo) studies will yield important novel information
concerning the infection biology of various viruses and
other infectious agents.

Methods

The combined feature selection — rule-based modeling
methodology used in this is similar to our previous work
where we identified a complete map of potential patho-
genicity markers in the H5N1 subtype of the avian influ-
enza A viruses [32].

Data

The data used to make the models was downloaded from
the NCBI flu database found at http://www.ncbi.nlm.nih.-
gov/genomes/FLU/Database/nph-select.cgi?go=database
[33]. Full-length plus (nearly complete, may only miss the
start and stop codons) protein sequences of the twelve
proteins namely, HA, NA, NP, M1, M2, NS1, NEP
(NS2), PA, PA-X, PB1, PB2 and PB1-F2, were separately
downloaded as published up till November 30, 2014.
Identical sequences were represented by the oldest se-
quence in the database. For each protein, sequences of
the H3N2 and HIN1 subtypes of avian and human
hosts were downloaded. Sequences of the mixed sub-
types were not included in this study. Table 1 shows
the number of sequences for each of the proteins for
each subtype. For each protein we combined the se-
quences of the two subtypes used in this study into a sin-
gle file and aligned them with MUSCLE (v3.8.31) [34].

Decision tables

A decision table was created for each of the proteins for
both the subtypes. A decision table can be seen as a tabu-
larized form of the aligned FASTA sequences with an extra
decision/label column, which in our case was the host in-
formation. The first column of the decision tables con-
tained the identifier of the sequence, and the last column
was the label/outcome column, the host information in our
case and the rest of the columns represented the sequence
information corresponding to the aligned FASTA files. The
alignment gaps were represented by a ‘7’ in the decision
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Table 10 Amino acid positions discussed in literature from the models of both the subtypes for all proteins

Protein Positions Description
M1 115,121,137 Known signatures of host-adaptation [19, 22, 23]
30,142,207,209 Affecting viral production on mutation [27]
121 Affecting viral replication [45]
101 Determinant of temperature sensitivity [46], located in a transcription
inhibition site [47] and is also interacting with NEP [48]
M2 11,14,18,20,28,55,57,78,82,89,93 Known signatures of host-adaptation [19, 22, 23, 49]
31 S31N is a known marker for amantadine resistance [28-31]
18,20 Lie next to 17,19 which forms a di-sulphide bond [50]
NS1 18,21,22,53,60,70,81,112,114,171,215,227 Known signatures of host-adaptation [18, 20-23, 51]
215 Required for Crk/CrL-SH3 binding [52]
123 Necessary for interaction with PKR, resulting in an inhibition of elF2alpha
phosphorylation [53]
95 Along with others, has been shown to be necessary for
binding p85beta and activating PI3K signaling [54, 55]
220 Part of nuclear localization signal 2 essential for the
importin-alpha binding [56]
NEP(NS2) 57,60,70,107 Known signatures of host-adaptation [18, 19, 22, 23, 57]
NP 16,33,100,214,283,313,351,353,357,422 Known signatures of host-adaptation [19-23, 58]
16 D16G shown to decrease pathogenicity several fold [59]
PA 28,55,57,65,256,268,277,356,382,400,409 Known signatures of host-adaptation [19-23, 58]
85,336 Residues 851 and 336 M are deemed important for enhanced
polymerase activity in mammalian cells [60]
57,6585 Shown to be involved in suppressing the host cell protein synthesis
during infection [61]
PB1 52,179,216,298,327,336,361,375,581,741 Known signatures of host-adaptation [17, 19, 22, 23, 58]
581 Shown to be conferring temperature sensitivity to human influenza
virus vaccine strains [62]
473 Mutation at position 473 has been shown to decrease polymerase
activity [63]
PB2 9,44,64,81,105,271,292,368,453,588,613,682,684 Known signatures of host-adaptation [19, 20, 22, 23, 58]
591 591Q is known to mimic the effect of 627 K [64, 65]
271 271A shown to increase polymerase activity in mammalian cells [66]
271,588 Also been shown to be host range determinants [67]
PB1-F2 16,23,42,66,70,73,76 Known signatures of host-adaptation [18, 23]
66 Linked with affecting pathogenicity [68]
NA 46,47,74,147,157,341,351 Under selection pressure with a shift of hosts from birds to humans [58]
344 Calcium ion binds here that stabilizes the molecule (UniProt: Q9IGQS).
HA 2,69,10,14 Signal peptide domain
88,173,220,22 Position 71, 159, 206 and 208 of the fully-mature HA with

H3-numbering [69]) are part of the antigenic sites Cb, Sb
and Ca of the HA protein, respectively [70, 71]

tables. The rows of a decision table were called objects each
representing a particular aa sequence and a label. Columns
other than the first and the last one were the features.

Feature selection
MCES, as described in [25], was used to rank the features
of the decision tables with respect to their ability to

discern between avian and human hosts. MCES is imple-
mented as a software package dmLab [35]. MCES uses a
large number of decision trees and assigns a normalized
relative importance (RI-norm) score to each feature such
that the features contributing more to the discernibility of
the outcome gets a higher score. Statistical significance of
the RI-norm scores was assessed with a permutation test
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and significant features (p < 0.05), after Bonferroni correc-
tion [36], were kept as described in [37]. Only these features
were used in the further rule-based model generation.

Under-sampling the data sets

In the training data for both subtypes, the number of se-
quences from human hosts was considerably higher than
that from the avian hosts. It has previously been shown
that this imbalance affects the learning in favor of the
dominating class [38]. However to address this problem
one can artificially balance the classes [39]. To this end, a
technique called under-sampling was used where the se-
quences belonging to the dominating class were randomly
sampled equal to the class having the lesser number of se-
quences and repeated this step 100 times. In this way for
each protein and for each subtype we created 100 subsets
where the number of sequences belonging to human and
avian hosts were equal. A single rule-based classifier was
inferred from each of the subsets, which resulted in 200
classifiers per protein (100 for each subtype). We illustrate
the process with the following example.

The data set of the NA protein of the HIN1 subtype
had 3093 human and 205 avian sequences, which was a
significant imbalance in the number of sequences. From
the human set we created subsets by randomly extract-
ing 100 times 205 human sequences and joining them
with the 205 avian sequences to create 100 subsets.

Rough sets and rule-based model generation

Rough set theory [24] was used to produce minimal
sets of features that can discern between the objects be-
longing to different decision classes. ROSETTA [40], a
publicly available software system that implements
rough sets theory, was used to transform the minimal
sets of features into rule-based models [41] that con-
sisted of simple IF-THEN rules. A complete description
of rough sets can be found in [42] and the combined
MCES-ROSETTA approach to model generation in bio-
informatics is described in [43].

The input data to ROSETTA were the balanced deci-
sion tables created in the previous step with only the
significant features obtained from applying MCFS. RO-
SETTA computed approximately minimal subsets of
feature combinations that discerned between avian and
human hosts with the Johnsons algorithm implemented
in ROSETTA. The classifiers were collections of IF-
THEN rules. A sample rule from the HA-HIN1 model:

Rule Accuracy (%) Support Decision
coverage (%)
IF P200=P AND P222 =K 91.3 229 97.7

THEN host = Avian
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reads as: “IF at position 200 there is a Proline residue
AND at position 222 there is a Lysine residue THEN the
sequence is from an avian host”.

There is additional information about the rules avail-
able. Support is the set of sequences (229 sequences)
that satisfy the conditions of the left hand side (LHS),
i.e. the set of sequences that have a proline residue at
position 200 and a lysine residue at position 222. For
this rule, Accuracy is 91.3 % that is the proportion of
correctly classified sequences to the total number of
supporting sequences (209/229). Human sequences are
considered positive and avian as negatives in this study.
The decision coverage for this rule is 97.7 %, which
means it correctly classifies 97.7 % of the total avian se-
quences used to train the classifier. It is calculated as
follows:

Accuracy x Support
Total training objects of the decision class

Decision Coverage (%)= ( ) x 100

Accuracy x Support gives us the total number of se-
quences that are correctly classified by the rule. Since
the rule is for the avian decision class, the total number
of avian sequences used to train the classifier was 214.
So for the stated rule the decision coverage will be
((0.913%229)/214)*100, which is equal to 97.7 %. The
above rule is a conjunctive rule since there is a conjunc-
tion of conditions (P200 =P AND P222 =K) in the left
hand side (LHS) of the rule. A conjunctive rule cap-
tures the combinatorial HSSs. Each conjunctive rule
must always be used as combination only, because the
support, accuracy and the decision coverage measures
are calculated for the conjunction and not for the indi-
vidual conjuncts. A rule can also be a singleton rule
where LHS consists of only a single condition.

The confidence in these classifiers come from the 10-
fold cross validation performed in ROSETTA. In a 10-
fold cross validation step the input data set is randomly
divided into ten equal subsets, say {P1, ..., P10}. A classi-
fier is trained on the first nine subsets {P1, ..., P9} and
then tested on the remaining, P10 subset. In the next
run, another classifier is trained on {P1, ..., P8, P10} and
its performance is tested on the remaining subset, this
time P9. Notice that each time the test set is a different
one. The process is repeated 10 times and by then each
subset has been used once as a test set. The performance
of all the classifiers is averaged and presented as a cross-
validation accuracy. Such a validation is quite common
in machine learning since one becomes more or less as-
sured that the performance of the classifier was not sim-
ply by chance.

Extraction of a single rule-based model for each protein
Rules from all the 100 classifiers were combined into a
single file. Duplicates were removed. Among partially
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identical rules, the one with the highest decision cover-
age was kept. If the difference of decision coverage was
lower than 1 % then the shortest (the rule with least
conditions) was kept. Accuracy, support and decision
coverage were calculated on the complete data set for all
the rules. Rules that were below the 90 % accuracy and
30 % decision coverage thresholds were discarded. In
this way we extracted a single, high quality rule-based
model for each of the protein for both HIN1 and H3N2
subtype data.

Classification of sequences

In order to classify a sequence, each rule from the model
was applied on it. If the conditions of the rule matched
the sequence, the rule was said to fire on the sequence.
Every fired rule voted for a particular classification speci-
fied by its THEN-part. The number of votes a fired rule
casted was the accuracy multiplied by the support of the
rule. For a sequence several rules may fire, each casting
votes in favor of the class in the THEN-part. The final
classification was assigned based on the majority of
votes.

Consider the rules:

1) IF P70 = S THEN host = Avian. Acc = 94.0 %.
Supp =50

2) IF P14 =M and P32 =1 THEN host = Avian.
Acc =93.0 %. Supp =43

3) IF P14 = L THEN host = Human. Acc = 100 %.
Supp =285

4) IF P57 = L THEN host = Human. Acc = 100 %.
Supp =273

Now let us assume that these four rules are applied to
a sequence an it turns out that Rule 2, 3 and 4 fire for
this sequence. Rule 2 will cast 40 (0.93*43) votes for
class Avian while rule 2 and rule 3 will cast 285 and 273
votes in favor of class Human. So, the sequence will be
classified as class Human since the number of votes is
558 versus 40.

In case of no rules fired or there was a tie in the votes,
the sequences were labeled as unknown.

Performance evaluation statistics of the rule-based models
In this study the outcome human was considered as a
positive outcome and outcome avian was considered as
a negative one. True positives (TP) were sequences cor-
rectly classified as coming from human hosts. True
negatives (TN) were sequences correctly classified as
coming from avian hosts. False positives (FP) were
actually avian sequences but incorrectly classified as
human sequences and false negatives (FN) were actually
human sequences that were incorrectly classified as
avian sequences. The performance of the models for all
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the proteins for both HIN1 and H3N2 was assessed by
the following statistics.

Sensitivity: it is also known as the true positive rate
(TPR). In our case, rate at which a model correctly iden-
tifies sequences coming from a human host is the sensi-
tivity ie. a sequence originally from human host and
classified as coming from human hosts by the model. It
is calculated with the following formula:

P

Specificity: Also known as the true negative rate
(TNR). The rate at which the model correctly identifies
avian sequences is the specificity, which is calculated by:

N

Matthews correlation coefficient: It is a measure of
how well a model classifies as a whole. The difference
with accuracy is that unlike accuracy Matthews correl-
ation coefficient is not affected by un-balanced data and
hence gives a better overall idea of how well the model
is classifying. It is calculated by the following formula:

Matthews correlation coefficient (MCC)

(TP x TN) - (FP x FN)
VP t FP) x (TP + FN) x (IN + FP) x (IN + FN)

From alignment positions to true positions

In this study the aa positions for all the H3N2 proteins
except the PB1-F2 corresponds to the positions of the
A/Victoria/JY2/1968 virus. For all but PB1-F2 proteins
of the HIN1 data, the positions shown in this study cor-
respond to positions on the A/Wisconsin/301/1976 virus.
The PB1-F2 protein for both viruses is in a truncated
form and we wanted to show positions from a full-
length protein. For this reason we mapped the PB1-F2
H3N2 positions to the PB1-F2 of the A/New York/674/
1995 virus and the PB1-F2 HIN1 positions to full-length
PB1-F2 of the A/duck/Korea/372/2009 virus.

Phylogenetic analysis

FastTree 2.1.8 [44] was used to create the phylogeny
trees.

Scripting programming language
Python was used for scripting purposes.

Additional files

Additional file 1: This file contains the lists of significant features that
were selected by MCFS for all the proteins of both subtypes. (XLSX 74 kb)
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Additional file 2: This file contains the rule-based models for all the
proteins of both subtypes. (XLSX 41 kb)

Additional file 3: This file contains list of names of the unseen viral
sequences for both subtypes that were either miss-classified or could not
be classified by the rule-based models. (XLSX 10 kb)

Additional file 4: This file contains singular and combinatorial
signatures from the rules for both subtypes. (XLSX 63 kb)

Additional file 5: This file contains all the phylogeny trees, separate for
subtype and host, marked with top 5 rules. Each sequence is represented
by its GeneBank accession. The nodes with a LightBlue background are
the new, unseen sequences. The unmarked nodes do not support the
top 5 rules, and were either supporting rules other than the top 5 or
were not classified by the models. (PDF 7180 kb)

Additional file 6: This file contains all the combined subtypes and hosts
phylogeny trees for each protein. Each sequence is represented by its
GeneBank accession, its subtype and its host. (PDF 8113 kb)
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