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Abstract

Background: The RNA-seq technique is applied for the investigation of transcriptional behaviour. The reduction in
sequencing costs has led to an unprecedented trove of gene expression data from diverse biological systems.
Subsequently, principles from other disciplines such as the Benford law, which can be properly judged only in data-
rich systems, can now be examined on this high-throughput transcriptomic information. The Benford law, states
that in many count-rich datasets the distribution of the first significant digit is not uniform but rather logarithmic.

Results: All tested digital gene expression datasets showed a Benford-like distribution when observing an entire
gene set. This phenomenon was conserved in development and does not demonstrate tissue specificity. However,
when obedience to the Benford law is calculated for individual expressed genes across thousands of cells, genes
that best and least adhere to the Benford law are enriched with tissue specific or cell maintenance descriptors,
respectively. Surprisingly, a positive correlation was found between the obedience a gene exhibits to the Benford
law and its expression level, despite the former being calculated solely according to first digit frequency while
totally ignoring the expression value itself. Nevertheless, genes with low expression that exhibit Benford behavior
demonstrate tissue specific associations. These observations were extended to predict the likelihood of tissue
specificity based on Benford behaviour in a supervised learning approach.

Conclusions: These results demonstrate the applicability and potential predictability of the Benford law for

gleaning biological insight from simple count data.
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Background

RNA-seq is a very common application in biology to
examine features of the transcriptome and global pat-
terns of gene expression. The rapid development of mas-
sively parallel sequencing or next-generation sequencing
(NGS) [1, 2] together with the reduction in sequencing
cost and the maturation of analytical tools for the ana-
lysis of the data made this application a standard prac-
tice in molecular biology and medical studies. In recent
years, there is a huge accumulation of RNA-seq data
available in public biological databases, opening new op-
portunities for studying general patterns of gene expres-
sion in biological and medical systems. This copious
data may now be examined using postulations that re-
quire vast information for their objective testing, such as
the Benford law.
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The Benford law, also known as the first digit law,
contradicts intuition, by which one would assume that
in any given series of numbers, the frequency of all nine
digits appearing in the most significant (left-most) nu-
meric position would be equal. The Benford law states
that in naturally occurring datasets the larger digits have
a lower likelihood to occur in the first digit position [3].
This law was discovered by Newcomb in 1881 who ex-
amined tables of logarithms and noticed that the first
pages were used more often, as indicated by finger print
stains, than later pages [4]. In 1938, Frank Benford re-
discovered this phenomenon and tested it on different
types of count data, including population size of differ-
ent cities, rivers length, heat constants, atomic weights,
electricity bills and many more [3]. Today, the Benford
law is used mainly for detecting fraudulent activity in ac-
counting and tax data reports [5, 6]. The idea of using
Benford’s Law to screen data is based on the observation
that regular, “naturally generated” data usually follow a
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logarithmic distribution, while faked data show abnor-
malities in the distribution [7].

Although the Benford law is known for many years, its
application in biological systems was barely investigated.
Benford’s law was found to be applicable to normal
growth of human as well as bacterial populations [3, 8,
9]. Costas et al. found that the distribution of cell num-
ber per colony of a bacterium M. aeruginosa collected
from different locations obeys the Benford law [9].
Grandison et al. [10] demonstrated that kinetic rate pa-
rameters of biological pathways follow Benford law
closely. Kreuzer et al. [11] directly correlated changes in
first digit distributions of EEG data with different states
of anaesthesia. In the realm of genomics, it was shown
that the number of ORFs for Eukaryotes follows a Ben-
ford distribution [12], Hoyle et al. [13] showed that
microarray spot intensities, which are correlative to mes-
senger RNA abundance, follow Benford distribution.
Generally, first digit distribution can be used to monitor
the consistency of the experimental process, and data
quality [14-17].

Here we tested whether digital gene expression data
(RNA-seq), generated by NGS platforms that have be-
come the obvious choice for expression experiments, ad-
here to the Benford distribution. In contrast to
microarray data, RNA-seq technology reflects the actual
count of RNA molecules rather than inferring expres-
sion from relative spot intensity. We examined if devi-
ation from the Benford distribution is tissue specific or
influenced by changes in gene expression occurring dur-
ing development. In addition, we investigated whether
genes belonging to various functional categories exhibit
dissimilar Benford behaviour.

Methods

Available RNA-seq data

Raw fastq files of a mouse liver RNA-seq sample were
provided by Zahavi et al. [18]. Adapter and low quality
bases were trimmed using Trim_galore [19] and reads
were mapped to the mouse genome (build mm10) using
TopHat2 [20]. HTSeq-count script [21] was used in
order to count the reads mapping each annotated mouse
gene, generating a count table. Frequency of the most
significant digit was calculated as described in the
“Benford analysis” section below.

RNA-seq raw gene count datasets were downloaded
from the ReCount resource [22]. These include the Illu-
mina Human BodyMap 2.0 data set [Gene Expression
Omnibus accession code GSE30611] that consists of 16
human tissue types, and the transcriptome data of Dros-
ophila Melanogaster at different developmental stages
[23]. “Globally normalized” RNA expression (given in
RPKM values) of human tissues from multiple donors
was downloaded from the GTEx portal [24]. Single-cell
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gene expression was obtained from the GEO portal.
In these experiments, RNA isolated from 44,808
mouse retinal cells (GSE63472) and 11,149 mouse ES
cells at various differentiation time points (GSE65525)
were sequenced and profiled using the Drop-seq tech-
nology [25, 26]. The raw gene count tables were obtained
from GEO, and converted to counts per million (CPM)
values prior to mean absolute error (MAE) calculation (see
below).

Simulations for dissecting technical parameter effect

The raw data for this analysis originated from the ABRF
SEQC study which includes two sample types. The first
is the Universal Human Reference RNA (740000, Agilent
Technologies) and the second is the Ambion FirstChoice
Human Brain Reference RNA (AM6000, Life Technolo-
gies). Both of which are well characterized standards that
were used as part of the SEQC study by the US Food
and Drug Administration (Seqc/Maqc-III Consortium.
[27]). In contrast to the brain tissue samples, the univer-
sal human reference pools 10 human cell lines. Three
paired-end 100 bp replicates were selected and down-
loaded (Gene Expression Omnibus accession GSE47792)
for each sample type.

In order to simulate the effect of sample origin (cell
lines vs tissue), sequencing length, sequencing type
(paired or single-end) and sequencing depth on the
Benford behaviour, the following analyses were per-
formed: (1) Original 100 bp paired-end reads for both
sample origin types (2) 100 bp single-end reads for both
sample origin types, in this case only the left reads were
used (3) Single-end reads that were computationally
trimmed to 50 bp (4) Single-end reads that were compu-
tationally trimmed to 25 bp. Instead of using all of the
original paired-end reads, we randomly chose (5) 80 %
(6) 50 % and (7) 30 % of the sequences. For each simula-
tion, adapter-trimmed (using Trim Galore [19]) raw se-
quences were aligned to the hg38 genome assembly
(UCSC) with Tophat2 aligner version 2.0.1 [20]. HT Seq-
count script [20] was used to generate counting tables
describing the number of reads falling within each an-
notated gene. Unless specified otherwise the Biocon-
ductor edgeR package [28] was used to calculate
various expression metrics. The Benford test (see
below) was applied to the following expression data:
(1) raw counts (2) Counts Per Million (CPM) mapped
reads values (3) Reads Per Kilobase of transcript per
Million mapped reads (RPKM) (4) Gene based Tran-
scripts Per Million (TPM) values, calculated using an
in-house R script.

In total, 168 matrices were computed (four gene
expression calculation methods for 42 [three replicates
of seven technical parameters tested for two sample ori-
gins: tissue vs. cell line] generated datasets).
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Lists of housekeeping and tissue specific genes

A list of human housekeeping genes was obtained from
Eisenberg et al. 2013 [29]. Tissue specific genes were ob-
tained from the GeneCards database [30, 31]. Out of the
466 lung tissue specific genes, 306 which had matched
gene symbols in GTEx were used in downstream ana-
lysis. A similar number of housekeeping genes were ran-
domly chosen out of the 3701 that were downloaded.
Due to the lack of available mouse housekeeping and
retina-specific genes, we used the human lists after con-
verting the human gene symbol to their mouse ortholo-
gues. A list of 296 retina-specific genes was fetched from
the GeneCards database, together with their homologous
mouse gene symbols. The list of ~300 human house-
keeping genes used above was converted to mouse gene
symbols using BioMart Ensembl tool [32].

Benford analysis

The first digit distribution was determined for the differ-
ent gene expression count datasets. The first digits
distribution of the read counts were calculated, while ig-
noring zero values. All included datasets were compared
to the Benford distribution using the R package Ben-
fordTests [33] and in-house scripts. The mean absolute
error (MAE) defined in the following formula

1 n
MAE = — Ai-Ei
”,:Zl| i—Ei|

was used in order to measure the amount of deviation
from the Benford distribution, where Ai is the observed
frequency of first digit i, Ei is the expected value as pre-
dicted from the Benford distribution and n equals 9.

Quantile normalized lung gene expression data (given
in RPKM values) from 133 individuals originating from
the GTEx database was analysed for a subset of genes
belonging to either tissue-specific, housekeeping or ran-
dom categories (approximately 300 genes of each). The
mean absolute error (MAE) from the Benford distribu-
tion was calculated in two ways. In the individual-
centric mode, the MAE was calculated for every gene
category in each sample (individual) such that three
MAE values were generated per individual for either a
tissue specific, housekeeping or random gene set. The
distribution of these values across individuals was then
plotted for each gene category. In the gene-centric
mode, the MAE was calculated across individuals for
every single gene included in the different gene categor-
ies. The distribution of these MAE values within each
category was plotted.

In the retina single-cell analysis, genes were defined as
expressed if their mean CPM (counts per million
mapped reads) values calculated across all cells were in
the top 40 % [34]. Since genes which are not expressed

Page 3 of 15

inherently deviate from the Benford law, we pre-filtered
for expressed genes prior to their ranking according to
MAE scores. Subsequently, genes were ranked based on
their MAE values and up to 300 top and bottom genes
were selected. The genes with the highest and lowest
MAE scores were analysed for enriched GO terms and
tissues using GeneAnalytics [35]. In the analysis of genes
exhibiting both low MAE score and low expression level,
we selected 321 genes having mean Log,CPM <5 out of
the 600 genes tested above. These genes were sorted by
their MAE score value, and the top and bottom genes
were analyzed using GeneAnalytics. Top genes were se-
lected as having an MAE < 0.065 (according to the MAE
distribution plot of Fig. 6¢ in the Results section), and a
similar number of genes (25) were selected from the bot-
tom of the list (genes having the highest MAE scores).
These genes were subjected to GeneAnalytics “Tissue and
Cells” analysis (based on manually curated article informa-
tion as well as high throughput comparisons) [35].

In the analysis of differentiating individual mouse ES
cells [26], MAE scores were calculated for every expressed
gene across approximately a thousand cells at different
time points (0 days representing pluripotent ES cells and
7 days representing differentiating cells) following leukae-
mia inhibitory factor (LIF) withdrawal. Expressed genes
were defined as for the retina analysis. Genes having ex-
pression level above log,CPM > 8 in day O were selected.
This group of genes was divided into two subgroups. One
contains all genes having an MAE score greater than 0.04,
and the other contains the remaining genes. These gene
lists were subjected to descriptor enrichment analysis
using GeneAnalytics.

Multidimensional scaling classification

Gene-centric MAE values calculated for every gene
across lung patients, as well as the first digit frequencies
calculated per gene was used as input for Multidimen-
sional Scaling Analysis (MDS) as well as K Nearest
Neighbours (KNN) test. MDS was performed using
commands in the edgeR Bioconductor package [28] The
600 Lung tissue specific and housekeeping genes were
divided to training and test sets, with a proportion of
70:30 respectively. A KNN classification test using stand-
ard R functions implemented in the “class” package [36]
was performed with various k values (3,5,7,9). Optimal
results were observed with k=7.

Statistical test

In order to determine if a numerical data could conform
to the Benford law, Pearson’s Chi-squared Goodness-of-
Fit test was performed (see R BenfordTests package [33]
for more details). The null hypothesis is that the popula-
tion’s first digits distribution conforms to Benford’s Law,
hence a distribution having a p-value > 0.05 is considered
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to adhere to the Benford distribution. A comparison be-
tween distributions was done using the Mann—Whitney-
U test.

Results

Benford distribution in digital expression data

In order to test if RNA-seq gene expression data follow
Benford’s law, we used mouse liver sequencing data [18].
Calculation of the most significant digit frequency re-
vealed that the digits of mouse liver expression data are
not uniformly distributed, but rather similar to the
Benford distribution (Fig. 1). Whilst Chi-squared
Goodness-of-Fit test rejected the null hypothesis
(p-value < 107*®) probably due to the slight devia-
tions in the first digit frequencies, the Benford trend
is clearly discernible. Digit 1 appears approximately
30 % of the time as the most significant digit, and is
more frequent than other digits, which have progres-
sively reduced frequencies.

Next we tested the effect of different RNA-seq tech-
nical parameters, such as library type, read length, cover-
age, sample origin (cell line vs tissue), as well as different
ways to calculate gene expression (raw counts vs various
normalizations) on the obedience to the Benford law
(see Methods for details). Our broad simulation analyses
demonstrate that the expression-based Benford pattern
does not depend on read length, coverage and library
type (Additional file 1: Figure S1, Additional file 2:
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Figure S2, Additional file 3: Figure S3, Additional file 4:
Figure S4, Additional file 5: Figure S5, Additional file 6:
Figure S6, Additional file 7: Figure S7, Additional file 8:
Figure S8, Additional file 9: Figure S9, Additional file 10:
Figure S10). Additionally, applying various normalization
methods did not significantly affect the Benford trend,
in which higher digits are less frequent as most signifi-
cant digits (Fig. 2 for brain tissue, Additional file 11:
Figure S11 for aggregated cell lines). An exception to
this was observed when looking at CPM values (Fig. 2,
Additional file 4: Figures S4, Additional file 9: Figure S9
and Additional file 11: Figure S11). Ignoring decimal
numbers below 1, which are typical of very lowly
expressed genes, restores the Benford pattern (Add-
itional file 5: Figure S5, Additional file 10: Figure S10).
Importantly, the preservation of lognormal distribution
is vital for observing the Benford pattern. Removal of
the log nature of the data by transforming any type of
gene count into a log scale will rescind this effect
(Additional file 12: Figure S12). The Benford distribution
was manifested in all replicates as demonstrated by a
small standard deviation (Fig. 2). Since various metric
generating methods (raw counts, RPKM, TPM) exhibit
the Benford pattern, they are interchangeable for testing
additional Benford-related characteristics. In down-
stream analysis we used either raw counts or RPKM
values. In analyses that ignore lowly expressed genes, the
CPM values were used as well. The various expression
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expression metrics. Expression data was calculated based on 100 bp

metrics that were used in different analyses are summa-
rized in Additional file 13: Table S1.

Even though the genetic makeup of all cells in the
body is identical, expression levels of the general
populations of genes varies between different tissues
and cell types. Therefore, the observation of adher-
ence to the Benford distribution in the liver as de-
scribed above was ascertained in 16 human tissues
using the Illumina BodyMap 2.0 dataset. The distri-
bution of the first digit frequency derived from each
tissue expression table was compared with the Ben-
ford distribution using the Pearson’s Chi-squared
Goodness-of-Fit test, leading to a P-value larger than
0.1 for all but two tissues (brain, skeletal muscle),
clearly accepting the null hypothesis that the samples
adhere to the Benford distribution. This is confirmed
by corresponding quantile (Q-Q) plots (Fig. 3) which
indicates almost no deviation from the diagonal line,
even for the two tissues that did not pass the
statistical test detailed above. These results demon-
strate that the compliance of gene expression data
with the Benford law is a global pattern which is not
tissue specific.

Benford law adherence in gene categories

Next, we sought to test whether different gene types
such as housekeeping and tissue specific genes, which
are exposed to diverse transcriptional regulation, exhibit
variations in their obedience to the Benford distribution.
Housekeeping genes are constitutively expressed in all
tissues to maintain cellular functions, but are presumed
to produce the minimally essential transcripts necessary
for normal cellular physiology [37]. On the other hand,
tissue specific genes show an elevated expression in a
particular tissue where their function is required. In
order to test the agreement of these gene types with the
Benford distribution, we used the RNA expression data
from the GTEx portal [24]. In contrast to the Illumina
body map project, which tested expression in a single
sample from different tissues, the GTEx database
contains tissue expression from multiple donors. This
enables examination of the Benford distribution of a spe-
cific gene or a gene set across many individuals. Lung
expression data was subjected to individual-centric Ben-
ford distribution deviation (MAE, see Methods) calcula-
tion for each individual and across either tissue-specific,
housekeeping or random gene categories. Distribution of
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MAE values was highest in housekeeping genes, and to gene categories (Additional file 14: Figure S13).
lowest in the tissue specific gene set (Fig. 4a). A similar ~ Additional tested tissues (brain and heart, Additional
and even stronger pattern was exhibited when calculating  file 15: Figure S14a, b) exhibited results along the
the MAE for every gene across all individuals (gene-cen-  same line, indicating that this is probably a general
tric mode) thereupon plotting the distribution according  phenomenon. When looking more closely at the
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Fig. 4 Expression deviation of different gene sets from the Benford distribution: a MAE (mean absolute error) distributions across 133 lung tissues
for housekeeping, tissue specific and random gene sets (individual-centric mode). A one-sided Mann-Whitney U test was computed to compare
between the distributions of tissue-specific vs. housekeeping genes, and the p values are indicated in the plot. b Density plots for gene expres-
sion values according to the aforementioned categories. Gene expression values from all individuals were binned
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expression levels of the three gene sets (Fig. 4b), we
could clearly see the narrow distribution of the
housekeeping genes’ expression levels compared with
random and tissue-specific genes. This is in agree-
ment with the principle that data is likely close to the
Benford distribution if it is spread widely, i.e., its
values span multiple orders of magnitude [38, 39].

Benford and single-cell transcriptome

Recently, novel technologies enable the examination of
cell-specific gene expression across a tremendous amount
of single cells [25, 40, 41]. This markedly advances our
capacity to understand individual cell heterogeneity within
a single tissue, not possible using whole tissue RNA-seq
data, such as those available for several hundreds of sam-
ples as in the GTEx database [24]. In order to test whether
the deviation pattern from the Benford distribution ob-
served for whole tissue is preserved across single cells we
used RNA-seq data generated for ~44,000 mouse retinal
cells [25]. The gene-centric mode MAE score for retina-
specific genes, identified via the GeneCards database
search engine, as well as random and housekeeping genes
across all cells was calculated and the distribution of these
scores is presented in Fig. 5. The pattern observed for
both whole tissue as well as individual cells are in con-
cordance (housekeeping genes having higher MAE score
distribution than tissue-specific genes), albeit the differ-
ences among the various gene sets were much less pro-
nounced in the single cell data.
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Next, in order to examine whether genes which tightly
adhere to Benford can be biologically characterized, we
calculated MAE scores for every expressed gene (~9800,
see Methods) in the dataset across over 44,000 cell
samples. The genes that adhere closest to Benford
(lowest MAE scores) are involved in visual and eye re-
lated biological processes and pathways (Fig. 6a). The
inner panel displaying the tissues that were enriched in
the GeneAnalytics analysis, indicate that the selected
300 lowest-scoring genes are indeed associated with the
eye and neural anatomical entities (neurons, brain and
neural tube, Fig. 6a). The GeneAnalytics analysis of the
highest MAE scoring genes are associated with GO
terms or pathways which are involved in basic cellu-
lar maintenance such as translational and transcrip-
tional processes and none were related to visual
terms. Even the identified virally-oriented GO terms
stem from gene subsets enriched for ribosomal pro-
teins (Fig. 6b). Additionally, the tissues associated
with the high MAE genes were not related to eye or
neuron-like structures.

We subsequently tested the expression levels of the
highest and lowest MAE scoring genes (Fig. 6c). In
general, we observed a positive correlation between
adherence to Benford and expression level. The lowest
MAE scoring (most adhere to Benford) genes exhibit
significantly augmented expression levels with a wider
distribution than their highest MAE scoring counter-
parts (Fig. 6d).
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Fig. 5 Expression deviation of different gene sets from the Benford distribution: a MAE (mean absolute error) distributions across ~44,000 retina
cells for housekeeping, tissue specific and random gene sets. A one-sided Mann-Whitney U test was computed to compare between the distribu-
tions of tissue-specific vs. housekeeping genes, and the p values are indicated in the plot. b Density plots for gene expression values according
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Fig. 6 Benford analysis of single-cell retinal RNA-seq data: GeneAnalytics analysis of the extremely deviating genes from the Benford distribution.
Least (a) and most (b) 300 (in each direction) deviating genes were subjected to enrichment analysis of Gene Ontologies — Biological Processes
(main panel) and Tissues and cells (inner panel). ¢ The distribution of MAE (mean absolute error) scores from the Benford law for all genes. Highest
(blue) and lowest (red) 300 scoring genes were selected for further expression analysis and descriptor enrichment testing. d Expression
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Since gene ontology analysis tests for an enrichment issue, we tested whether the tissue specificity of genes
rather than exclusiveness of biological terms in a list of residing on the lower tail of the expression distribution
genes, one would argue that the observation above in  (where the blue and red curves overlap in Fig. 6d), can
which Benford-adherence genes have tissue specific be distinguished only based on their adherence to
roles, relies on those genes in the list that are highly = Benford. We found, that 19 out of 25 (~76 %) genes with
expressed in the tissue. In an attempt to address this low expression levels, which adhere to the Benford law,
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were determined as associated with the eye tissue. These
genes include ADAMTS]1 which was suggested to be in-
volved in the inhibition mechanism of retinal neovascu-
larization [42] and connexin43 (GJA1l) which is the
major connexin protein of astrocytes in the mammalian
retina [43, 44]. In contrast, only four out of 25 (~16 %)
in the high MAE scoring counterparts have any associ-
ation with the eye and revealed shared biological terms
which are inherent in the normal metabolism of every
tissue in the body, such as translational processes
(initiation, elongation and termination), “nuclear-tran-
scribed mRNA catabolic processes” and “cellular protein
metabolic processes”.

Benford in development

Multi-cellular organisms are able to differentially exploit
their genetic information to generate morphologically
and functionally specialized cell types during develop-
ment. Regulation of gene expression is the major driving
force of this process [45]. The diversity of expressed genes
and their abundancy is highly dynamic during develop-
ment, reflecting differences in requirements for basic cel-
lular machineries in different cell types and tissues of the
growing embryo. This premise was used for testing if the
developmental gene expression is consistent with the
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Benford distribution. To this end, RNA-seq data generated
for six stages during Drosophila development [23] was
used as a representative developmental model system.
Leading digit plots (Fig. 7) demonstrate adherence to the
Benford law for global gene expression during develop-
ment. The Chi-squared p-values was greater than 0.05, in
at least one third of the replicates. The significant p-values
observed in several replicates are probably due to small
deviation of the digit 1 frequency from the expected
30.1 %, nevertheless the Benford trend is clearly evident.
Focusing on genes highly expressed in adult tissues com-
pared to all earlier developmental stages (fold-change >
16) did not change the Benford pattern in any stage (Add-
itional file 16: Figure S15). This may be explained by the
wide distribution of highly expressed adult genes in all
stages, irrespective of their expression levels.

In order to understand whether high resolution data
could be more sensitive to changes in the Benford distri-
bution, we performed analysis on developmental data
originating from individual mouse ES cells in various
differentiating stages [26]. Gene expression levels in
undifferentiating ES cells (time point 0) were plotted
against their MAE score (gene-centric mode calculation,
Fig. 8a). A global pattern can be seen in which highly
expressed genes tend to have lower MAE values
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Fig. 7 The proportional frequency of each leading digit as predicted by the Benford distribution (solid line) and observed in Drosophila RNA-seq
data at various developmental stages. The mean + SD across replicates (2 to 12 depending on the developmental stage) was plotted
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(log,CPM between 5-8). However, this pattern does not
hold for all genes. A group of genes can be clearly de-
tected (in the right tail of the expression distribution)
having very high expression levels, but higher MAE
values (highlighted blue). This group is enriched with
housekeeping genes having general functions such as
translational processes (initiation, elongation, termin-
ation), mRNA nonsense mediated decay and structural
constituent of ribosome. In contrast to this housekeep-
ing set, we can also observe genes having high expres-
sion levels but low MAE values (highlighted red). These
are enriched with cell cycle descriptors such as mitotic
prophase and pathways related to G1/S checkpoint. This
is in agreement with published observations whereby
pluripotent ES cells are primarily in the S phase [46]. In
order to test how these genes behave during develop-
ment, global gene expression levels against MAE score
were plotted in each time point following LIF withdrawal
(day2-day7, Fig. 8b-d), and the location of the highly

expressed genes (with high and low MAE score) as
found in day O analysis was highlighted (blue and red
dots, respectively). As can be seen, the housekeeping
group of genes (blue) tend to keep their localized pos-
ition in the plot, meaning they have high expression
level and high MAE score also in advanced developmen-
tal stages which is in line with their housekeeping na-
ture. However, day 0 low-MAE highly expressed genes
lose their localized position, and are now more variable
in terms of expression and MAE level.

Benford predicting power

As demonstrated above, tissue specific genes adhere more
to the Benford law than housekeeping genes. In order to
test if tissue-specific genes can be clustered together only
based on their Benford behaviour, we used the first digit
distribution and MAE score values of each gene in the
GTEx lung dataset, as input for multidimensional scaling
analysis. While housekeeping genes (Fig. 9 red squares)
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Fig. 9 Multidimensional scaling analysis based on first digit distribution and MAE score values calculated for each gene in the GTEx lung dataset.
Red squares represent housekeeping genes, while blue circles represent tissue-specific genes

are highly distributed in space, tissue specific genes have a
unique pattern, and are clustered together (blue circles).
Next, K nearest neighbours test was performed in order to
investigate the feasibility of the Benford law to predict the
tissue specific tendency of a gene. The list of tissue specific
and housekeeping genes was divided into training (402
genes) and test (204 genes) sets. The results of the KNN
test are presented in Table 1. These results lead to a sensi-
tivity of 0.96 while preserving high specificity of 0.95, illus-
trating the power of the Benford test to predict tissue
specificity.

Discussion

Most of the scientific literature regarding the Benford
law deals mainly with its uses in the financial field, for
example its application in fraud financial report detec-
tion. In life sciences, however, there is scant information
regarding the uses of Benford law in biological data sys-
tems, and even less information on genomics applica-
tions. High throughput technologies provide thousands

Table 1 KNN test investigating the predictive power of the
Benford law

K nearest neighbors test Predicted

k=7) Housekeeping Tissue-specific

Actual Housekeeping 95 5
Tissue-specific 4 100

of measurements from a single biological sample, which
present a tremendous source of count data against
which to test Benford's law. These include gene expres-
sion counts across many individuals, and more recently,
single cell measurements, which allow testing of hetero-
geneity in the nature of gene expression across single
cells. Here we report that digital gene expression follows
Benford distribution in a wide range of biological tissues
and developmental conditions. Although read length
and coverage highly influence the ability to quantify
differential gene expression [47, 48] they have a negli-
gible impact on the Benford behaviour of gene expres-
sion data.

In general, numerical data which follows the Benford
distribution, usually have a logarithmic nature [4]. This
is, therefore, the underlying explanation why digital gene
expression data, which is lognormally distributed, ob-
serves the Benford law [49, 50]. This rationale may also
interpret the suggestion of Hoyle et al. [13] in which
gene expression adherence to the Benford law is not
species specific. Indeed, our findings that gene expres-
sion data, originating from either mouse (Fig. 1), human
(Fig. 3) or drosophila (Fig. 7) species follow the Benford
distribution; indicate that this principle is conserved
across metazoans, and may probably be extended to
additional clades in the tree of life as long as the loga-
rithmic nature of their expression data is preserved. Al-
though the lognormal distribution of expression levels
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reflects true biological variability and is not an artefact
of the technology [51], we still cannot rule out that the
PCR exponential amplification, performed during library
preparation, does not contribute to the Benford behav-
iour of gene expression. Therefore, the Benford distribu-
tion could be tested on PCR-free expression data such
as those generated by the Nanostring technology, once
these are performed on a whole genome-scale.

In order to investigate whether biological insight could
be gleaned through examination of first digit frequen-
cies, we explored these distributions in different gene
sets having unique characteristics, such as tissue specific
and housekeeping genes rather than scrutinizing the
whole gene list. As previously described [52], tissue
specific genes are expressed in fewer conditions than
housekeeping. However, looking at a single condition,
one tissue sample for example, the dynamic range of ex-
pression for genes, which were previously determined as
tissue specific, was much wider than that observed for
housekeeping genes. Our finding that housekeeping
genes violate Benford's law, compared with tissue spe-
cific genes, is a reflection of their narrow expression dis-
tribution. Repeating this analysis across 133 samples of
the same tissue produced the same distribution. This
process was also repeated in an additional two GTEx-
derived whole-tissue homogenates as well as retina
single-cell data, exhibiting similar results.

The observed restricted expression range of housekeep-
ing genes can be explained by the fact that housekeeping
genes do not map to random locations throughout the hu-
man genome, but instead resolve to clusters [53, 54]. This
may subject the clustered genes to the same transcrip-
tional control, leading to a narrow expression range. In
contrast to housekeeping genes, tissue-specific genes ex-
hibit a wide expression dynamic range which explains
their Benford behaviour. This wide range is surprising in
itself since one would expect tissue specific genes, which
are defined as genes whose expression is vital to the
normal metabolism of the tissue, to demonstrate a
narrow distribution of high expression level. Our data
suggest that tissue specificity and expression distribu-
tion (within a single condition/tissue) are orthogonal
characteristics of genes.

It is recommended to analyse large datasets (>1000) in
order to discern Benford tendencies [55]. This require-
ment can be easily met by observing the expression of
many genes in a single tissue RNA sample. However, in
order to analyse the Benford distribution of a single
gene, the recommended experiment sample size should
reach a thousand samples, which for the most prevalent
RNA-seq experiments, is not practical.

The advantage of high throughput single-cell sequen-
cing technologies is the possibility to dissect the expres-
sion of a single gene across a vast amount of samples.
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We harnessed the availability of two highly parallel
single-cell expression profiling datasets available for
mouse retina and ES cells, to rank individual genes in
accordance with their closeness to the expected Benford
distribution. Once this rank was available we could inspect
whether it is biologically meaningful. It is unexpected that
genes that were selected based only on their Benford distri-
bution property, while completely ignoring their expression
value, will share unique biological characteristics. Surpris-
ingly, we found that genes exhibiting the Benford pattern
are more likely to have a functional role within the tissue in
question, and are likely to be highly expressed. Further-
more, we observed that Benford-adherent genes with low
expression levels tend to have tissue oriented functionality
rather than basic maintenance functions (translation and
transcription processes) which characterise their Benford-
divergent counterparts. Therefore, genes that were over-
looked for roles in tissue functionality, due to their lower
expression level, should now be revaluated for this capacity
based on their Benford behaviour. This could be achieved
by possibly overexpressing or completely eradicating their
expression, thereupon examining the resulting phenotype
in the tissue or cell line in question, where they are pre-
dicted to have specific roles.

Two approaches were taken in this study in order to
test the capacity of the Benford law to predict tissue spe-
cificity. The first is by testing gene ontology enrichment
of genes that were selected based on their MAE score
only, without assuming anything about their nature.
When we used this approach on thousands of retina sin-
gle cell data, we indeed found that genes which adhere
to the Benford law tend to have tissue specific roles.
This phenomenon could not be observed in GTEx tissue
expression levels probably due to the relatively low num-
ber of samples which are optimal for Benford analysis.
Once additional high-throughput single cell data will be
available, this observation could be verified in other
tissues as well. The other approach uses an apriori
characterised tissue specific and housekeeping gene sets,
thereupon testing the structure of these datasets by visu-
alizing the relative distance of the observations. Next,
supervised machine learning quantified the feasibility of
the Benford law to predict the tissue specific tendency of
an unknown gene. The later was successfully applied to
GTEx data despite its relatively small number of samples
(133 in the lung tissue dataset).

Conclusions

The applicability of the Benford distribution in biological
datasets has not been fully realized as of yet. To the best
of our knowledge, there are no previous reports in the
literature showing that RNA-seq digital expression data
follow the Benford distribution. Furthermore, this paper
introduces the novelty of relating adherence to the
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Benford law within gene sets with unique characteristics,
such as tissue specificity. Importantly, we demonstrated
the application of Benford adherence for testing the like-
lihood of genes to have a general housekeeping vs. hav-
ing a unique role in the examined tissue. To summarize,
despite its simplicity, adherence to the Benford law is an
elegant and robust means to classify genes while totally
ignoring their expression level and any other gene
characteristic.
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Additional file 1: Figure S1. The effect of different technical
parameters on the Benford pattern as calculated based on brain-derived
gene expression data described as raw counts. If not mentioned other-
wise read length was 100 bp and all reads were used in the analysis.
Truncated reads (25 and 50 bp) and lower coverage (30, 50 and 80 % out
of the total reads) appear in plot titles. The red line indicates the ex-
pected Benford distribution, symbol-marked lines are the distribution ob-
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parameters on the Benford pattern as calculated based on brain-derived
gene expression data described as RPKM values. If not mentioned other-
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Truncated reads (25 and 50 bp) and lower coverage (30, 50 and 80 %
out of the total reads) appear in plot titles. The red line indicates the
expected Benford distribution, symbol-marked lines are the distribution
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The red line indicates the expected Benford distribution, symbol-marked lines
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on the Benford pattern as calculated based on brain-derived gene expression
data described as CPM. If not mentioned otherwise read length was 100 bp
and all reads were used in the analysis. Truncated reads (25 and 50 bp) and
lower coverage (30, 50 and 80 % out of the total reads) appear in plot titles.
The red line indicates the expected Benford distribution, symbol-marked lines
are the distribution observed for three replicates. (PDF 814 kb)

Additional file 5: Figure S5. The effect of different technical parameters
on the Benford pattern as calculated based on brain-derived gene expres-
sion data described as CPM values, ignoring very low expressed genes
(CPM < 1). If not mentioned otherwise read length was 100 bp and all reads
were used in the analysis. Truncated reads (25 and 50 bp) and lower cover-
age (30, 50 and 80 % out of the total reads) appear in plot titles. The red line
indicates the expected Benford distribution, symbol-marked lines are the
distribution observed for three replicates. (PDF 18 kb)

Additional file 6: Figure S6. The effect of different technical parameters
on the Benford pattern as calculated based on cell line-derived gene expres-
sion data described as raw counts. If not mentioned otherwise read length
was 100 bp and all reads were used in the analysis. Truncated reads (25 and
50 bp) and lower coverage (30, 50 and 80 % out of the total reads) appear in
plot titles. The red line indicates the expected Benford distribution, symbol-
marked lines are the distribution observed for three replicates. (PDF 17 kb)

Additional file 7: Figure S7. The effect of different technical parameters
on the Benford pattern as calculated based on cell line-derived gene
expression data described as RPKM values. If not mentioned otherwise read
length was 100 bp and all reads were used in the analysis. Truncated reads
(25 and 50 bp) and lower coverage (30, 50 and 80 % out of the total reads)
appear in plot titles. The red line indicates the expected Benford distribution,
symbol-marked lines are the distribution observed for three replicates.
(PDF 11 kb)
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Additional file 8: Figure S8. The effect of different technical parameters
on the Benford pattern as calculated based on cell line-derived gene expres-
sion data described as TPM. If not mentioned otherwise read length was
100 bp and all reads were used in the analysis. Truncated reads (25 and

50 bp) and lower coverage (30, 50 and 80 % out of the total reads) appear in
plot titles. The red line indicates the expected Benford distribution, symbol-
marked lines are the distribution observed for three replicates. (PDF 11 kb)

Additional file 9: Figure S9. The effect of different technical
parameters on the Benford pattern as calculated based on cell line-
derived gene expression data described as CPM. If not mentioned other-
wise read length was 100 bp and all reads were used in the analysis.
Truncated reads (25 and 50 bp) and lower coverage (30, 50 and 80 % out
of the total reads) appear in plot titles. The red line indicates the ex-
pected Benford distribution, symbol-marked lines are the distribution ob-
served for three replicates. (PDF 11 kb)

Additional file 10: Figure S10. The effect of different technical
parameters on the Benford pattern as calculated based on cell line-
derived gene expression data described as CPM values, ignoring very low
expressed genes (CPM < 1). If not mentioned otherwise read length was
100 bp and all reads were used in the analysis. Truncated reads (25 and
50 bp) and lower coverage (30, 50 and 80 % out of the total reads)
appear in plot titles. The red line indicates the expected Benford
distribution, symbol-marked lines are the distribution observed for

three replicates. (PDF 11 kb)

Additional file 11: Figure S11. First digit frequencies of expression
data, calculated for different expression metrics. Expression data was
calculated based on 100 bp single-end reads of the Universal Human
Reference RNA-seq. The mean + SD across three replicates are shown.
Black bars represent the expected Benford distribution. (PDF 11 kb)

Additional file 12: Figure S12. First digit distributions of the expression
counts for a sample dataset (100 bp single-end reads of the universal hu-
man reference RNA-seq). First digit frequencies were calculated based on
counts per million mapped reads (CPM) for all genes having (a) CPM > 0 (b)
CPM > 1 (q) First digit frequencies were calculated based on log 2 of the
CPM counts for all genes having CPM > 1. Red lines represent the Benford
first digit frequencies together with confidence intervals. Black pluses repre-
sent the observed frequencies. Observed relative frequencies and p values
are summarized below the plot (see the signifd.analysis command in the
BenfordTests package for more details on the calculations). (PDF 1805 kb)

Additional file 13: Table S1. The various expression metrics that were
used in different analyses. (PDF 112 kb)

Additional file 14: Figure S13. Expression deviation of different gene
sets from the Benford distribution. The MAE (mean absolute error) was
calculated across 133 lung tissues for every gene included in the
housekeeping, tissue specific and random gene sets (gene-centric mode).
A one-sided Mann-Whitney U test was computed to compare between
tissue-specific and housekeeping distributions, and the p values are indi-
cated in the plot. (PDF 5 kb)

Additional file 15: Figure S14 Expression deviation of different gene
sets from the Benford distribution. The MAE (mean absolute error)
distribution was calculated across (a) 357 brain tissues and (b) 133 heart
tissues, for every gene included in the housekeeping, tissue specific and
random gene sets (gene-centric mode). A one-sided Mann-Whitney U
test was computed to compare between tissue-specific and housekeep-
ing distributions, and the p values are indicated in the plot. (PDF 707 kb)

Additional file 16: Figure S15. The proportional frequency of each
leading digit as predicted by the Benford distribution (solid line) and
observed in Drosophila RNA-seq data at various developmental stages,
as calculated for ~700 genes highly expressed in Adult stage compared
with other stages (fold change > 16). The mean + SD across replicates

(2 to 12 depending on the developmental stage) was plotted. (PDF 410 kb)
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