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Abstract

Background: Non-coding RNAs (ncRNAs) play crucial roles in many biological processes, such as post-transcription
of gene regulation. ncRNAs mainly function through interaction with RNA binding proteins (RBPs). To understand the
function of a ncRNA, a fundamental step is to identify which protein is involved into its interaction. Therefore it is
promising to computationally predict RBPs, where the major challenge is that the interaction pattern or motif is
difficult to be found.

Results: In this study, we propose a computational method IPMiner (Interaction Pattern Miner) to predict
ncRNA-protein interactions from sequences, which makes use of deep learning and further improves its performance
using stacked ensembling. One of the IPMiner's typical merits is that it is able to mine the hidden sequential
interaction patterns from sequence composition features of protein and RNA sequences using stacked autoencoder,
and then the learned hidden features are fed into random forest models. Finally, stacked ensembling is used to
integrate different predictors to further improve the prediction performance. The experimental results indicate that
IPMiner achieves superior performance on the tested IncRNA-protein interaction dataset with an accuracy of 0.891,
sensitivity of 0.939, specificity of 0.831, precision of 0.945 and Matthews correlation coefficient of 0.784, respectively.
We further comprehensively investigate IPMiner on other RNA-protein interaction datasets, which yields better
performance than the state-of-the-art methods, and the performance has an increase of over 20 % on some tested
benchmarked datasets. In addition, we further apply IPMiner for large-scale prediction of ncRNA-protein network, that
achieves promising prediction performance.

Conclusion: By integrating deep neural network and stacked ensembling, from simple sequence composition
features, IPMiner can automatically learn high-level abstraction features, which had strong discriminant ability for
RNA-protein detection. IPMiner achieved high performance on our constructed IncRNA-protein benchmark dataset
and other RNA-protein datasets. IPMiner tool is available at http://www.csbio.sjtu.edu.cn/bioinf/IPMiner.
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Background

Recently non-coding RNA (ncRNA) have received enor-
mous attention within the field of RNA biology. ncR-
NAs play crucial roles in different biological processes,
and their dysregulations have been associated with many
human diseases [1—4]. Thousands of new ncRNAs have
been discovered, whose functions have yet to be dis-
cerned. According to GENCODE v23 (released on 2015-
07), around 60,000 genes have been classified for human
genome, of which more than 40,000 are ncRNA genes
and only 20,000 are protein coding genes, and the num-
ber of ncRNAs is increasing annually [5]. While most of
the functions of ncRNAs are still unknown, therefore it
is imperative to infer their functions based on their bio-
logical mechanisms. One of the known mechanisms is
that ncRNA functions via interacting with proteins [6].
To get the insight into ncRNA’s functions, there is a need
to identify whether this ncRNA interacts with other pro-
teins, which can help understand the mechanism behind
biological processes involving RBPs [7, 8].

There have been many promising progresses for large-
scale RNA-binding protein detection, e.g. reviewed exten-
sively in [9], such as RNAcompete [10], PAR-CLIP [11]
and RNA-protein complex structure. However, these
methods are still time-consuming and cost-intensive,
especially in the post-genomic era. For example, experi-
mental determination of complex structure is high-cost,
and high-throughput technologies requires much time for
careful hand-tuning of putatively bound sequences [12].
While there are a host of studies indicating the sequence
specificities for protein-RNA interaction, they suggest
that sequences carry sufficient information for predicting
RNA-protein interaction [10, 12]. Hence, a reliable com-
putational approach only from sequences is considered
as a complement to identify RNA-protein interactions,
such as training machine learning models to predict inter-
actions based on accumulated experimentally verified
RNA-protein pairs [13, 14]. For protein-RNA interactions
prediction, some studies focus on interacting partner
prediction [13-16], which predict whether an RNA can
bind to a protein or not. Other studies further deter-
mine protein-RNA binding interfaces in proteins [17-19],
which can identify exact binding amino acids between
RNAs and proteins.

Here, we aim to computationally predict interaction
partner between RNAs and proteins, which has attracted
plenty of research efforts in past years [13—16, 20-22]. For
instance, the catRAPID inferred IncRNA-protein associ-
ation score from physiochemical properties [16, 21]. Fur-
thermore, IncPro [15] applied Fisher linear discriminant
to improve inferring association score between IncRNA
and protein using features similar to catRAPID. Differ-
ent from the above two approaches, some studies consider
RNA-protein interaction as a classification problem. For
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example, Pancaldi et al. applied random forest [23] and
support vector machine [24] to classify a protein and an
RNA interact or not via integrating different sources of
features, such as structure, localization and genomic con-
text [20]. Simple sequence features are closely related to
RNA-protein interaction [25], so RPISeq trained a ran-
dom forest model only using simple 3-mer and 4-mer fea-
tures from protein and RNA sequences, respectively [14].
More recently RPI-Pred combined sequences and high-
order 3D structural features to identify ncRNA-protein
interactions [13].

Many challenges still remain in this new area. First, in
the above studies, their extracted features for proteins
and RNAs were hand-crafted. As an example, in [20],
the authors manually curated different sources of fea-
tures, such as GO information, but only 5,166 of 13,243
positive pairs had completely available features required
for model training. So more than half of positive pairs
have to be discarded, which could change the real dis-
tribution behind the data. Additional file 1: Figure S1
illustrates the distribution change of significant feature
Cysteine abundance from [20]. The variance of Cysteine
abundance in all positives is much smaller than after dis-
carding some positives lacking all required features, thus
suggestive of low discriminant power in original data. But
after discarding them, it illustrates a significant impact
of Cysteine abundance on predicting RNA-protein inter-
actions, which may lead to overoptimistic performance.
On the other hand, hand-crafting discriminant features or
rules for RNA-protein requires strong domain knowledge,
how to select the features plays a crucial role in machine
learning models.

Second, previous studies mainly extracted information
from observed sequences [14—16], but they generally got
lowly discriminant features because of feature noises in
the observed sequences. And general machine learning
models might not well handle to mine hidden associations
from the noise inputs. On the other hand, for machine
learning models, it is indispensable to mine refined fea-
tures buried in noise inputs via multiple abstractions and
refinements. Thus if we can automatically extract high-
level discriminant features from some simple features
based on only sequences, then the proposed method will
be expected to be more robust in real-world applications.

Deep learning provides a powerful solution for this
kind of problems, it consists of model architectures with
multiple layers of neural network [26-28], which can
extract high-level abstractions from data automatically.
Meanwhile, deep learning has shown better performance
than other popular machine learning methods in some
research areas, such as speech recognition [29], signal
recognition [26], etc. It also has been proved to be
powerful in bioinformatics [12, 30, 31]. For example,
deep learning has been successfully applied to predict
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RNA splicing patterns in and across various tissues [31].
Recently DeepBind applied deep learning to determine
sequence specificities of DNA- and RNA-binding protein,
which outperforms other state-of-the-art methods [12].
Similarly, DeepSEA learned regulatory sequence code
from chromatin-profiling sequences using deep learning,
which further prioritized functional variants [30]. In sum-
mary, deep learning has the following advantages over
other sequence-based methods: 1) It can automatically
learn specific sequence motifs for RNA-protein [12], and
those sequence motifs have been found to directly medi-
ate sequence-specific associations between RNAs and
proteins [32, 33]. 2) It is able to reduce the impact of
noises in the original data and learn real hidden high-level
features [29]. Furthermore, some deep learning-based
methods even artificially introduce noises to reduce over-
fitting, which can enhances model generalization and
robustness [34].

In this study, we propose a fully sequence-based
method, IPMiner, to predict ncRNA-protein interaction
using deep learning. First, it extracts raw sequence com-
position features from RNA and protein sequences, then
applies stacked autoencoder to extract hidden high-level
features [35], which are then fed into random forest to
predict RNA-protein interactions. Furthermore, stacked
ensembing is used to integrate different predictors to
improve the model performance. Our contributions are
summarized as follows: (1) The newly designed network
architectures can automatically extract abstraction fea-
tures from sequence composition features of proteins and
RNAs, and is able to learn sequence specificities for pro-
teins and RNAs, respectively. (2) We applied deep learning
to better fuse the learned high-level features from raw
input features of proteins and RNAs, instead of directly
concatenating them to be fed into classifiers. (3) We intro-
duced another logistic regression classifier layer based
on the intuition behind deep learning to integrate the
predictions from different methods, which improves the
IPMiner’s performance.

The experiments on our constructed IncRNA-protein
benchmark dataset from Protein Data Bank (PDB) [36]
demonstrate that IPMiner achieves high performance.
Besides, we also test our method IPMiner on previous
published datasets, such as RPI1807 [13], RPI369 and
RPI2241 [14], RP113254 [20, 37] and NPInter2.0 database
[38], and IPMiner yields better performance in all datasets
than other sequence-based methods RPISeq-RF [14] and
IncPro [15].

Results

In this study, we proposed IPMiner (Fig. 1), stacked
ensembling of SDA-RF, SDA-FT-RF and RPISeq-RE,
for predicting IncRNA-protein interactions, where
the RF stands for random forest, the SDA stands for
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stacked denoising autoencoder, and the SDA-FT stands
for stacked denoising autoencoder with fine tuning.
Meanwhile we also tested the performance of SDA-RF,
SDA-FT-RF, RPISeq-RF and IncPro on different datasets,
including structure-based RPI488, RP11807, RP12241 and
RPI369, and non-structure-based NPInter2.0, RPI367
[39], RPIntDB (http://pridb.gdcb.iastate.edu/RPISeq//
download.php) [40] and RPI13254. Considering unavail-
ability of RPI-Pred and catRAPID standalone, here we
only compared IPMiner with RPISeq-RF and IncPro
[15]. IncPro only provides a prediction source code
based on the trained model on their dataset, which
overlaps with our constructed data RPI488 collected
in this study. In addition, we focused on classification
performance. To make it work for classification and be
comparable with IPMiner, we adapted IncPro’s source
code. We only used the extracted features for RNAs
and proteins after Fourier series transformation from
IncPro, then feed them into random forest to evaluate the
performance.

Comparison between different layer architectures for
IPMiner

To investigate the impact of different network architec-
tures on IPMiner’s performance, we also designed two
different network architectures with fully connected layer:

1) Sep-256-128-64: It has two separate (Sep) stacked
networks. One is for proteins, the other one is for RNAs,
their inputs are protein sequence features and RNA
sequence features, respectively. And the last hidden layer
is the concatenation of the two sub-networks. The hidden
layers for two stacked sub-networks are both 256-128-64.
Here 256-128-64 means that the number of neurons for 3
hidden layers in stacked autoencoder are 256, 128, and 64,
respectively.

2) Con-256-128-128, The raw input is concatenation
(Con) of protein and RNA sequence features, which con-
nects to one stacked networks. The hidden layers for
stacked autoencoder is 256-128-128, whose 3 hidden lay-
ers have 256, 128, and 64 neurons, respectively.

From Table 1, we can see that Sep-256-128-64 yielded
over 2 % higher accuracy than Con-256-128-128, which
indicated that when learning sequence specificities for
RNAs and proteins, neurons from RNA and protein
should not connect to the same neurons in successive lay-
ers. Otherwise the information hidden in proteins and
RNAs will corrupt with each other. The results demon-
strated that RNA and protein k-mer features should have
no interaction with each other, and stacked autoencoder
can automatically learn sequence specificities inside pro-
teins and RNAs, respectively.

Different network architectures were trained on our
constructed dataset using the different number of neu-
rons in the hidden layers. The results shown in Additional
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Fig. 1 The flowchart of proposed IPMiner. It proceeded in two main steps. a Train stacked autoencoder models for RNA and protein, respectively,
and fine tuning for it using label information from RNA-protein pairs. b Apply stacked ensembling to integrate SDA-RF, SDA-TF-RF and RPISeg-RF,
which used high-level features before fine tuning, high-level features after fine tuning and raw k-mer frequency features, respectively. The network
architectures were 256-128-64 with 256, 128, and 64 neurons in 3 hidden layers for stacked autoencoder

file 2: Table S2 indicated that 256-128-64 achieved better
performance.

IPMiner achieved high performance for predicting
IncRNA-protein interactions

We first tested IPMiner on our own constructed IncRNA-
protien interaction dataset RPI488. The ROC curve
shown in the Fig. 2 showed the comparison between the
performance of IPMiner, SDA-FT-RF and SDA-RF. All the

three methods achieved high performance with an AUC
greater than 0.90, IPMiner performed a little better than
the other methods. From Table 1, it yielded an accuracy
of 0.891, sensitivity of 0.939, specificity of 0.831, preci-
sion of 0.945 and MCC of 0.784, which was better than
PISeq-RF with an accuracy of 0.880, sensitivity of 0.926,
specificity of 0.822, precision of 0.932 and MCC of 0.762,
respectively. On the other hand, for individual predictors,
SDA-RF, SDA-FT-RF and RPISeq-RF perform differently
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Table 1 Performance comparison between different layer architectures on RPI488
Architecture Method Accuracy Sensitivity Specificity Precision MCC AUC
Sep-256-128-64 IPMiner 0.891 0.939 0.831 0.945 0.784 0.914
SDA-RF 0.880 0.922 0.827 0.928 0.762 0.904
SDA-FT-RF 0.881 0.916 0.831 0.926 0.762 0.909
Con-256-128-128 IPMiner 0.872 0.893 0.843 0.894 0.743 0.903
SDA-RF 0.884 0.924 0.831 0.934 0.770 0911
SDA-FT-RF 0.864 0.885 0.836 0.887 0.727 0.898
Raw input RPISeq-RF 0.880 0.926 0.822 0.932 0.762 0.903
Raw input IncPro 0.870 0.900 0.827 0910 0.740 0.901

Raw input is concatenation of 3-mer frequency features of protein and 4-mer frequency features of RNA
The boldface indicates this measure performance is the best among the compared methods for individual dataset

in different measures. SDA-FT-RF obtained the best accu-
racy and specificity, RPISeq-RF got the best sensitivity and
precision. This implied that they have lower correlation on
predicted interactions, which is very promising for com-
bining them together. The reason is that the more diversity
the base predictors have, the better the accuracy of the
ensemble predictor achieves [41], which was proved by
IPMiner’s performance.

We further compared IPMiner with IncPro on RPI488,
IncPro yielded an accuracy of 0.870, sensitivity of 0.900,
specificity of 0.827, precision of 0.910 and MCC of 0.740,
which was a little worse than IPMiner, and a little better
than PRISeq-RF (Table 1). However, compared to IPMiner
and PRISeq-RF, IncPro has some disadvantages: 1) It can-
not predict for protein sequence shorter than 30, which
is required by protein structure prediction tool predator

[42]. 2) It took long time to predict RNA structure, espe-
cially for long RNA sequence, using RNAsubopt [43]. In
addition, the RNA sequence must be shorter than 4095,
otherwise the RNAsubopt software will only process the
first 4095 nucleotides. The above is also the reason that we
do not include IncPro in our ensemble predictor IPMiner.
One of IPMiner’s merit is that it directly extracts low-level
features from sequences, which does not depend on other
prediction tools and is applicable to any protein and RNA
pairs.

We also tested IPMiner on two IncRNA-protein datasets
(RPI419 and RPI325) with lower sequence similarity,
which both have RNA sequence similarity cut-off 80 %,
but different protein sequence similarity cut-off (50 % and
30 %, respectively). As indicated in Additional file 3: Figure
S2, IPMiner achieved the AUC of 0.891 and 0.881 on
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RPI419 and RPI325, respectively, which was a little worse
than RPI488 with the AUC of 0.914, indicating sequence
similarity have limited impact on IPMiner and does not
lead to an inflated estimate of the predictive performance.

Comparison between different ensembling strategy

In IPMiner, we applied stacked ensembling strategy to
integrate different predictors, here we compared it with
general averaging ensembling (averaging the predicted
probability of SDA-RF, SDA-FT-RF and RPISeq-RF). As
shown in Fig. 3, stacked ensembling achieved the AUC
of 0.906 on RPI2241 dataset, it increased by 26 % over
averaging ensembling with the AUC of 0.720. When using
logistic regression to integrate the outputs from 3 predic-
tors, it got weights 10.56, -3.77 and 1.77 for SDA-FT-RF,
SDA-RF and RPISeq-RE, respectively. The contribution
of SDA-FT-RF was approximately 6 and 3 times more
than RPISeq-RF and SDA-RE, respectively, which implied
that different predictors contributed to final combined
result differently. On RPI369 dataset, the 3 predictors had
smaller difference than on RPI2241 (Table 2), implying
the predictors on RPI369 have higher correlation than on
RPI2241. Stacked ensembing (AUC of 0.773) improved
the AUC with higher margin than averaging ensembing
(AUC of 0.725) on RPI369, shown in Additional file 4:
Figure S3. But compared to the improvement on RPI2241,
it is relatively smaller. The results indicated that stacked
ensembling is very promising for improving the perfor-
mance from different predictors, especially for those with
lower correlation.
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Comparing IPMiner with other methods

To test the reliability and robustness of IPMiner, we
also compared it with other sequence-based methods
RPISeq and IncPro on other published ncRNA-protein
and RNA-protein datasets. In study [14], the authors pro-
posed RPISeq-RF and RPISeq-SVM for predicting RNA-
protein interaction, and RPISeq-RF performed better than
RPISeq-SVM on both RPI369 and RPI2241. Accordingly
here we only compared IPMiner with RPISeq-RF.

As shown in Table 2, for individual predictors on
RPI12241, SDA-FT-RF achieved the best performance with
an accuracy of 0.783, sensitivity of 0.890, specificity of
0.645, precision of 0.920 and MCC of 0.592, which indi-
cated that fine tuning can improve extracting complex
abstraction features, and it increased the accuracy with
20 % over baseline RPISeq-RF (0.646). On RPI369, SDA-RF
obtained the best performance with a little advantage over
RPISeq-RF and SDA-FT-RE. And on RPI1807, RPISeq-RF
yielded a little better performance than SDA-RF and SDA-
FT-RE. In summary, SDA-FT-RF achieved similar perfor-
mance with slightly worse accuracy on some datasets, but
it can improve the performance on certain datasets a lot.

On the other hand, the above results indicated that
individual predictors can perform differently on differ-
ent datasets, and no single predictors can surpass others
in all datasets. So IPMiner applied stacked ensembing
to integrate different predictors. As indicated in Table 2,
IPMiner was superior to all individual methods on all
datasets, and improved a lot over individual predictors in
some datasets. On RP12241, IPMiner yielded an accuracy
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Fig. 3 Ensembing strategy. Performance comparison between stacked ensembling and average ensembling on dataset RPI2241
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Table 2 Performance comparison on structure-based RPI369, RPI2241 and RPI11807

Dataset Method Accuracy Sensitivity Specificity Precision MCC AUC

RPI2241 IPMiner 0.824 0.833 0.812 0.836 0.650 0.906
SDA-RF 0.648 0.653 0.630 0.665 0.296 0.687
SDA-FT-RF 0.783 0.890 0.645 0.920 0.592 0.898
RPISeqg-RF 0.646 0.652 0.630 0.663 0.293 0.690
IncPro 0.654 0.659 0.640 0.669 0310 0.722

RPI1369 IPMiner 0.752 0.735 0.791 0.713 0.507 0.773
SDA-RF 0.707 0.699 0.727 0.689 0416 0.754
SDA-FT-RF 0.693 0.664 0.784 0.602 0.396 0.728
RPISeq-RF 0.704 0.705 0.702 0.707 0409 0.767
IncPro 0.704 0.708 0.696 0.713 0409 0.740

RPI1807 IPMiner 0.986 0.982 0.993 0.978 0.972 0.998
SDA-RF 0.972 0.970 0.981 0.962 0.944 0.995
SDA-FT-RF 0.972 0.955 0.997 0.940 0.944 0.995
RPISeq-RF 0.973 0.968 0.984 0.960 0.946 0.996
IncPro 0.969 0.965 0.981 0.955 0.938 0.994

The positive pairs are all from original papers. The negative pairs for RPI1807 is from original paper
The boldface indicates this measure performance is the best among the compared methods for individual dataset

of 0.824, which increased about 5 %, 27 %, 28 % over
single predictor SDA-FT-RF (0.783), SDA-RF (0.648) and
RPISeq-RF(0.646), respectively. IPMiner achieved a pre-
diction accuracy of 0.752 with an increase of about 7 %
over all single predictors on RPI369, and an accuracy of
0.986 with an increase of 1 % over all single predictors
on RPI1807. The results showed that stacked ensembing
can improve the prediction performance on all datasets,
demonstrating the effectiveness for integrating different
predictors.

In addition, we also compared IPMiner with IncPro on
these 3 datasets as shown in Table 2. The results indicated
that IncPro performed worse than IPMiner among all 3
datasets. Especially on RPI2241, IncPro yielded a MCC
0.310, much worse than MCC 0.650 of IPMiner. Mean-
while IncPro performed a little better than PRISeq on
RPI2241 and RPI369, but a little worse on RPI1807, it also
indicated that individual predictors performed differently
on different datasets.

For RPI369 and RPI2241, it is worth mentioning that
RPISeq-RF performed worse on our constructed dataset
than [14] on their own dataset, which had the same
positive pairs but different selected negative pairs, indicat-
ing different negative datasets had an important impact
on model performance. However, on RPI1807, using
their provided positive and negative pairs, IPMiner and
RPISeq-RF yielded much better performance. RPISeq-RF
achieved the accuracy of 0.973, which was much better
than RPI-Pred with the accuracy of 0.83 using sequence
and predicted structure, even better than the accuracy

of 0.93 using sequence and experimentally determined
structure [13].

IPMiner’s performance on large-scale non-structure-based
experimental data

To evaluate our proposed method on other different
sources of RNA-protein interaction datasets, we down-
loaded another two larger non-structure-based experi-
mental datasets: One is NPInter2.0, consisting of 10412
experimentally verified ncRNA-protein pairs from 6
model organisms [38]. The other one was RP113254 stud-
ied by [20], which is based on published interactions from
[37]. It covered 13254 positive pairs and 5172 negative
pairs. Here we created a balanced training dataset via ran-
domly down-sampling 5172 positive pairs from positive
dataset for 5-fold cross-validation.

As shown in Table 3, for NPInter2.0 dataset, RPISeq-
RF vyielded a better accuracy than any other individ-
ual predictors, which was better than SDA-RF (0.937),
SDA-FT-RF (0.934) and IncPro(0.928). But on RPI13254,
SDA-FT-RF got the best performance (0.813) with huge
improvement over SDA-RF (0.699),RPISeq-RF (0.739)
and IncPro(0.712), which also implied that there was no
single predictors defeating others on non-structure-based
datasets, which was similar to structure-based datasets.

In addition, IPMiner was still superior to all single pre-
dictors on both datasets, it achieved the high accuracy of
0.952, 0.945 on NPInter2.0, RPI13254 respectively. Espe-
cially for RPI13254 dataset, It was an increase of about
28 % over RPISeq-RF (0.739), and stacked ensembling
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Table 3 Performance comparison on non-structure-based NPInter2.0 and RPI13254

Dataset Method Accuracy Sensitivity Specificity Precision MCC AUC

NPInter2.0 IPMiner 0.952 0.946 0.959 0.945 0.904 0.995
SDA-RF 0.937 0.940 0.935 0.941 0.876 0.975
SDA-FT-RF 0.934 0.953 0912 0.955 0.868 0.990
RPISeq-RF 0.944 0.940 0.949 0.940 0.889 0978
IncPro 0.928 0.919 0.938 0917 0.856 0.971

RPI13254 IPMiner 0.945 0.905 0.995 0.895 0.896 0.985
SDA-RF 0.699 0.717 0.658 0.741 0.400 0.761
SDA-FT-RF 0813 0.728 0.998 0.626 0.675 0.901
RPISeq-RF 0.739 0.766 0.688 0.790 0.480 0.817
IncPro 0.712 0.716 0.701 0.723 0424 0.792

For RPI13254, it has 13524 positive pairs and 5172 negative pairs. Here we randomly sub-sampling positive pairs from original paper to create balanced dataset, so it actually

consists of 5172 negative pairs and 5172 positive pairs

The boldface indicates this measure performance is the best among the compared methods for individual dataset

increased the accuracy from 0.813 of best individual
predictor to 0.945 at large margin. Meanwhile it also
had a very huge improvement compared to the previous
reported accuracy of 78 % using RF classifiers with differ-
ent sources of features [20]. The above results convinced
that IPMiner can also be applied for non-structure-based
experimental data.

Predicting ncRNA-protein interactions using IPMiner

To verify IPMiner’s ability of predicting RNA-protein
interaction, we further investigated the performance of
our trained model from RPI488 on NPInter2.0, RPI367
and RPIntDB dataset. There is no overlapped interaction
pairs between RPI488 and the 3 datasets. For NPInter2.0,
IPMiner yielded the promising predictions of interactions,
it correctly predicted 96.7 % of total interactions, which is
better than 90 % of RPI-Pred [13]. As shown in Table 4,
IPMiner predicted 97.6 %, 61.1 %, 96.2 %, 96.7 %, 94.5 %,
87.1 % for Homo sapiens, Caenorhabditis elegans, Mus
musculus, Drosophila melanogaster, Saccharomyces cere-
visiae and Escherichia coli, respectively. It also yielded
a similar performance on RPI367 for different species
and predicted 90.1 % of total interactions. The results on
both datasets indicated that IPMiner is very promising for
predicting ncRNA-protein interactions.

Furthermore, IPMiner correctly predicted 86.4 % of
all interactions on the largest dataset RPIntDB with
44,586 interactions [14, 40], which was integrated from
different sources of RNA-protein interactions, such as
RNA-protein complexes, literature mining and NPin-
ter2.0. And PRISeq-RF was able to correctly predict 81.6 %
of them, which was lower than IPMiner. The results
on this large-scale dataset also indicated the power of
IPMiner.

In addition, we ran CD-HIT tool to reduce sequence
identity between the testing datasets and RPI488. Take

NPInter2.0 for example, we removed similar sequences
using CD-HIT against RPI488, so that there were no
sequences with sequence similarity greater than 80 %
for protein and RNA sequences between NPInter2.0 and
RPI488. Then we removed those interaction pairs whose
protein or RNA has sequence identity greater than 80 %
with RPI488. Finally, the number of interaction pairs for
NPInter2.0 are reduced from 10,412 to 10,350. We tested

Table 4 The predicted performance of trained model from
RP1488 on NPInter2.0, RPI367 and RPIntDB dataset

Total # of Predicted # of
Dataset Organism ncRNA-protein - ncRNA-protein
NPInter2.0 Homo sapiens 6,975 6,809 (97.6 %)
Caenorhabditis elegans 36 22 (61.1 %)
Mus musculus 2,198 2,115 (96.2 %)
Drosophila melanogaster 91 88 (96.7 %)
Saccharomyces cerevisiae 910 860 (94.5 %)
Escherichia coli 202 176 (87.1 %)
Total 10,412 10,070 (96.7 %)
RPI367 Homo sapiens 148 132 (89.2 %)
Caenorhabditis elegans 2 2 (100.0 %)
Mus musculus 46 34(73.9 %)
Drosophila melanogaster 26 24 (92.3 %)
Saccharomyces cerevisiae 119 117 (98.3 %)
Escherichia coli 25 21 (84.0 %)
Total 366 330(90.1 %)
RPIntDB Total 44,586 38,522 (86.4 %)

For NPInter2.0, RPI-Pred can predict 90 % of total interactions [13]. If proteins and
RNAs in a pair are obsolete, then this pair will be removed. For example, in RPI367,
protein 016646 is obsolete in UniProtkKB, and ncRNA u1136 interacts with 016646,
this pair was removed in RPI367. In RPIntDB, there is no organism information for
some interaction pairs, so we only report the total prediction accuracy
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the non-redundant 10,350 pairs using our trained model
on RPI488, it yielded an accuracy of 95.7 %, which was a
little lower than 96.7 % on original NPInter2.0. The results
shown in Additional file 2: Table S3 indicated that there is
only minor performance difference after removing minor
part of redundant interaction pairs. The same processes
were also done for RPI1367 and RPIntDB (Additional file 2:
Table S3).

Constructing ncRNA-protein network using predicted
scores from IPMiner

We further applied our trained model from RPI488 on
NPInter2.0 dataset to construct network for ncRNAs
and proteins, which can be used to infer the functions
of ncRNAs. For constructing network, we represented
ncRNA-protein pairs as a weighted network, where the
edge weight between ncRNA and protein was predicted
probability from IPMiner, then we used Markov cluster
(MCL) algorithm [44] to do clustering on the constructed
ncRNA-protien network. For Caenorhabditis elegans in
NPInter2.0, IPMiner correctly identified 22 of 36 interac-
tions, then we constructed ncRNA-protein network based
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on the similarity score from IPMiner. The corresponding
clusters after MCL clustering on the constructed network
were shown in Fig. 4, we found a hub protein G5EGR6
interacting 26 ncRNAs and a hub ncRNA n6171 (snRNA
781105) interacting with 4 proteins [45], which was exper-
imentally verified using CLIP-Seq data [46].

Discussion

In this study, we presented a computational method
based on deep learning and stacked ensembing to pre-
dict ncRNA-protein interactions. It achieved an accuracy
of 0.891, sensitivity of 0.939, specificity of 0.831, precision
of 0.945 and MCC of 0.784 on our constructed IncRNA-
protein dataset, respectively. Comprehensive experimen-
tal results on other previous published datasets also
were indicative of the effectiveness of IPMiner. On some
datasets, it improved the model performance with an
increase of roughly 20 % over other existing sequence-
based methods. The results also indicated that stacked
autoencoder can extract the discriminant high-level fea-
tures, which is very crucial for building machine learn-
ing models. Where high-level features are the features
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Fig. 4 Interaction network. Clusters of MCL clustering from ncRNA network constructed from predicted ncRNA-protein pairs using IPMiner for
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automatically learned from multiple layers of neural
network.

IPMiner demonstrated good performance both on
ncRNA-protein and RNA-protein prediction, which is
better than the state-of-the-art methods. It is mainly due
to the following reasons:

1. The k-mer frequency itself indicated
sequence-binding preference of RBPs bound by
ARE-binding proteins [25], where over-represented
k-mers in sequences can be enrich motifs for
RNA-protein binding [47]. The more frequent this
k-mer sequence exists in a subset of sequences, the
higher probability it is a binding motif.

2. Deep learning is able to model complicate statistical
characteristics in data [12, 30]. k-mer feature is
similar to vocabulary word in document, and deep
learning can extract the abstraction features like
topics in articles from bag of words [48]. So stacked
autoencoder can automatically learn hidden
relationship between k-mer sequence motif, it will
extract the most informative high-level features from
its compressed representation, which avoids curse of
dimensionality via eliminating hidden irrelevant
variabilities, especially for the high-dimensional raw
k-mer input features. As shown in DeepBind [12],
deep learning can automatically capture the
specificities of binding motifs using convolutional
filters, DeepSEA [30] learned regulatory motifs from
sequences, which both play a crucial role in
RNA-protein binding.

3. Different predictors have different performances on
different datasets, no single methods can surpass
others in all datasets. Different from manually
designed average voting or majority voting, stacked
ensembing can better integrate the strengths of
individual predictors, which is implemented in the
form of adding another classifier layer to
automatically figure out how to fuse the outputs
from individual predictors.

RNA-protein interaction network can offer deep
insights into RNA cellular mechanisms [9, 49]. For exam-
ple, LPN [50] constructed a IncRNA-protein network
using experimentally verified interactions, and found the
potential co-regulation and functional link among IncR-
NAs, which were also associated with diseases or can-
cer pathways. However, currently only a minor part of
IncRNA-protein interactions in nature are experimentally
verified. To obtain a global view of interaction network,
more and more interaction data should be integrated,
including experimental detection and computational pre-
diction. We expect IPMiner to be integrated to construct
large-scale network to discover the functions of IncRNAs
and other biological mechanisms.
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Currently our method is still trained on small dataset
because of the difficulties to collect large-scale exper-
imentally verified IncRNA-protein pairs from complex
structures in PDB. On the other hand, deep learning is
expected more powerful on big dataset, then it will auto-
matically learn more representative features [51]. So we
need construct larger training dataset to cover all possible
situations. For constructing training data, we can col-
lect positive dataset from structure complexes and other
experimental methods. Nevertheless, it is very hard to ver-
ify negative pairs in nature, accordingly in general they
are generated by pairing RNA and protein randomly to
get a balanced dataset with the same number of nega-
tive pairs. The rational behind constructing the balanced
training dataset is that machine learning model has pref-
erence to dominant class when the data is unbalanced
[18]. On the other hand, the trained model could still be
biased trained on this dataset, it is because the negative
dataset only cover small part of possible negative pairs in
nature, and some of them could be still unverified interact-
ing pairs. Negative control data set had the impact on the
constructed prediction models, as shown in RP12241 and
RPI369. RPISeq-RF performs worse on training dataset
with only different selected random pairs, which indicates
the negative samples are important for the performance.
In future work, we will figure out a suitable approach for
a better learning from the negative sample distributions.
Another strategy to cope with sample unbalance is to train
models on positive samples without negative samples. For
example, PRIPU trains a biased SVM on only positive and
unlabelled examples [52].

Although IPMiner can achieve much better perfor-
mance, there are still some limits similar to other machine
learning-based approaches. It is a black box learning
algorithm, and does not provide biological insights into
ncRNA-protein interactions. IPMiner tries to automati-
cally capture high-level features using deep neural net-
work, and those learned high-level features have strong
discriminate power but are still not well explained
from biological perspectives. In future work, we expect
to design better network architectures to learn high-
level features with biological insights, such as introduc-
ing convolutional neural network to capture regulatory
motifs [12].

Conclusion

In this study, we presented a computational method
IPMiner to mine the hidden interaction patterns between
ncRNAs and proteins, which is based on stacked autoen-
coder, and further improves the performance by stacked
ensembling. From simple sequence composition features,
IPMiner can automatically learn high-level abstraction
features, which has strong discriminant ability for RNA-
protein detection. IPMiner achieved high performance
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on our constructed benchmark IncRNA-protein dataset.
Meanwhile, comprehensive experimental results on other
RNA-protein datasets also indicated that it can yield bet-
ter performance than other state-of-the-art methods.

Methods

Data source

RNA can be catalogued into mRNA and non-coding RNA
(ncRNA), where ncRNA includes small ncRNA, such as
miRNA, snoRNA, and long ncRNA (IncRNA), whose size
is longer than 200nt. Different RNAs have different bio-
logical functions, but their binding motifs may be sim-
ilar. To verify the robustness of IPMiner, we validate it
on different RNA-protein interactions datasets, includ-
ing mRNA-protein and IncRNA-protein datasets. Cur-
rently there are relatively fewer study about IncRNA than
mRNA, and the mechanism and functions of IncRNAs
remain largely unknown, but IncRNAs are increasingly
being studied.

Firstly we downloaded 18 ncRNA-protein complexes
according to [15] from the Protein Data Bank (PDB)
database [36]. 10 of the complexes are X-ray structures,
and 8 of them is from Electron microscope, the details
are listed in Additional file 2: Table S1. We used the full
sequences of proteins and RNAs found in PDB struc-
ture. They are extracted from the “sequence field" of PDB
file instead of the fragments having coordinates, which
consists of the full sequences and are the same as the
sequences in UniProt and GeneBank. The reason why
we used full sequences instead of fragment sequences is
that IPMiner is a sequence-based ab-initio predictor and
does not need the 3D coordinates as the feature inputs.
Then 726 IncRNA-protein pairs were collected from these
complexes. In order to determine whether a pair is inter-
active or non-interactive, we used the least atom distance
as the criterion [53]: if there exists an atom of IncRNA
and an atom of protein such that the distance between
these two atoms is less than the distance cutoff 5A [53],
the pair (IncRNA and protein) is considered to be inter-
active. Otherwise, the pair is non-interactive. After each
pair in the dataset was checked, the redundant dataset
including 383 interactive pairs and 343 non-interactive
pairs was obtained. In order to reduce the bias of sequence
homology, the redundant sequences with sequence sim-
ilarity greater than 90 % (used in [15]) for both protein
and IncRNA sequences were excluded by using CD-HIT
tool [54]. After redundancy removal, a dataset contain-
ing 488 protein-IncRNA pairs, including 243 interactive
pairs and 245 non-interactive pairs, was obtained. This
dataset was called the non-redundant RPI488 dataset.
Here we only got 243 IncRNA-protein interactions, which
is smaller than other RNA-protein datasets, it is because
that there are much fewer IncRNA-protein complexes in
PDB.
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Besides, to see the impact of sequence similarity on
IPMiner, we also constructed another two datasets with
lower sequence similarity. For the first dataset called
RPI325, the sequence similarity for protein is smaller than
30 % and for RNA is smaller than 80 % (the smallest cut-
off value 80 % can be configured for RNA sequence in
CD-HIT tool), and we obtained 325 IncRNA-protein pairs
consisting of 153 interactive pairs and 172 non-interactive
pairs. In the second dataset called RPI419, the sequence
similarity for protein is smaller than 50 % and for RNA is
smaller than 80 % like RPI325, we obtained 419 IncRNA-
protein pairs consisting of 203 interactive pairs and 216
non-interactive pairs.

To test the robustness of IPMiner, we also collected
other RNA-protein datasets from the previous studies,
such as RP11807 [13], RPI369 and RP12241 [14], RP113254
[20, 37] and NPInter2.0 database [38], whose details are
shown in Table 5. For RPI369, RPI2241, RPI1807 and
RPI488, they were all extracted based on structure-based
experimental complexes. On the other hand, rather than
from structure-based experimental complexes, NPIn-
ter2.0 and RPI13254 are obtained from other physical
association between ncRNAs and proteins [37, 38]. For
constructing non-interaction pairs, the same number of
negative pairs were generated by randomly pairing pro-
teins with RNAs and further removing the existing posi-
tive pairs [14].

Conjoint triad (3-mer frequency) feature for protein and
4-mer frequency feature for RNA

To obtain raw features for stacked autoencoder, we
extracted simple sequence component composition fea-
tures both for RNAs and proteins. Conjoint triad (3-
mer) of protein is composed by 3 amino acids [14].
Firstly the 20 amino acids were reduced into 7 groups
based on their dipole moments and side chain volume:
(Ala, Gly, Val), (Ile, Leu, Phe, Pro), (Tyr, Met, Thr, Ser),
(His, Asn, Gln, Tpr), (Arg, Lys), (Asp, Glu) and (Cys)
[13, 55]. Then protein sequence is reduced to 7-letter

Table 5 The number of RNA-protein interaction pairs in
collected datasets

# of # of
Dataset interaction pairs # of RNAs proteins Reference
RPI1807 1807 1078 1807 [13]
RPI369 369 332 338 [14]
RPI2241 2241 842 2043 [14]
NPInter2.0 10412 4636 449 [38]
RPI13254 13254 4500 42 [37]
RP1488 243 25 247 This study

RP1488 is INcRNA-protein interactions based on structure complexes, PI369, RP12241,
RPI1807 are RNA-protein interactions. NPInter2.0 and RPI13254 are ncRNA-protein
interactions from non-structure-based source
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alphabet, the frequency of conjoint triad features based
on 7 reduced letters were extracted for each protein
sequence, we got 7x7x7 = 343 dimensional features. Sim-
ilarly, we extracted 4-mer frequency for RNA sequence
(A,C,G,U), and we got 4x4 x 4x4 = 256 dimensional fea-
tures [14], each feature value is the normalized frequency
of 4-mer nucleotides in RNA sequences, which is AAAA,
AAAC... TTTT.

IPMiner overview

In this study, we proposed IPMiner to predict ncRNA-
protein interactions, it proceeds in the following phases:
1) Extract conjoint triad (3-mer) from protein sequences
and 4-mer frequency from RNA sequences; 2) Apply
stacked autoencoder to extract high-level features, called
SDA, from the extracted sequence features of RNAs and
proteins, respectively. So two sub-networks for protein
and RNA are generated; 3) Add another softmax layer
to merge the two sub-networks of RNA and protein, and
then use label information of training data for fine tun-
ing the above stacked autoencoder, update the weights
of networks and extracted features from updated stacked
autoencoder, the new feature is called SDA-FT; 4) Feed
the extracted raw features, SDA and SDA-FT features to
random forest classifier, respectively, and the 3 classifiers
are named as RPISeq-RF [14], SDA-RF and SDA-TEF-RF,
respectively; 5) Use stacked ensembling to integrate the
outputs from the above 3 classifiers, which trains a logistic
regression model on the outputs from them.

The flowchart of proposed IPMiner is shown in Fig. 1.

Stacked autoencoder
Deep learning [27, 28] is widely applied in different areas
with record-breaking performance [12, 28]. Autoencoder
network can be used as a building block for deep network
with multiple layers.

Assume we have an input data x with d-dimension,
autoencoder network first map the x into y.

y =f(Wx+b) 1

where f is a non-linear function. After this mapping is
done, the embedding y is mapped back to reconstruction
z of the same shape as x, which is performed as follows:

1=g (wTy + b’) )

where g is another non-linear function, and the weights of
two mappings have the constraint WT = W

The reconstruction error can be measured using
squared error between x and z, which can be optimized
using stochastic gradient descent (SGD) [56].

Stacked autoencoder is a deep network formed from
stacking multiple autoencoders [35]. It can automatically
learn high-level features that form a good representation
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for data from raw simple features. In general, it is orga-
nized in sequential layer-by-layer structure with multiple
layers of neural networks, in which each layer contains
designed number of neurons, and the outputs of each layer
is connected to the inputs of the successive layer.

When learning the parameters of stacked autoencoder,
it optimizes objective function using greedy layer-wise
learning, which learns each layer individually while freez-
ing parameters of other layers. To produce better perfor-
mance, after this unsupervised learning, fine-tuning based
on back-propagation is used to tune the parameters of all
layers. It is supervised learning phase, which can improve
stacked autoencoder a lot.

The layer types used in our model are fully connected
layer and dropout layer [57]. For dropout layer, it ran-
domly set some unit activations with certain probability
to zero, which can avoid over-fitting for model training.
For fine tuning, we add a last softmax layer with sigmoid
function as activations for the outputs from merged sub-
networks of protein and RNA as the last hidden layer,
which is trained using label information to update weights
and biases parameters for stacked autoencoder. Where
sub-network is the multiple layer networks of RNAs and
proteins. And we minimize cross entropy loss function
using SGD with momentum 0.9 [56]. For each layer of
denoising autoencoder, mean squared error is minimized
using Adam [58]. We apply dropout training with dropout
probability 0.5 during model training [59]. After complet-
ing the training process, we extract the learned high-level
features both for before and after fine tuning, then they are
fed into random forest, the predictors are called SDA-RF
and SDA-FT-REF, respectively.

In this study, we implement stacked autoencoder using
keras library https://github.com/fchollet/keras. The value
of nb_epoch and batch_size are both 100.

Stacked ensembling

In general, different classifiers have different performance,
ensemble learning makes use of multiple classifiers to
approximately obtain the optimum target function. How
to integrate the individual outputs when implementing
the ensembling mechanism is very crucial. Previous stud-
ies include majority voting [23] and averaging individual
model results [60].

In stacked ensembling, following the deep learning intu-
ition using multiple layers of neural networks, the com-
bining strategy is that the outputs of the level 0 classifiers
will be served as training data for another level 1 clas-
sifier [61]. Where level 0 is the first layer, and level 1 is
the successive layer. The level 1 classifier will figure out
how to combine the results from individual classifiers. In
this study, the outputs of the level O classifiers is predicted
probability score, and level 1 classifier is logistic regres-
sion. When weights of logistic regression for all individual
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classifiers is the same, then it is like averaging strategy.
When only one weight is non-zero, it is equivalent to
majority voting strategy.
1

14 exp(—ywTx)
where x is vector of output probability for SDA-FT-REF,
RPISeq-RF and SDA-RF, and w is the weight vector for the
three classifiers. In this study, implementation of logistic
regression is from Scikit-learn [62].

Py(y = +1|x) = (3)

Evaluation criteria

In this study, we classify protein and ncRNA pairs to be
interacting or not. We follow the widely used evaluation
measure by means of the classification accuracy, preci-
sion, sensitivity, specificity and the Matthews correlation
coefficient (MCC) as defined respectively by:

A TP+ TN @
ccuracy =
)T IPY{ TN+ FPYEN
P
Sensitivity = m (5)
TN
Spectficity = T Fp ©)
P
Precision = ———— 7)
TP + FP

B TP x TN — FP x FN
~ /(TP ¥ EP)(TP + EN)(IN + EP)(IN + EN)
(8)

where TP, TN, FP, and FN represents true positive, true
negative, false positive, and false negative, respectively.
We also exploit Receiver Operating Characteristic (ROC)
curve and calculate the area under the ROC curve (AUC).
5-fold cross-validation is used to evaluate the perfor-
mance of IPMiner. To guarantee the unbiased compari-
son, the testing and training datasets do not overlap with
each other.

MCC

Additional files

Additional file 1: Figure S1. The distribution change of significant
feature Cysteine abundance after discarding positives without completely
available features, where Cysteine abundance is indicated significant for
RNA-protein interaction in Pancaldi et al. 2011. (EPS 30 kb)

Additional file 2: Supplementary text and Table. Supplementary
description for random forest, Table S1, S2 and S3. (PDF 99 kb)

Additional file 3: Figure S2. [PMiner’s performance on two
IncRNA-protein datasets (RPI419 and RPI325) with lower sequence
similarity. a) Performance on IncRNA-protein dataset RPI419 with RNA
sequence similarity cut-off 80 % and protein sequence similarity cut-off

50 %. b) Performance on IncRNA-protein dataset RPI325 with RNA sequence
similarity cut-off 80 % and protein sequence similarity cut-off 30 %.

(EPS 68 kb)

Additional file 4: Figure S3. Performance comparison between stacked

ensembling and average ensembling on dataset RPI369. (EPS 37 kb)
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