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Abstract

Background: With advances in technologies, huge amounts of multiple types of high-throughput genomics data
are available. These data have tremendous potential to identify new and clinically valuable biomarkers to guide

the diagnosis, assessment of prognosis, and treatment of complex diseases, such as cancer. Integrating, analyzing,
and interpreting big and noisy genomics data to obtain biologically meaningful results, however, remains highly
challenging. Mining genomics datasets by utilizing advanced computational methods can help to address these issues.

Results: To facilitate the identification of a short list of biologically meaningful genes as candidate drivers of anti-cancer
drug resistance from an enormous amount of heterogeneous data, we employed statistical machine-learning techniques
and integrated genomics datasets. We developed a computational method that integrates gene expression, somatic
mutation, and copy number aberration data of sensitive and resistant tumors. In this method, an integrative method
based on module network analysis is applied to identify potential driver genes. This is followed by cross-validation and
a comparison of the results of sensitive and resistance groups to obtain the final list of candidate biomarkers. We
applied this method to the ovarian cancer data from the cancer genome atlas. The final result contains biologically
relevant genes, such as COLT1AT1, which has been reported as a cis-platinum resistant biomarker for epithelial ovarian
carcinoma in several recent studies.

Conclusions: The described method yields a short list of aberrant genes that also control the expression of their
co-regulated genes. The results suggest that the unbiased data driven computational method can identify biologically
relevant candidate biomarkers. It can be utilized in a wide range of applications that compare two conditions with
highly heterogeneous datasets.

Keywords: Integrative analysis, Module network analysis, Gene module, Copy number aberration, Somatic mutation,
Gene expression, Serous ovarian carcinoma, Drug resistant

Background understand disease pathogenesis. Activation or deactiva-
Cancer is known as a disease of the genome. A cancer tion of the functional parts of a genome, or genes, deter-
genome harbors thousands of genomics aberrations in  mines the pathological states and development of a
the form of large segment aberrations and somatic point  disease. For example, the over-expression of an onco-
mutations. Not all of the aberrations, however, have gene or under-expression of a tumor suppressor gene
important roles in tumor progression. To understand plays an important role in cancer pathogenesis. Most
the mechanism of cancer, biomedical researchers are in-  likely, a driver gene is among the over/under-expressed
terested in identifying genomic aberrations that drive  genes that also have aberrations. It is reasonable to con-
cancer progression, which are termed drivers. They also  sider that an over/under-expressed driver gene has a
are interested in profiling gene expression data to better  footprint in a genome in the form of an aberration that
can be used as a biomarker [1, 2]. It is hypothesized that
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number patterns. The important role of genomics aberra-
tions, incorporated with gene expression profiles in disease
progression, has motivated several studies [2, 3] to inte-
grate copy number variation (CNV) and gene expression
data to identify biomarkers or subtype of disease.

With advances in technology, generating high through-
put genomics data has become affordable and popular for
molecular profiling. As a result, many studies have gener-
ated multiple independent high throughput genomics data
types on individual samples. In addition, large consor-
tiums, such as The Cancer Genome Atlas (TCGA) and
International Cancer Genome Consortium (ICGC), have
generated several high throughput genomics data types
for hundreds of sample on tens of cancer types, which are
publicly available. Several methods have been used to
integrate gene expression and CNV data. In general,
these methods are based on three main approaches:
1-regression, 2-correlatin, and 3-module network [3].
Linear approaches, such as regression analysis or correl-
ation analysis, do not work properly for heterogeneous
data that their within-group variations are extremely high,
such as ovarian cancer data. Further, in general, the rela-
tionship between gene expression and CNV is not linear.
It has been shown that the module network analysis,
which is a non-linear approach, performs well in identify-
ing driver genes in cancer [1]. The key idea in the module
network analysis, a form of Bayesian network analysis, is
that similarly behaving variables can be grouped into
“modules” and that the network can learn the same par-
ents and parameters for each module, instead of each vari-
able, as in a Bayesian network. A module can be defined
as a set of random variables (in this application, a set of
genes) that share a statistical model, for example, a set of
genes that are co-expressed or co-regulated. In a Bayesian
network, a different conditional probability distribution
(CPD) is assigned to each random variable, whereas, in a
module network, a CPD of a module is for all random var-
iables in the same module. The main motivation for using
module network analysis instead of regular Bayesian net-
work analysis is that biological systems, similar to all com-
plex systems, have too many variables but not enough
data to robustly learn networks. In biological systems, we
have thousands of genes but few samples. In addition,
large networks are difficult to interpret, especially in bio-
logical systems. In addition, it is assumed that genes that
are co-expressed are likely regulated in similar ways and
might have the same drivers or regulators. In general,
module network approach, which in this application is
called gene module analysis [1, 4], is based on regression
tree analysis (a form of probabilistic graphical models) to
infer gene regulatory modules from gene expression data.
This approach involves a search for the best fit tree, using
a Bayesian scoring approach and the normal-gamma scor-
ing function [4]. The learning procedure iteratively
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reassigns genes to the modules and searches for a tree
with the highest score. This step specifies a set of modula-
tor genes (roots of regression trees) that control and influ-
ence a module. The proposed method in [1], which uses
CONEXIC software tool, employs gene expression values
for training the tree while uses CNV genes as initial mod-
ulators. It uses only gene expression and CNV data and is
not designed for comparative analysis, such as resistance
versus responding.

The objective of this work is to develop a novel compu-
tation workflow to identify candidate biomarkers of drug
resistance by integrating several genomics data types. Our
goal is to identify a short list of genes as candidate drivers
of resistance to anti-cancer drugs as a means to facilitate
the biomarker discovery process. To accomplish this, we
implemented a computational method based on gene
module analysis, inspired by the work in [1], to integrate
high throughput CNV, somatic mutation, and gene ex-
pression datasets. We utilized a data-driven approach to
identify genes that stand out in resistant tumors but not
in sensitive tumors and vice versa. To rank genes and se-
lect a subgroup of genes as inputs to the integrative
method, we used the Earth Mover’s Distance (EMD) [5, 6]
approach for differential analysis of gene expression and
CNV data, as introduced in [7].

We applied the method to the challenging problem of
identifying driver genes associated with drug response in
ovarian cancer. Ovarian cancer is the deadliest of all the
gynecologic cancers [8] and, according to the data, the
mortality rates for ovarian cancer have not improved over
the past 20 years. Combination of cytoreductive surgery
and platinum-based chemotherapy is a routine treatment
for almost all women diagnosed with ovarian cancer [9].
Mainly due to the emergence of chemotherapy resistance,
many patients do not respond to the drug and ultimately
succumb to the disease. Several studies have been con-
ducted on drug resistance for ovarian cancer, however
identifying robust predictors of chemotherapy response or
resistance biomarkers remains challenging [10]. Data het-
erogeneity, which makes conventional approaches perform
poorly, is one the major challenges in studying drug re-
sponse for ovarian cancer. TCGA has collected detailed
clinical records, including drug response information, and
high-throughput genomics data for over 500 cases of ovar-
ian serous cystadenocarcinoma. We used publicly available
and clinically annotated gene expression, CNV, and som-
atic mutation datasets for ovarian cancer from TCGA. We
showed that the developed method was able to identify
highly related genes as candidate biomarkers of resistant.

Methods

Datasets and chemotherapy response

We used processed and normalized ovarian cancer gen-
omics data as given by TCGA. We downloaded gene
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expression data from the Agilent 244 K Custom Gene
Expression platform, CNV data from the Affymatrix
Genome-Wide Human SNP Array 6.0 platform, and vali-
dated somatic mutation data from whole exome sequen-
cing data obtained using Illumina Genome Analyzer
DNA Sequencing. As of January 2015, genomics data of
570 patients with high-grade ovarian serous cystadeno-
carcinoma were available in TCGA. We examined the
clinical data from these patients to identify eligible sam-
ples for determining cis-platinum chemotherapy re-
sponse. To classify tumors into resistant and sensitive
groups, we used a definition similar to one used by the
TCGA group in [11]. Based on this definition, sensitive
tumors have a platinum-free interval of six months or
greater after the last primary treatment, do not have a
sign of progression or recurrence, and have the follow-
up interval of at least six months from the date of last
primary platinum treatment; and resistant tumors are
recurred within six months after the last treatment.
Using the above definition, we identified 93 platinum-
resistant and 231 platinum-sensitive primary tumors
among the 570 patients, for which their gene ex-
pression, CNV, and somatic mutation data were avail-
able as well.
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Data selection using differential analysis

To select a subset of genes whose aberration/expression
profiles were significantly different between sensitive and
resistant tumors, we applied differential analyses to the
gene expression, and CNV data of the two groups. One of
the main challenges in analyzing ovarian cancer genomics
data is data heterogeneity, where the within-group vari-
ation is high. This data heterogeneity makes conventional
differential analysis methods perform poorly [7, 12-14].

A heatmap of the most significantly differentially
expressed genes (top 40 genes) in TCGA ovarian cancer
data is shown in Fig. 1. As can be seen, expression pro-
file is very heterogeneous, and there are no clear clusters
of genes for the resistant and sensitive groups.

The cumulative CNV profile of TCGA ovarian cancer
samples for the two groups is shown in Fig. 2. As seen in
the figure, the CNV profiles of the two groups are very
similar as well, which makes it very difficult to identify
CNV regions with unique amplification or deletion pat-
terns that belong to only one group. Therefore, for differ-
ential gene expression analysis and to rank CNV genes,
we used the EMD approach [5] as in [7], EMDomics,
which is designed especially for heterogeneous data. We
ranked genes based on their g-values and selected genes

0OX2
SERPINB4
SERPINB3
MAGEC1
MAGECZ

& S L
< L

Resistant Samples

Sensitive Samples

5 0 5

Fig. 1 Heatmap of expression values of the 40 most significantly differentially expressed genes in TCGA ovarian cancer. Clustering method on
expression values was used to generate the heatmap. Due to data heterogeneity, there are no clear clusters of genes for the resistant and
sensitive groups




Nabavi BMC Genomics (2016) 17:638

Page 4 of 10

Sensitive
(=]
g -
g ° |
| &4 = \_'_ Sy “‘__._,. L¢—L
> = #‘5% ‘ - ¥ w
O | |
5 2 |
E |
3
N - '
o
1 2 3 4 5 6 8 9 1 13 15 17 20
Chromosomes
Resistant
0 =
Ke]
E S T ;”“Alf{\ ke |
o . Remind y . WA -
% b= %ﬂ I [ ‘ | rv‘. ‘:ﬁ j‘umm r\
O : ' H |
(=] | | |
5 - .
£
=] o
0w =
T T
1 2 3 4 5 &6 7 8 9 1 13 15 17 20
Chromosomes

Fig. 2 Cumulative CNV regions for resistant and sensitive TCGA ovarian cancer samples. CNV profiles of the two groups are very similar

with a g-value < 0.1. For CNV data, first, we mapped genes
to the CNV regions to obtain CNV genes; then, we used
the EMD approach for the differential analysis and rank-
ing of the CNV genes. We also calculated the frequency of
amplification and deletion for each gene in the two groups
and selected genes for which the difference between their
frequencies is more than 20 %. We used a threshold of
log2 copy number ratio of 0.3/-0.3 to call amplified/
deleted genes.

For somatic mutation data, we also calculated the fre-
quency of mutations for all genes across the samples in
each groups and selected the genes that were mutated in
more than 2 % of the tumors. The top 25 genes with the
highest frequency of mutation in the two groups are
shown in Fig. 3.

The overall procedure for selecting a subgroup of genes
is shown in Fig. 4. The final list of genes for integrative
analysis is a combination of genes for which gene expres-
sion values, CNV frequency rates, and CNV values differ
significantly across the two conditions; and also somatic
mutation rates are high. Genomics data of these genes
were used in the integrative analysis, as explained below.

Integrative analysis using gene module analysis
We used module network procedure [1, 15] to integrate
gene expression, CNV, and somatic mutation data. The

overview of the overall integrative analysis is shown in
Fig. 5. As can be seen in Fig. 5, the procedure takes as
inputs these datasets and then produces a short list of
genes as candidate biomarkers. As in [1], the analysis
consists of three major parts: (1) selecting the candidate
modulators (genes that regulate other genes in their
module) from the list of aberrant genes, (2) obtaining
the initial gene modules (groups of co-regulated genes)
from the gene expression data, and (3) creating module
networks [4] (Fig. 5).

Input datasets are for genes that are selected as de-
scribed in the previous section. In addition, we selected
genes as candidate modulators (in Part 1) if their CNVs
and mutations frequencies were high across the tumors
(mutation frequency >2 % and CNV frequency >70 %).

Before conducting the learning process, we created an
initial association between candidate modulators and
gene modules to aid the module network procedure. In
this step, each candidate modulator is assigned to a clus-
ter of genes to maximize the normal-gamma scoring
function [1].

For gene module analysis we used CONEXIC soft-
ware used in [1]. We modified the method in [1] such
that it uses mutated and CNV genes as candidate
modulators as well as uses these data for training the
module networks.
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Fig. 3 Somatic mutation frequencies for resistant and sensitive TCGA ovarian cancer samples. The frequency of mutations for most of the genes
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Comparative analysis, resistance versus sensitive

We applied the above integrative analysis to the resistant
and sensitive samples datasets separately and obtained
their final modulator lists, as shown in Fig. 6. The ex-
pression data that were used to select the initial modules
(Part 2 in the integrative procedure) are the same for the
two conditions. The expression data are for the genes
for which their gene expression, and CNV profiles differ
significantly between the resistant and sensitive samples
and their frequency of mutation is high, as explained in

the previous section (Fig. 4). However, the candidate
modulators (in Part 1 in the integrative procedure) are
different for the two conditions. The candidate modula-
tors are selected from the aberrant genes (CNV genes
and mutated genes) that have a higher frequency of ab-
erration for each condition. We compared the two final
modulator lists and selected the genes that are modula-
tors in the resistant group but not in the sensitive group
and identified them as candidate resistant driver genes.
The final result is a short list of candidate genes that are
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Fig. 4 Schematic diagram of selecting a sub set of genes for integrative analysis
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mutated (CNV and/or point mutation) and that regulate
their gene modules.

Cross-validation

To validate the final result of the gene module analysis,
we used the leave-one-out approach for cross-validation.
In each iteration, we took out one sample from the re-
sistant group and one sample from the sensitive group.
Then, we applied the selection and integration proce-
dures. The overall block diagram of the method is shown
in Fig. 6. When the cross-validation procedure was fin-
ished, we calculated the frequencies of the modulators
for the resistant and sensitive samples and compared the
lists of modulators for the two groups of samples. The
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high-frequency modulators in the resistant samples, but
not those in the sensitive samples, are the final list of
candidate biomarkers of resistance.

Results and discussions

Our goal is to identify functional genes that harbor gen-
omic aberrations, are responsible for drug resistance,
and drive tumor progression. The assumption is that
driver genes are among over/under-expressed genes that
also have aberrations. We used gene expression data,
CNV data, and somatic mutation data for 231 cis-
platinum sensitive and 93 cis-platinum resistant ovarian
cancer samples from the TCGA website. Sensitive and
resistant samples are listed in Additional file 1. The gene
expression data include expression level of 17,814 genes
(Additional file 2). We obtained the CNV values of
23,364 genes for each sample by mapping CNV seg-
ments to genes (Additional file 3). The somatically
mutated genes are listed in Additional file 4.

As explained, the integrative analysis is based on a
statistical machine-learning approach, which involves an
iterative search for the best model. To avoid random
false positives, we selected features, or genes, that can
differentiate resistant and sensitive groups significantly.
Using all genes in the statistical integrative analysis will
increase the rate of falsely identifying a driver gene by
chance. Therefore, we selected a subset of genes whose
aberration/mutation/expression profiles were signifi-
cantly different between sensitive and resistant tumors,
as described in the Methods section.

As seen in Fig. 3, the frequency of mutations for the
genes in the two groups is comparable, including
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Fig. 6 Schematic diagram of the comparative and the integrative analysis
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mutations in the Tp53, DST, and MUC17 genes. There
are a few genes, such as BRCA1, BRCA2, and CSMD3,
that show higher differences between mutation fre-
quencies in the two groups. Therefore, for selecting
somatically mutated genes we considered mutation fre-
quencies for each group.

Combining the selected genes gave us a list of genes,
which totaled 5808, for module network analysis. We
also selected high-frequency mutated and CNV genes in
each group as candidate modulators for the module
network analysis. We compiled a list of 212 candidate
modulators for the resistant tumors (Additional file 5)
and a list of 555 candidate modulators for the sensitive
tumors (Additional file 6).

We used the selected genes and candidate modulators
to run the gene module analysis for the resistant and
sensitive tumors. The output of the gene module ana-
lysis is a ranked list of high-scoring modulators that are
both associated with differences in gene expression
modules across samples and among aberrant genes in a
significant number of these samples. The fact that the
modulators are among aberrant genes (mutated, ampli-
fied, or deleted) indicates that they most likely control
the expression of the genes in the corresponding mod-
ules. Because the modulators have aberrations in a sig-
nificant number of tumors and they are the roots of the
regression trees, it is reasonable to assume that a modu-
lator can provide an advantage to the tumor and be
considered as a driver. The procedure resulted in 306
modules with 32 modulators (Additional file 7) for the
resistant samples and 580 modules with 67 modulators
(Additional file 8) for the sensitive samples. Several
modules shared the same modulators in each group of
samples. Interestingly, the outputs of module network
analysis for the resistant and sensitive groups shared
only three genes, even though the same set of data was
used as the input for training the network (Part 2 of the
integrative analysis), but with different candidate modu-
lators (Part 1 of the integrative analysis). In addition, the
outputs of module network analysis from the resistant
and sensitive groups are enriched for different biological
pathways. This indicates the importance of the selection
of candidate modulators.

We applied enrichment analysis, using GeneGo’s
MetaCore pathways analysis software tool (http://
thomsonreuters.com/metacore/), to the outputs of the
module network analysis. Because the gene list contains
32 genes, enrichment analysis provides a few biological
pathways with a g-value < 0.05. However, these genes are
involved in important pathways, such as WNT signaling,
DNA damage, and cell cycle pathways. The top 20 path-
ways are listed in Additional file 9. Network analysis of
these 32 genes indicates the connection of these genes
with biological networks that have important hubs, such
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as P53 (p-Value=9.03e-12), a tumor suppressor gene
which is associated with a variety of human cancers
(Additional file 10: Figure S1); c-Myc (p-Value = 3.06e-9),
which plays a role in cell cycle progression, apoptosis, and
cellular transformation and is associated with a variety of
tumors (Additional file 10: Figure S2); DNMT1 (p-Value =
1.65e-5), which is associated with certain human tumors
and developmental abnormalities (Additional file 10:
Figure S3.); and ESR1 (p-Value = 7.92e-7), which has im-
portant role in DNA binding and is associated with several
cancer types including ovarian cancer [16] (Additional
file 10: Figure S4). The list of the biological significant
networks is provided in Additional file 11. After cross-
validation (leave-one-out cross validation), we obtained a
short list of genes that appeared frequently in both the re-
sistant and sensitive samples. Twelve genes appeared
more than 80 % of the time as modulators of the resistant
samples but not the sensitive samples, as shown in Fig. 7.
This short list of genes indicates very biologically mean-
ingful results: All but one of these genes have been associ-
ated with several kinds of neoplasms and/or carcinomas:
GPR56 has a role as an inhibitor of tumor progression
[17]; GALR3 has been shown to be present in certain liver
and brain tumors [18, 19]; APOBEC3H is associated with
the immune system GO term and has been associated
with lung and kidney carcinoma; CCDC135 is associated
with the cell differentiation GO term and a variety of can-
cers, such as breast cancer and colorectal cancer [20, 21];
SOX10 is associated with the cell development and
differentiation GO terms and several cancer types, such as
pancreatic and prostatic cancer [22, 23]; PLA2G6 is asso-
ciated with several cancer types, such as colorectal cancer
[24]; USH2A is also associated with several cancer types,
including ovarian cancer and breast cancer [20, 24]; and
CSNKIE is involved in the Development WNT signaling
and DNA replication and repair pathways and is
associated with variety of cancer types, including ovarian
cancer and breast cancer [25-28]. Interestingly, CSNKI1E,
USH2A, and COL11A1 [29, 30] have been associated with
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poor survival in ovarian cancer. Further, COL11A1 is re-
ported as a cis-platinum resistant biomarker for epithelial
ovarian carcinoma cell lines [30—32]. Further experimental
validation of the candidates’ pathways and/or genes in the
wet laboratory in paired platinum-sensitive and -resistant
ovarian cancer cell lines is required to demonstrate their
functional involvement in the platinum-resistant pheno-
type, which is outside the scope of this work.

Conclusions

With advances in sequencing technologies and the avail-
ability of an increasing amount of high throughput gen-
omics data, the use of advanced computational methods
to analyze, integrate, and mine the huge amount of gen-
omics data is an absolute necessity. In particular, the
complexity and heterogeneity of cancer genomics data
and the level of noise in these data make the use of com-
putational methods and statistical machine-learning ap-
proaches essential to understanding the key biological
functions. In addition, with availability of genome-wide
genomics, transcriptomics, and epigenomics data, un-
biased data driven approaches can present an opportun-
ity for generating new hypotheses and discoveries.

The main goal of this study was to generate a biologic-
ally meaningful short list of genes as candidate drivers of
drug resistance by mining genomics data and using com-
putational methods. We presented a nonlinear statistical
approach to integrate gene expression, copy number ab-
erration, and somatic mutation data to identify candidate
drivers of resistance. First, to reduce random false posi-
tives in the identification of driver genes, we selected a
subset of genes that differentiate the two groups of sam-
ples, taking into consideration gene expression, CNV,
and somatic mutation data. For the differential analysis
of gene expression and copy number data, we used the
EMD approach [7] that is designed especially for highly
heterogeneous data. We used mutation frequency for
each gene to select somatically mutated genes. The inte-
grative analysis, which is based on the module network
analysis and uses the gene module analysis method as in
[1], was run separately on the resistant and sensitive
samples to obtain driver genes for each condition. In this
way, we identified aberrant genes that have the most in-
fluence on the groups of co-regulated genes. Finally, we
used a leave-one-out approach for cross-validation of
the results of the integrative analysis and compared the
results for the sensitive and resistant groups to identify
driver genes.

We applied this method to the challenging problem of
identifying candidate biomarkers of drug resistance in
ovarian cancer. We chose ovarian cancer because ovar-
ian cancer genomics data are very heterogeneous, and
conventional methods for analyzing resistant and sensi-
tive samples perform poorly. In addition, TCGA provides
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rich clinical data on drug response for ovarian cancer
samples, in addition to their genomics data, which are
publicly available. The final result is a short list of bio-
logically meaningful genes that are frequently identified
as modulators or drivers in the resistant samples but not
in the sensitive samples. For example, COL11A1 is iden-
tified as a candidate biomarker that has been reported as
a cis-platinum resistant biomarker for epithelial ovarian
carcinoma in several recent studies [30—32].

The strongest aspects of the method are that it is a
data-driven and unbiased approach that does not make
any assumption about the distributions of the data. In
addition, the integrative method is nonlinear and does
not make the assumption of a linear relationship be-
tween gene expression values and genomics aberration
values. Further, the module network analysis is computa-
tionally feasible for large genomics datasets. Never-
theless, there is “no free lunch” in computational and
statistical analysis. This method is computationally ex-
pensive due to iteration in training the model and
searching for the best model as well as due to the cross-
validation procedure. In addition, because it is a statis-
tical machine-learning method, it works better when
there are more samples. For studies with only a few sam-
ples in each condition, this method cannot perform well.

To conclude, we developed a novel data-driven ap-
proach based on statistical machine-learning analysis to
uncover candidate biomarkers of drug resistance, and we
showed that that method can yield a short list of bio-
logically meaningful genes that can be used to facilitate
the biomarker discovery process.
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