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Abstract

Background: Rhesus macaques are widely used in biomedical research, but the application of genomic information in
this species to better understand human disease is still in its infancy. Whole-genome sequence (WGS) data in large
pedigreed macaque colonies could provide substantial experimental power for genetic discovery, but the collection of
WGS data in large cohorts remains a formidable expense. Here, we describe a cost-effective approach that selects the
most informative macaques in a pedigree for 30X WGS, followed by low-cost genotyping-by-sequencing (GBS) at 30X on
the remaining macaques in order to generate sparse genotype data at high accuracy. Dense variants from the selected
macaques with WGS data are then imputed into macaques having only sparse GBS data, resulting in dense genome-wide
genotypes throughout the pedigree.

Results: We developed GBS for the macaque genome using a digestion with Pst/, followed by sequencing of
size-selected fragments at 30X coverage. From GBS sequence data collected on all individuals in a 16-member pedigree,
we characterized high-confidence genotypes at 22,455 single nucleotide variant (SNV) sites that were suitable for guiding
imputation of dense sequence data from WGS. To characterize dense markers for imputation, we performed WGS at 30X
coverage on nine of the 16 individuals, yielding 10,193,425 high-confidence SNVs. To validate the use of GBS data for
facilitating imputation, we initially focused on chromosome 19 as a test case, using an optimized panel of 833 sparse,
evenly-spaced markers from GBS and 5,010 dense markers from WGS. Using the method of “Genotype Imputation Given
Inheritance” (GIGI), we evaluated the effects on imputation accuracy of 3 different strategies for selecting individuals for
WGS, including 1) using “GIGI-Pick” to select the most informative individuals, 2) using the most recent generation, or 3)
using founders only. We also evaluated the effects on imputation accuracy of using a range of from 1 to 9 WGS
individuals for imputation. We found that the GIGI-Pick algorithm for selection of WGS individuals outperformed common
heuristic approaches, and that genotype numbers and accuracy improved very little when using >5 WGS individuals for
imputation. Informed by our findings, we used 4 macaques with WGS data to impute variants at up to 7,655491 sites
spanning all 20 autosomes in the 12 remaining macaques, based on their GBS genotypes at only 17,158 loci. Using a
strict confidence threshold, we imputed an average of 3,680,238 variants per individual at >99 % accuracy, or an average
4,458,883 variants per individual at a more relaxed threshold, yielding >97 % accuracy.
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Conclusions: We conclude that an optimal tradeoff between genotype accuracy, number of imputed genotypes, and
overall cost exists at the ratio of one individual selected for WGS using the GIGI-Pick algorithm, per 3-5 relatives selected
for GBS. This approach makes feasible the collection of accurate, dense genome-wide sequence data in large pedigreed
macaque cohorts without the need for more expensive WGS data on all individuals.
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Background

The analysis of whole-genome sequence (WGS) data in
non-human primates (NHPs) can play a significant role
in advancing the application of genomic medicine to
human disease. Potential uses of these data include the
identification of novel genetic variants that influence
conserved pathways of disease pathology, the development
of novel therapeutics that target these variants, and the
characterization of variants that influence efficacy and
response to therapeutics. Given their high degree of gen-
etic and physiological similarity to humans, and their ubi-
quity in biomedical research, it is surprising that the use
of the rhesus macaque for these purposes has been slow
to develop. One likely reason for this delay is the dearth of
genome-wide sequence information on sufficient numbers
of animals to support such studies, which typically require
large numbers of phenotyped and genotyped subjects.
However, the collection of dense sequence data in large
cohorts remains a formidable expense, and a cost-effective
solution to this problem is needed if we are to reap the full
benefit of NHP models in both basic and preclinical
research.

Whole-genome sequencing of large cohorts remains a
very expensive undertaking, both now and likely long
after we achieve the $1,000 per genome benchmark.
Several sequencing strategies have been developed to
address this problem, each of which strikes a different
balance between sequencing costs, sequence depth, and
coverage across the genome. Although deep WGS is the
most unbiased and comprehensive method for surveying
genetic variants [1], at approximately $2000/genome for
standard 30X coverage, its cost remains prohibitive in the
foreseeable future for large cohort studies. A second strat-
egy aims to cover the whole genome but at greatly
reduced depth (i.e., “low coverage sequencing”), which
lowers costs to $100-400/genome. However, this approach
reduces the accuracy of resulting genotype data, particu-
larly for smaller studies of rare or low-frequency variants
[2]. A third strategy is to sequence only a portion of the
genome, i.e., “reduced representation” approaches, which
offers a compromise between sequencing depth and
breadth of coverage. The most common of the reduced
representation approaches is whole-exome sequencing,
currently ~ $300/genome for 30X coverage, in which a
commercial hybridization kit is used to capture genomic

fragments enriched for exons in protein-coding genes.
While this approach produces coverage of genomic
regions that are of interest to many Mendelian diseases,
coverage of regulatory elements or other non-coding
regions is sacrificed. Moreover, most commercial exome
capture tools are designed for humans or rodents, and
thus will miss some portion of the NHP exome.

More recently, a reduced representation approach
called genotyping-by-sequencing (GBS) has lowered the
cost per genome dramatically, by taking advantage of
classical molecular biology methods that capture a more
evenly distributed subset of the genome. In the GBS
method, restriction enzymes are used to cleave the gen-
ome at sequence-specific cut sites, and the resulting
fragments are sequenced to the desired coverage. While
these fragments still represent only a small portion of
the genome, they can be distributed more evenly than in
other methods such as exome capture. Importantly, be-
cause the GBS approach does not require proprietary
capture technology and can be highly multiplexed, costs
can be reduced to as little as $30 per genome, and this
approach can be applied to species that lack available
commercial arrays. This approach has been applied to
many agricultural and other economically important
species to construct dense genetic linkage maps and
identify QTLs [3-8], to improve genome assemblies [9],
and to investigate population structure, diversity, and
evolutionary history [10-12].

Further gains in the amount of sequence informa-
tion obtained at the lowest possible cost could be
achieved by combining GBS data with imputation,
particularly for NHP cohorts with pedigree informa-
tion. In this approach, WGS data collected in selected
individuals within the pedigree are used to impute
dense genotypes into their many relatives, in which
only sparse genotype data (e.g., obtained by GBS) has
been collected. These sparse data from GBS are used
to anchor the imputation of genotypes at intervening
and more densely spaced loci across the genome, by
leveraging information on expected allele-sharing
among relatives. This strategy is appealing for many
captive NHP breeding colonies, where deep and well-
defined pedigrees could permit extremely cost-effective,
whole-genome characterization. However, the selection of
the most informative animals in the pedigree for WGS is
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expected to have a large impact on the success of this
approach, and studies addressing optimal selection strat-
egies have only been published for human pedigrees,
which are typically much smaller and less complex than
those characterized for NHP cohorts.

While WGS combined with GBS and imputation pre-
sents a significant opportunity for obtaining dense se-
quence data at minimal cost, this approach has not yet
been applied to a pedigreed NHP cohort. Thus, our ob-
jectives were to 1) develop a reliable GBS method in the
macaque genome to support pedigree-based imputation;
2) assess the extent and accuracy of dense marker data
imputed from WGS using sparse marker data from GBS;
and 3) compare the extent and accuracy of imputed
dense marker data among different strategies commonly
used to select individuals for WGS, and among different
ratios of WGS to GBS individuals in the pedigree. Here,
we show that a Pstl digest in the macaque genome pro-
duces >20,000 high-quality sparse variants that are suit-
able for use in imputation. We further show that the
pedigree-based “Genotype Imputation Given Inherit-
ance” imputation approach (i.e., “GIGI”; [13]), combined
with the GIGI-Pick method [14] of selecting individuals
for WGS, allowed us to impute an average 3.7 million
variants per individual at >99 % accuracy, or alterna-
tively, an average of 4,458,883 variants at a slightly more
relaxed threshold yielding >97 % accuracy, among a total
7,655,491 sites of variation spanning all 20 macaque auto-
somes, using only four individuals with WGS and 12 indi-
viduals with GBS. This strategy represents a reasonable
tradeoff between sequencing costs, and the amount and
quality of dense sequence data obtained on as many indi-
viduals as possible.

Methods

Animal care and welfare

All macaque samples used in this study were collected
during routine veterinary care procedures approved by
the Institutional Animal Care and Use Committee of the
Oregon Health & Science University (Protocol Number:
1S00002621); these samples were obtained from the Ore-
gon National Primate Research Center (ONPRC) DNA
Biobank. Animal care personnel and staff veterinarians
of the ONPRC provide routine and emergency health
care to all animals in accordance with the Guide for the
Care and Use of Laboratory Animals, and the ONPRC is
certified by the Association for Assessment and
Accreditation of Laboratory Animal Care International.

Pedigree configuration and validation

We selected 16 closely related Indian rhesus macaques
from the larger ONPRC colony pedigree as the focus of
this study (see Fig. 1). These animals were selected to
represent the most common relationships in the colony,
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including parent/offspring, half-sibling, half-avuncular,
half-cousin, and grandparent/grandchild relationships.
Because assumed pedigree relationships may prove to be
incorrect when comprehensive genotype data are exam-
ined, we explored the accuracy of our focal 16-member
pedigree using a set of ~5,000 markers on chromosome
19 generated from our GBS sequencing experiments,
employing algorithms that assess Mendelian consistent
error both pairwise between relatives and within
families, as implemented in PedCheck [15] and GIGI-
Check [16] software. No significant departures from
expected patterns of allele-sharing were noted, confirm-
ing the validity of the pedigree configuration depicted in
Fig. 1. Initially, nine animals were selected using an ad
hoc approach for WGS in this study, based on their pos-
ition within the pedigree.

Genomic DNA isolation and quantification

Genomic DNA (gDNA) was extracted from 3 ml of
whole blood using the ArchivePure DNA Blood Kit (5
Prime, Hilden, Germany), following the manufacturer’s
recommendations. Genomic DNA was quantified with
the Qubit High Sensitivity dsDNA Assay (Thermo
Fisher Scientific, Waltham, MA).

Genotyping-by-sequencing (GBS)

To determine the optimal restriction enzymes for con-
ducting GBS in rhesus macaques, we first performed in
silico mapping of cut sites using the MacaM rhesus ma-
caque reference genome [17], to identify enzymes pre-
dicted to produce 60,000-100,000 DNA fragments in the
200-500 bp size range, while also minimizing the pres-
ence of repeat sequences (e.g., retrotransposons, DNA
satellites). We initially tested the enzymes ApeKlI, Bglil,
EcoRI, HindlIl, PspXI, Pstl, and Sall, ultimately selecting
BglIl and Pstl as the two enzymes most likely to meet
these criteria. We then generated GBS libraries based on
these 2 enzymes using a modified version of the method
described by Elshire et al. [18]. Specifically, to create the
adaptors, oligonucleotides for the top and bottom
strands for each barcoded adaptor and for the two com-
mon adaptors (one for Bglll and one for Pstl) were
paired and annealed in 1X Annealing Buffer (20 mM
NaCl, 10 mM Tris—HCI pH 7.5, 2 mM MgCl,) using a
thermal cycler (3 min at 95 °C, ramping down 1.6C/min
for 44 cycles, cool to 4 °C). All adaptors were quantified
with the Qubit Broad Range dsDNA Assay (Thermo
Fisher Scientific, Waltham, MA.). Each of the 32 barcoded
adaptors was then paired with a common adaptor at a 1:1
ratio. Each of the 16 genomic DNAs was digested with
Bglll and Pstl in separate reactions. All 32 reactions
(500 ng DNA, 10 U enzyme, in 20 uL volume) were incu-
bated for 2 h at 37 °C, and digests were ligated (400 U T4
DNA Ligase (New England Biolabs, Ipswich, MA) to



Bimber et al. BMC Genomics (2016) 17:676

Page 4 of 16

M © ©

Fig. 1 Pedigree diagram of the 16 macaques included in this study. Macaques with whole genome sequence data are shaded; all subjects have GBS data

adaptor mixes (4.5 ng Bglll, 15 ng Pstl, in 50 pl volume)
for 1 h at 22 °C. Four (4) pl from each ligation reaction
was combined into two separate pools, one per enzyme.
Both pools were cleaned with DNA Clean and Concentra-
tor (Zymo Research, Irvine, CA) and eluted in 50 pL. Fol-
lowing amplification parameters in Elshire et al. [18], PCR
was performed on 10 pl of each pool (Q5 High Fidelity 2X
MM (New England Biolabs, Inc.), 25 pmol of each primer,
in 50 pl volume) using Primers A and B, to extend and
complete the sequencing adaptors. Libraries were purified
using the Qiaquick PCR Purification Kit (Qiagen,Valencia,
CA.), quantified with the Qubit High Sensitivity dsDNA
Assay (Thermo Fisher Scientific, Waltham, MA) and eval-
uated with the Bioanalyzer High Sensitivity Assay (Agilent,
Inc.). A one-sided 0.8X size selection with AMPure XP
beads (Beckman-Coulter, Brea, CA) was used to enrich
larger size fragments. Libraries were sequenced on an Illu-
mina NextSeq500 at the Oregon Health & Science Univer-
sity Massively Parallel Sequencing Shared Resource to
30X coverage with paired-end 150 bp reads.

Whole-genome sequencing

Per sample, 1 pg of gDNA was sheared using a Bioruptor
UCD200 (Diagenode, Denville, NJ), generating fragments
around 300 bp. Libraries were constructed using the
NEXTflex DNA Sequencing Kit and NEXTflex DNA
barcodes (BIOO Scientific, Austin,TX) following the manu-
facturer’s instructions. Briefly, the ends of the sheared
gDNA were repaired and adenylated, then ligated to
barcoded adaptors using the reagents provided. Next,
fragments of 200—400 bp were excised from a 1 % agarose
gel. The products were amplified by PCR using 8 cycles,
then purified using 1X AMPure XP beads (Beckman-
Coulter, Brea, CA.). The final libraries were quantified with
the Qubit High Sensitivity dSDNA Assay (Thermo Fisher
Scientific, Waltham, MA) and evaluated using the 2100
Bioanalyzer High Sensitivity Assay (Agilent Technologies,
Santa Clara, CA). Libraries were sequenced on a

HiSeq3000 at the Oregon State University Center for
Genome Research and Biocomputing to produce 30X
coverage with paired-end, 150 bp reads.

Analysis of sequence data

Both whole-genome and GBS data were processed using
the best practice recommendations from the Broad Insti-
tute’s Genome Analysis Toolkit (GATK; [19, 20]), adapted
for rhesus macaque. Briefly, paired-end reads were
trimmed using Trimmomatic [21], and aligned to the
MacaM rhesus macaque reference genome [17], using
Burrows-Wheeler Aligner [22]. BAM post-processing in-
cluded local re-alignment around indels using GATK [19,
20]. GATK’s HaplotypeCaller was used to produce VCF
files, followed by genotype calling using GenotypeGVCFs.
For the latter, a score of 20 was used as the confidence
threshold for calling and emitting variants. The resulting
VCF was filtered at the site level using the following cri-
teria: quality by depth (QD < 5.0), strand bias (FS > 15.0),
mapping quality (MQ <50.0), proximity to the read end
(ReadPosRankSum < -8.0), the difference in mapping
quality between reference and alternate reads (MQRank-
Sum < -12.5), and single nucleotide variant (SNV) clusters
of three SNVs within a 10 bp span. In addition, SNVs
located within repetitive regions, identified using Repeat-
Masker (http://www.repeatmasker.org), were removed. In
addition to these filters, any individual genotypes were
removed if either the depth was less than 10, or genotype
quality less than 20. The analyses also employed Picard
tools [23] and FASTQC [24] for quality control of the raw
data, JBrowse [25] to visualize data, and BEDTools [26] to
evaluate SNV and imputation marker distribution.
Sequence data were managed and analyzed using
DISCVR-Seq [27], a LabKey server-based system [28].

Imputation strategy
We focused on chromosome 19 as a test case in order
to develop an analytical pipeline that could be applied to
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all the remaining chromosomes. We performed imput-
ation using the method of GIGI (“Genotype Imputation
Given Inheritance”; [13]), as this method has been
successfully used to impute genotypes with high accur-
acy in extended human pedigrees. This approach infers
inheritance vectors (IVs, representing shared chromo-
somal segments) at sparse marker locations conditioned
on observed sparse marker genotypes, and then infers
IVs at dense marker locations conditioned on the sparse
marker IVs, together with the genetic map. A posterior
probability distribution is then estimated for each miss-
ing genotype at a dense marker position, conditioned on
observed genotypes at all dense marker positions, corre-
sponding allele frequencies, and IVs corresponding to
dense markers. In the last step, genotypes may be called
using these estimated probabilities, based on user-
defined thresholds. We estimated inheritance vectors
according to the algorithm of [29], as implemented using
a Markov-Chain Monte-Carlo (MCMC) sampler in the
gl_auto function in the software package for genetic epi-
demiology MORGAN 3; available at [30]. The GIGI ap-
proach has been implemented in a software package of
the same name, and is available at [31].

To characterize the sparse set of markers needed to
guide the imputation of dense marker genotypes on
chromosome 19, we identified a set of markers that
could be detected reliably by GBS among most
macaques. Accordingly, we selected a set of high-quality
SNVs that, 1) were sequenced to at least 20X depth
across the majority of GBS libraries and for which geno-
types could be called in at least 50 % of individuals, 2)
were spaced evenly across the genome, 3) had minor al-
lele frequencies (MAF) >0.25, and 4) were in excess of
what was needed to meet the desired goal of ~0.5—
1.0 cM average marker spacing. We refer to these as
“framework” markers, as discussed in Cheung et al,
2013 [13]. Using this approach, the desired spacing can
be maintained in an approximate fashion, even when in-
dividuals are missing a substantial amount of genotype
data, an outcome characteristic of the GBS method [32].
Second, to limit the computational time required, we se-
lected a second set of SNVs from our WGS data that
were evenly spaced but more densely distributed than
the framework markers. We designated these as our
“dense” markers, and we attempted to impute these into
animals having only sparse framework marker genotypes
from GBS. These dense markers were selected from the
set of all high-confidence SNVs identified in our cohort.

To determine the success of imputing dense marker data
into animals having only sparse framework marker data,
we evaluated the accuracy of imputed alleles, defined here
as the proportion of alleles imputed correctly among all
attempted allele calls at that position, such that a correctly
imputed allele is concordant with the allele call from either
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WGS or GBS sequence data (i.e., “genotype concordance”).
We additionally define rare variants as those having only 1
copy among a total of 30 chromosomes (i.e., singletons,
present at ~3 % frequency in this dataset) that we have
sequenced to date, including the 9 individuals discussed in
this paper and an additional 6 unrelated Indian rhesus
macaques (unpublished data). We define accuracy of im-
putation for rare variants as the proportion of rare alleles
imputed correctly among all rare variant heterozygotes
called from either WGS or GBS sequence data.

To evaluate differences in imputation success associ-
ated with increasing the number of individuals with
WGS in the pedigree, we assessed accuracy of imputed
variants when using from 1-9 animals with WGS data
to impute variants into the remaining pedigree members
with only sparse GBS data. Individuals with WGS data
were added consecutively in the following order: B, H, J,
E M, K, P, C, D (see Fig. 1). Thus, the first scenario used
only the most informative animal (B) with WGS to im-
pute genotypes into the remaining 15 animals within the
pedigree. Subsequent scenarios retained the previous
animal(s), added the next most informative animal, and
imputed genotypes into the remaining animals within
the pedigree. This procedure was conducted iteratively,
until all 9 animals with WGS were used to impute geno-
types into the remaining 7 animals in the pedigree. We
used the GIGI-Pick algorithm [14] to rank our 9 animals
with WGS. This algorithm calculates a metric of cover-
age, defined as the expected percentage of allele copies
called for a variant at a random locus, conditional on
fixed IVs for a specific choice of individual(s), and then
iteratively selects those individuals with the highest
coverage, calculated by integrating over all possible
genotype configurations within a given pedigree. We ran
the algorithm in genome-wide mode, which requires
only the pedigree structure to prioritize individuals for
WGS. This algorithm is implemented in the suite of
software based on the GIGI approach, and is available at
[33]. We evaluated accuracy of imputed genotypes for
each of our recipient macaques by masking all non-
framework genotypes, and comparing imputed geno-
types to masked genotypes obtained from either WGS
or GBS data, depending on the data available for each
recipient. Specifically, imputed genotypes were com-
pared to genotypes from WGS where available, but for
recipients with only GBS data available, imputed geno-
types were compared to genotypes at any SNVs that
were not designated as framework markers. Imputed ge-
notypes were called using allele frequencies established
from all Indian-origin rhesus macaques sequenced to
date at the ONPRC as a reference, excluding related in-
dividuals (7 = 12).

To evaluate differences in imputation success associ-
ated with different sequencing strategies, we compared
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the accuracy of genotypes imputed by GIGI on chromo-
some 19, among 3 different selection strategies, includ-
ing GIGI-Pick and two common heuristic methods.
These 2 methods include whole-genome sequencing of
1) pedigree founders only, or 2) the most recent gener-
ation (i.e., individuals typically located at the bottom of
the pedigree). To compare the different strategies, we
examined accuracy for the scenario in which dense
markers from 3 animals selected for WGS are imputed
into the remaining 13 pedigree members with GBS data,
based on using individuals B, H, and J (GIGI-Pick selec-
tions), B, C, and D (“Founders”), and M, P, and K (“Pedi-
gree bottom”) strategies (see Fig. 1). Genotypes were
imputed using the GIGI algorithm, based on allele fre-
quency information inferred from the animal set de-
scribed above. Imputed genotypes were called by 2
methods: by accepting only those above a user-defined
probability threshold (“threshold” method) or as the
most probable genotype at that position (“most likely”
method). For the “threshold” method, we required a 0.99
probability to call both alleles at a given site, and a 0.98
probability to call one of two possible alleles.

To evaluate the impact of missing data on the density of
the framework marker panel and downstream effects on
the accuracy of imputed genotypes, we evaluated imput-
ation accuracy at 4 different framework marker panels on
chromosome 19. We first limited sites to those with MAF
>0.25 that were replicated in both GBS and WGS data,
since robust variants with high MAF should provide more
informative framework markers for imputation. We then
reduced these further to include only sites where either 4
of 16 subjects had passing genotypes (1027 markers), 8 of
16 subjects had passing genotypes (811 markers), or 16 of
16 subjects had passing genotypes (325 markers). Finally
we created a set of 2,737 markers designed to include
every variable position covered by the GBS data, with a
genotype called in at least one subject, in order to
maximize the possible number of framework markers.

Results

Whole-genome sequencing and variant calling

We obtained an average 566,035,688 read pairs per sam-
ple (range 495,617,772 - 735,313,000) for each of the 9
individuals with WGS data. These reads were aligned to
MacaM [17], to produce an average 27X coverage across
the genome (range 24-33X). From these reads, a total of
10,193,425 high-confidence SNVs were identified across
all 9 individuals, with an average of 5,037,341 variants
detected per individual. The transition/transversion ratio
(Ti/Tv) observed in this study was 2.17, consistent with
observations in larger macaque cohorts (unpublished
data). This set of sites served as the source of our
optimal dense marker set, as described in Methods.
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Genotyping-by-sequencing and variant calling

For each of the 16 pedigree members, we prepared and
sequenced GBS libraries based on individual digests for
both BglII and Pstl. Among BglIl libraries, we obtained
an average 3,754,352 reads per sample, resulting in an
average 4,734,354 base-pairs (bp) from 45,597 fragments
with at least 20X coverage per sample (equivalent to
0.17 % of the genome). In contrast, among PstI libraries,
we obtained an average 5,686,709 reads per sample,
resulting in an average 9,772,130 bp from 134,314 frag-
ments with >20X coverage per sample (equivalent to
0.35 % of the genome) (Fig. 2a-b). Notably, although the
Pstl libraries originally had ~1.5X more reads than BglIl
libraries, they had ~3-fold the number of fragments with
high-depth coverage. While the vast majority of GBS
fragments were adjacent to the predicted restriction
enzyme cleavage site, a small number appeared to be
distant from these sites (Fig. 2c-d). While these results
may reflect off-target sequencing, it is also possible that
they reflect genomic variation altering restriction sites in
one or more individuals.

We next determined the number of high-quality SNVs
available from each digest that would be suitable for use
as framework markers in imputation. We first restricted
SNVs to those with >20X coverage, leaving a total of
29,449 high-confidence variants in the BglII samples, and
62,619 variants in Pst] samples. We further restricted
these SN'Vs to only those that were concordant between
WGS and GBS data, which included 98.0 % of SNVs for
BgllI (range 97.7-98.4 % among individuals) and 98.7 % of
SNVs for Pstl (range 98.5-98.9 % among individuals). To
maximize the probability of the variant being present in as
many animals as possible, we also restricted SN'Vs to only
those with MAF >0.25, which further reduced these
numbers to an average of 7,399 variants per sample for
Bglll (among 10,775 sites across all samples) and 22,455
variants per sample for Pst/ (among 37,505 sites across all
samples), with an average distance between SNVs of
259,690 bp and 78,785 bp, respectively (see Fig. 2e-f). We
were not able to call genotypes in all individuals for all
SNV sites, due to variation among individuals in sequence
quality at each site. From the Pst/ data, all individuals had
sufficient data to call genotypes at an average 15,516
(~69 % of 22,455) of these SNVs, but only an average of
4,418 (~60 % of 7,399) of these sites could be called for all
individuals from the BglIl data. Based on the significantly
greater numbers of high-quality SN'Vs across the macaque
genome available from Pst/ sequence data, we chose this
enzyme for all final imputation analyses.

Imputation accuracy on chromosome 19 across 3
different strategies for selecting WGS individuals
Our initial tests of imputation focused on chromosome 19
as a small chromosome “test case” in which to validate a
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large-scale genome-wide approach. To characterize the
set of framework markers needed to facilitate imputation
on this chromosome, we selected 833 variants spaced
~65 kb apart, from the set of high-MAF sites on this
chromosome, characterized as described above. To
characterize the set of dense markers to be imputed on
this chromosome, we selected 5,010 variants, spaced
~10 kb apart, from the total set of 332,260 sites discovered
from WGS data on this chromosome. This reduced and
optimized set of dense markers on chromosome 19 was
used in all imputation analyses on this chromosome.

Using these chromosome-specific framework and
dense marker sets, we evaluated the “Bottom of Pedi-
gree”, the “Founders”, and the “GIGI-Pick” strategies for
selecting the 3 most informative of the 9 individuals with
WGS data, followed by imputation of dense markers
into the remaining 13 individuals, based on their frame-
work marker data from GBS. We imputed genotypes
using both genotype-calling methods available in the
GIGI software, i.e., the “most likely” genotype for each
site (Fig. 3A, C), or assigning only those full or partial
genotypes that exceeded a hard probability “threshold”
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of 0.98 for calling both alleles, or 0.99 for calling a single
allele (Fig. 3B, D). The GIGI-Pick selection strategy pro-
duced higher median accuracy of imputed genotypes
than either of the other strategies, at 86.7 % (“most
likely” method, ML) or 99.9 % accuracy (“threshold”
method, THR), compared to median accuracy of 81.9 %
(ML) or 99.3 % (THR) in the “Bottom of Pedigree” strat-
egy, and 81.9 % (ML) or 99.8 % (THR) in the “Founders”
strategy. By design, the “most likely” method will always
call a genotype at all markers attempted (Fig. 3C). In
contrast, while the “threshold” genotype calling method
resulted in considerably higher accuracy across all selec-
tion strategies than the “most likely” method, the num-
ber of genotypes called was also reduced considerably,
with the proportion of markers imputed ranging from a
median 29.8 % in “Bottom of Pedigree”, to 32.7 % in
“Founders”, and 46.4 % in GIGI-Pick. Within the GIGI-
Pick strategy, individuals A, D, and E display lower
accuracy, and a lower proportion of imputed variants,
likely due to being unrelated to all individuals with WGS
in this analysis, i.e., B, H, and ]J. We note that an un-
avoidable limitation of our analyses is the larger number
of dense variants used to estimate accuracy between

individuals with both WGS and GBS data, compared to
those with only GBS data. This limitation may explain
the slightly lower accuracy of individuals G and N, in
whom small differences were magnified relative to
individuals having WGS data for comparison.

Imputation accuracy on chromosome 19 with increasing
numbers of WGS individuals

Using the same chromosome 19 framework and dense
marker sets, we used the GIGI algorithm to impute our
dense markers from 1 to 9 WGS individuals into the
remaining 7-15 pedigree members with GBS data, in
the consecutive order B, H, J, F, M, K, P, C, and D as
ranked by the GIGI-Pick algorithm. We called genotypes
using both the “most likely” method (Fig. 4A, C), and
the hard probability “threshold” method (Fig. 4B, D).
Under the “most likely” method, median accuracy
increased from 82.6 to 86.6 % as 1-3 individuals with
WGS were added; however, these increases plateaued
quickly with only minor gains after 3 WGS individuals
were used (Fig. 4A). Maximum median accuracy of
87.2 % was achieved at 5 WGS individuals. We note that
even as more WGS individuals were included, two
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individuals consistently had lower accuracy than other Imputation accuracy with varying density of framework
individuals more closely related to the rest of the pedi- markers

gree. Under the “most likely” method, individual D dis- As the number of framework markers increased from
played 76 % accuracy across 1-5 WGS individuals, 325 up to the maximum available of 2,737, there was lit-
which increased to 84 % at 6—8 WGS individuals, due to  tle variability in median accuracy of imputed genotypes,
the inclusion of WGS data from K, the child of D. Indi- or in the fraction of markers imputed. Based on the
vidual E had 77 % accuracy across all WGS scenarios. As  “threshold” genotype calling method, median accuracy
expected, using the “threshold” method, accuracy was was 99.9 % for all marker panels, and the median frac-
considerably higher, with median accuracy of 99.9 % in  tion of markers imputed was 44.7 % for Panel A, 48.0 %
all scenarios. Under this method, while there were rela-  for Panel B, 48.2 % for Panel C and 48.0 % for All Sites
tively minor differences in accuracy among all scenarios,  (Fig. 5A-B). Only individuals E and N showed initial im-
the median fraction of markers imputed increased sig- provement in accuracy with increasing marker density,
nificantly from 30.5 to 46.3 % as the first 3 WGS individ-  but these improvements plateaued quickly. Individuals
uals were included, reaching a plateau at 50.8 % when E, N, and G consistently exhibited lower accuracy overall
4-5 WGS individuals were used. Again, founders D and  than all other individuals across all marker density
E had the fewest variants called, with only 32.9 % and panels (again likely due to differences in the number of
21.2 % of positions called, respectively. Based on the markers used to compare accuracy between WGS and
optimal tradeoff between accuracy and number of geno- GBS individuals), while individuals D, E, and M were
types imputed that was suggested by these results, we consistently more poorly imputed than all others. For in-
selected a ratio of 4 individuals with WGS per 12  dividuals D and E, this is likely due to being unrelated to
individuals with GBS using the”threshold” method for all ~ any of the 4 WGS individuals used for imputation, i.e.,
subsequent analyses. B, H, J, and F. Importantly, both accuracy and the
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fraction of markers imputed were relatively consistent
across a range of framework marker sets, and robust to
a wide range of missing genotype data. Gains in accuracy
and fraction of markers imputed were negligible when
using all GBS data available.

Imputation rate and accuracy across allele frequencies on
chromosome 19

Using the threshold genotype calling method, among a
total 96 instances on this chromosome, private/rare alleles
were imputed a total of 38 times (~40 %), with 100 %
accuracy, but were not called 58 times (~60 %; see
Additional file 1: Figure S1). Across all other allele
frequencies, only slightly lower accuracies were obtained
(>99.7 %), while imputation rates increased with allele
frequency, as expected. Alleles at frequencies of 0.00 - 0.25
were imputed 20.7 % of the time; at 0.25 - 0.50 frequencies,
30.3 % of the time; at 0.50 — 0.75 frequencies, 30.3 % of the
time; and alleles with frequencies >0.75 were imputed
47.2 % of the time (see Additional file 1: Figure S1).

Imputation of dense markers across the genome

To evaluate our imputation strategy across the whole
genome, we employed the same criteria outlined above
to generate framework marker sets for each of the 20
macaque autosomes. The number of framework markers
per chromosome ranged from 435 to 1,450, totaling
17,158 across the genome, with mean spacing between
framework markers among all chromosomes of ~159 kb
(81 kb-253 kb). At this stage, we modified our dense
marker set to a total possible 7,655,491 sites across the
macaque genome, by including variants discovered pre-
viously from WGS data in an additional 6 unrelated

ONPRC Indian rhesus macaques (in preparation), and
by removing any variants with insufficient allele fre-
quency information to allow imputation. Based on the
strategy identified by our analyses as optimal, we used
the first 4 individuals among our 9 with WGS as ranked
by the GIGI-Pick algorithm, and imputed variants at this
comprehensive set of dense markers into the remaining
12 pedigree members, based on the “threshold” calling
method (Fig. 6). Per chromosome, median accuracy
ranged from 99.4 to 99.8 % and the median fraction im-
puted ranged from 47.1 to 48.8 % with an average of
3,680,237 correctly imputed variants per subject. How-
ever, several individuals had significantly lower overall
numbers of variants imputed at this level of accuracy, in-
cluding D, E, K, and M (range 1,563,908-2,524,889), and
individual E also consistently exhibited the lowest accur-
acy across all chromosomes at 96.3-98.5 %. These data
were imputed using a probability threshold of 0.98 or 0.99
to call both or only one allele in a genotype, respectively;
at a more relaxed threshold of 95 % confidence required
to call both alleles, and 98 % confidence to call a single
allele, we obtained an average 4,458,883 (~58 %) correctly
imputed variants with an overall accuracy of > 97 %.

Genome-wide imputation rate and accuracy across allele
frequencies

Using the threshold calling method, 17.3 % of 27,761
private/rare alleles were imputed with 99.9 % accuracy.
Across all other allele frequencies, only slightly lower
accuracies were obtained (>99.7-99.9 %), while imput-
ation rates increased with allele frequency, as expected.
Alleles at frequencies of 0.00 — 0.24 were imputed 15.5 %
of the time; at 0.25 — 0.49 frequencies, 23.1 % of the time;
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at 0.50 — 0.74 frequencies, 27.3 % of the time; and alleles
with frequencies >0.75 were imputed 44.3 % of the time.

Post hoc comparisons of this approach to low-coverage
WGS sequencing

After completing the analyses described above, we com-
pared the genotype accuracy and density described in
our WGS/GBS approach, to other low-coverage sequen-
cing approaches, with or without imputation, but limited
to a similar total sequencing cost. As of this writing,
low-coverage sequencing remains more expensive than
GBS per individual, so alternative, equivalent-cost ap-
proaches that substitute low-coverage sequencing would
need to compensate by reducing or eliminating higher-
coverage sequencing elsewhere in the study design. For
example, one individual with 16X coverage may be used
to impute into four individuals with 4X data. To simu-
late this 16X/4X imputation situation, we down-sampled
the 30X WGS data from our analysis to 16X or 4X
coverage and used these data to call genotypes as

described above. We then compared the accuracy and
number of genotypes obtained from these down-
sampled data to the original 30X data. As shown
above, only a few hundred framework markers per
chromosome are sufficient for imputation. While the
simulated 4X data provided genotypes at more than
enough sites per sample to support imputation, we
note that overall genotype concordance between 4X
and 30X data was comparatively low (96.8 %), due to
the lower read depth of the 4X data. We did find
very high concordance between genotypes called in
the 16X and 30X data (>99 %); however, the total
number of genotypes that could be called was signifi-
cantly greater in the 30X data, with an average of
8,549,800 per sample, compared to only 5,030,830 per
sample in the 16X data, i.e,, a 70 % increase. This
result suggests that including animals with higher-
coverage sequencing will allow the imputation of sig-
nificantly more genotypes, more extensively throughout
the pedigree, than a moderate/low coverage imputation
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approach. We note that another possible imputation
approach using one 28X individual to impute variants
into 4-1X individuals would cost the same as the 16X/
4X approach (i.e., both total to 32X coverage), but
would require high-confidence information a priori on
colony or population allele frequencies in order to call
variants with sufficient accuracy from 1X data to
produce framework markers. Similarly, sequencing all 5
animals at 6X without imputation would require the
same high-confidence information a priori. This infor-
mation does not currently exist for the rhesus macaque,
and many novel model organisms face this same
limitation.

Discussion

The rhesus macaque is widely used in academic biomedical
research, primarily due to its utility as a model of human
HIV infection and pathology. Although this species is well-
known for the susceptibility to HIV that it shares with
humans [34, 35], it is not widely appreciated that macaques
naturally display variation in susceptibility to a broad
spectrum of diseases and disorders that mimic those found
in humans, e.g., dyslipidemia, addictive disorders, macular
degeneration, and anxiety [36—42]. While the macaque was
identified early as a high priority for assembly of a reference
genome, and a draft genome was subsequently published in
2007 [43], the systematic application of genome-wide data
in the macaque to the study of human health and disease
has yet to materialize. Moreover, technologies such as large
scale SNP genotyping arrays that are taken for granted in
humans and many rodent models, have never been devel-
oped for the macaque.

Since 2007, next-generation sequencing technology has
speeded the collection of genomic data at steadily decreas-
ing cost, but only a relatively small number of additional
macaque genomes have been explored for variation, and
none have yet been systematically applied to the study of
human disease. This is unfortunate, given that large, out-
bred pedigreed rhesus macaque colonies at many primate
research centers constitute a powerful resource for the
genetic analysis of common human diseases. Here, in
order to catalyze the application of genomic data in
macaques to the study of human disease, we present an
approach enabling the relatively affordable collection of
accurate, dense genome-wide sequence data in large num-
bers of pedigreed macaques.

Our approach is based on using a low-cost reduced rep-
resentation sequencing method (genotyping-by-sequen-
cing, GBS), to facilitate pedigree-based imputation of
dense marker genotypes from selected relatives with
whole genome sequence data. In this study, we evaluated
the ability of 2 candidate restriction enzymes (Bg/ll and
Pstl) to produce genomic fragments for GBS, using both
in silico and empirical methods. When compared to Bgll],
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we show that Pst] captures substantially larger numbers of
high-quality variants, including more that are robustly
replicated in WGS. Further, we demonstrate that even
though PstI libraries provide coverage over only 0.35 % of
the genome, this coverage produced significantly more
variants than are needed to generate the sparse “frame-
work” markers required to support imputation of dense
marker data from WGS individuals. Because GBS is able
to facilitate the imputation of dense, genome-wide data at
very low cost (roughly 15 % the cost of 4X sequencing), it
becomes financially feasible to apportion more key
individuals in the pedigree to greater depth WGS, result-
ing in a greater number of high-confidence genotypes
throughout the pedigree. Our approach contrasts with
alternative approaches that combine high-coverage with
low-coverage WGS [44]. However, we note that a “one-
size-fits-all” approach may not be possible, due to differ-
ences among studies that include, 1) pedigrees of varying
size and reliability, 2) variable types and amounts of prior
genotype data (i.e.,, microsatellite or other sparse but in-
formative markers, dense SNP data, exome sequence data,
etc.), 3) varying amounts of population-level information
(i.e., known vs. unknown population allele frequencies),
and 4) potentially different goals (gene-centric coverage,
genome-wide coverage for association, genome-wide
coverage for linkage analysis, discovery of rare SNVs, or
discovery of regulatory, structural, or other variant types,
etc.). In addition to these complexities, dollar-for-dollar
comparisons are difficult because final costs per individual
in terms of genotype numbers and accuracy achieved are
typically not reported, and because sequencing costs con-
tinue to decline at a rapid rate. Given the minimal amount
of prior genome-wide information of any kind in the
ONPRC macaque colony, the lack of high-confidence
population allele frequency information, and the substan-
tially greater number of variants that can be imputed
throughout the pedigree by maximizing the sequencing
coverage on many more key individuals, we believe our
approach provides optimal genotype information at
minimum cost. This approach could be applied to other
managed or natural colonies of Indian-origin rhesus
macaques with pedigree information but limited or no
other data, and potentially to similar groups of other
macaque subspecies.

Ultimately, we demonstrate that GBS data can be used
to impute genotypes at an average ~3.7 million SNV
sites over all 20 autosomes, at >99 % accuracy through-
out a l6-member pedigree. This high accuracy was
obtained by only calling imputed genotypes above a very
strict probability threshold, and therefore comes at the
expense of the total number of genotypes imputed. This
threshold could be relaxed in applications where a lower
accuracy may be tolerated in order to increase the dens-
ity of genotype information; for example, ~4.5 million
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variants can be imputed in the same cohort at >97 %
accuracy. However, even at ~3.7 million sites, this number
of variants already exceeds the capacity of many state-of-
the-art human genotyping chips used for discovery in
complex disease as of this writing, including the Illumina
Infinium® Multi-Ethnic EUR/EAS/SAS-8 (~1.65 M
markers), the Infinium® Multi-Ethnic Global-8 (~1.95 M
markers), and the Infinium® Omni2.5-8 Beadchip (~2.7 M
markers).

In addition to common variants, we note that we are
able to impute rare or private variants at exceedingly
high accuracy. Moreover, these results were obtained
using very preliminary estimates of population allele
frequencies; as more animals are sequenced, this infor-
mation will improve overall accuracy of allele frequency
estimates and therefore the number of genotypes able
to be imputed at a specified confidence level, including
rare variants. Our goal is to characterize an unbiased,
dense set of genome-wide markers throughout the
much larger colony pedigree, and for these data to pro-
vide flexibility for use in genome-wide association and/
or genome-wide linkage approaches, and in candidate
gene studies. The amount and quality of genome-wide
genotype information obtained using the approach
outlined in this paper, combined with the extensive
pedigree information available in this macaque colony,
will offer powerful support for downstream analysis of
both rare and common variant effects on complex
traits.

The selection of individuals for WGS that will
maximize the accuracy of imputed genotypes through-
out the pedigree is a critical component of this
approach. We compared GIGI-Pick [14], a pedigree-
based statistical approach to prioritizing subjects for
WGS, to two other common heuristic methods for
selecting individuals for WGS, including sequencing
only the most recent generation of the pedigree (“Bottom
of Pedigree”), and sequencing only pedigree founders
(“Founders”). We show that while high accuracy of
imputed genotypes was achieved in all three strategies,
on average the GIGI-Pick selection strategy was able to
impute a significantly larger number of genotypes than
either the “Bottom of Pedigree” or “Founders” ap-
proach. It is possible that these 3 selection methods
may perform differently for alternative pedigree config-
urations, e.g., in a more shallow pedigree, sequencing
founders or the most recent pedigree members may
provide information equivalent to the more formal
strategy implemented in GIGI-Pick. However, we note
that the GIGI-Pick approach results in a clear advan-
tage even in this small pedigree that extends to only 2
generations, but which includes many of the most
common relationships typically found in NHP breeding
colonies. Moreover, our results are consistent with
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those of Cheung et al. [14], in that the GIGI-Pick selec-
tion approach substantially outperformed both the
“Bottom of Pedigree” and “Founders” (i.e., “PRIMUS” in
[14]) approaches in the ability to impute common
alleles, although our results indicate more consistent
accuracy with the “Founders” approach than with the
“Bottom of Pedigree” approach.

Using the WGS individuals ranked in order of prior-
ity by the GIGI-Pick algorithm, we also examined the
gain in accuracy of imputed genotypes throughout the
pedigree achieved by increasing the number of WGS
individuals used for imputation. Our results demon-
strate that there are excellent compromises available
that balance sequencing costs and the ability to obtain
dense and accurate marker data. While the number of
genotypes that can be confidently imputed increases
as more individuals with WGS are included, the most
significant gains are achieved using the first 4 WGS
individuals in the pedigree, with relatively modest
gains thereafter. While this result may not be true for
all pedigree configurations, our findings suggest that
an optimal tradeoff in this extended pedigree exists at
the ratio of 1 individual selected for WGS, per 3-5
relatives selected for GBS, a cost savings of ~66—82 %
over 30X WGS of all 6 individuals.

The increase in overall accuracy observed with add-
itional WGS individuals was not shared uniformly
among all individuals in the pedigree. We note that D
and E remained outliers in the distribution of geno-
type accuracy throughout virtually all imputation
analyses based on the ranking of WGS individuals by
the GIGI-Pick algorithm. Individual E is the only
founder lacking any relationship to a WGS individual.
However, the difficulty of imputation in D may be
due to the limited initial selection of WGS individuals
located in the far right lineage, i.e., only when K, P,
and C are added to ] and used for imputation does
accuracy rise for D. This result is consistent with the
GIGI-Pick approach, which balances the selection of
closely related individuals within the pedigree to
facilitate phasing of genotypes, with the selection of
more distant relatives to increase the chance of
observing unique founder alleles [14]. Because of this
compromise, we note that when using the GIGI-Pick
approach, some pedigree founders may remain unse-
lected when the ability to phase genotypes in one
portion of the pedigree produces greater numbers of
expected allele calls than does the selection of unique
founder alleles from elsewhere in the pedigree. This
result also highlights the importance that prior know-
ledge of phenotypes plays in selecting individuals for
WGS. If traits of interest are known to segregate in a
particular lineage within the larger pedigree, it may
be advisable to manually assign either founders or a
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close descendant in that lineage for WGS, if neither
individual is selected using a more unbiased approach.
These results confirm that the success of imputation
using this approach is dependent on position in the
pedigree, and on the overall ratio of WGS to GBS
individuals. As this ratio decreases, entire branches or
lineages within larger, more complex pedigrees may
receive limited data of lower accuracy. Additionally,
with limited information on population allele frequen-
cies (as in this study), pedigree members without any
relationship to a WGS individual (i.e., “E”) will be
more poorly imputed than those related to a WGS
individual. However, as noted above, estimates of
population allele frequencies will improve dramatically
with the addition of more individuals with either
WGS or GBS sequence data, and therefore imputation
in individuals such as E should also improve consid-
erably. In general, we expect that with a more realistic
pedigree size and better estimates of colony-wide
allele frequencies, we will improve our ability to im-
pute a much larger set of variants at >99 % accuracy
throughout the pedigree.

The imputation of dense, genome-wide genotypes with
high accuracy will allow the unbiased mapping of gen-
etic variants in the macaque genome to disease traits,
using either linkage or association approaches. Both of
these approaches are important tools in translational re-
search, and should further advance the understanding of
human disease already made possible by research in this
species. Large pedigreed colonies of macaques, such as
the ~4,500 macaques at the ONPRC, provide an almost
unequaled resource for translational genetic research,
due to their multi-generational pedigree structure and
the enriched number of rare and low-frequency variants
expected to segregate within this pedigree. Rare and
low-frequency variants are expected to play a significant
role in human disease [45-48], and we have demon-
strated that our approach should discover and impute
many of these variants in the macaque genome with
high accuracy and at a reasonable cost. Moreover, our
findings suggest that this approach can be modified to
support specific research goals. For example, it may be
beneficial to take advantage of the less accurate but
greater number of imputed genotypes provided by a
larger set of dense markers during initial discovery of
variants either linked to or associated with a disease
trait, while fine-mapping or replication of a putative trait
locus might employ a reduced, optimal set of dense
markers likely to provide greater genotype accuracy over
a smaller region of interest.

Conclusions
We conclude that using a combination of high-
coverage WGS and GBS together with pedigree-based
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imputation, is a feasible and highly cost-effective
method for obtaining comprehensive and accurate
genome-wide variation throughout a pedigreed cohort.
We demonstrate this approach for the first time in a
16-member extended NHP family, by imputing an
average ~3.7-4.5 million variants per individual at
97-99 % accuracy, using only 4 individuals with WGS
data and genotypes at only ~17,000 genome-wide
markers from GBS data in the remaining 12 relatives.
Future application of this approach in a much larger
pedigree will produce a powerful resource for the
genetic study of complex disease in NHPs.

Additional file

Additional file 1: Figure S1. Genotype accuracy based on frequency of
alleles imputed. Data represent results of variants imputed at 5,010
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“Threshold” method for calling genotypes, as described in the main text.
(PDF 237 kb)
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