
RESEARCH ARTICLE Open Access

Genome-wide profiling of 24 hr diel
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Abstract

Background: Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which
may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied
zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby
the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking
and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information
at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia.

Results: Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a
44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a
comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have
similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting
analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function
associations, thus enhancing current functional annotations available for genes in this ecologically relevant model
species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression
patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and
sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized
terrestrial arthropods.

Conclusions: This research adds to a growing body of literature suggesting the genetic mechanisms governing
rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results
highlight the power of using a network analysis approach to identify differential gene expression and provide novel
functional annotation.

Keywords: Biological networks, Circadian, Diel, Diel Vertical Migration (DVM), Functional enrichment analysis, Gene
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Background
As organisms progress through their 24 h day, they ex-
perience a daily cycle of environmental changes, includ-
ing rhythms in temperature, light, predation risk, and
resource availability. To respond to these daily environ-
mental changes, organisms modulate their biology in a
rhythmic manner driven by both the coordinated action
of an endogenous circadian pacemaker or clock, as well
as the direct effect of the environmental light:dark cycle
(LD cycle) [1–8]. True ‘circadian rhythms’ are those
rhythms that can be observed under constant condi-
tions, as opposed to ‘diel’ (or diurnal) rhythms that are
observed under a LD cycle.
Examples of time-of-day specific biology observed in

other organisms include increasing olfactory sensitivity
prior to times of foraging [9], rhythmic coordination of
detoxification enzymes [10], and time-of-day specific
changes in susceptibility to immune challenge [11, 12].
In the disease vector mosquitoes Anopheles gambiae and
Aedes aegypti, gene expression data shows that up to
20 % of the transcriptome is regulated in a circadian
and/or diel manner [4, 8, 13]. Similarly, under both cir-
cadian and/or diel conditions, as much as 5 % of the
transcripts expressed in the fruit fly Drosophila melano-
gaster head and 4 % in the honeybee Apis mellifera head
are rhythmically expressed [14–16].
Daphnia has long been a model for ecological investi-

gation largely because of its cosmopolitan distribution
and central role in the trophic cascades of freshwater
ecosystems [17]. The addition of genome level informa-
tion to this well studied ecological model makes it a
relevant system for investigating 24 h daily rhythmic
biology in a non-insect arthropod [17–19]. Chronobiology
research in Daphnia has focused primarily on behavioral

processes like locomotor activity, daily vertical migration
(DVM) through a water column, and mandibular activity
(‘feeding’) [20–22]. These phenotypes are all rhythmic
under environmental diel conditions. We highlight in
Fig. 1 many of the daily environmental rhythms experi-
enced by Daphnia species, including temperature, ambi-
ent light, and risk of exposure to pathogens and parasites.
In Daphnia, DVM is thought to be primarily a predator
and ultraviolet-radiation (UV-R) avoidance behavior [23,
24]. DVM has been observed in some, but not all reports,
to persist even in the absence of a LD cycle [23, 25].
“Preemptive” or “anticipatory” changes in gene regula-

tion and physiology are possible due to the presence of an
endogenous cellular molecular circadian clock that pro-
vides crucial timing mechanisms in organisms as diverse
as cyanobacteria, plants, fungi, insects, and mammals. The
circadian clock is cell autonomous and at the molecular
level comprises a series of transcriptional-translational
feedback loops (TTFLs) whose completion takes approxi-
mately 24 h [26]. The genetic underpinning of the meta-
zoan circadian clock is highly conserved [27]. However,
even within insects that typically have a conserved genetic
construct with regard to their circadian clock, there is
some variation in the arrangement of the TTFL compo-
nents that are found in at least four different functional
configurations [28, 29]. As genomic investigations expand
into taxonomically diverse arthropods, there is a greater
likelihood to find additional variation as well as gain an in-
creased understanding of the genetic basis of rhythmicity.
The investigation of non-model organisms and their

genomes is significantly challenged by a lack of func-
tional annotation for many of their protein coding genes.
The specific function of many genes, in even well stud-
ied organisms, is incomplete. It is not unusual for
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Fig. 1 Twenty-four hour rhythmic changes in Daphnia’s environment. Daphnia are exposed to different environmental conditions and stressors as
the 24 h day progresses. This variation is a consequence of the daily rising and setting of the sun, the chronobiology of other organisms in the
environment, and Daphnia’s pattern of diel vertical migration (DVM) through the water column. The sun brings changes in temperature, ambient
light, UV radiation, and increased risk of fish predation (which locate Daphnia visually) in populations found in large bodies of water. Similarly, as
Daphnids move down the water column they are exposed to decreasing ambient light of changing wavelengths, and reduced UV radiation,
temperature, and oxygen levels. Some parasites of Daphnia live in the sediment at the bottom of water bodies, so risk of being parasitized is
increased at times-of-day the Daphnia are lower in the water column (daytime in populations from large water bodies)
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upward of a third of the genes in any genome to lack
functional annotation [30, 31]. This lack of functional
annotation is exacerbated in the diverse genomes of
many newly sequenced organisms that often contain
lineage-specific genes lacking homology with other as-
sembled genomes [19, 31]. The single genome sequence
available for the highly diverse lineage of Branchiopod
crustaceans is that of the water flea, Daphnia pulex [19].
In excess of one third of the D. pulex genome comprises
lineage-specific genes that lack orthologs in other
eukaryote genomes and thus lack any functional annota-
tion [19]. These two factors, diverse clocks and un-
known genes, present significant challenges in
understanding the rhythmic biology of this species.
Here we describe diel transcriptome analysis per-

formed on female D. pulex. Diel as opposed to constant
(circadian/ dark:dark) conditions were chosen, as these
conditions are more applicable in the context of existing
experimental data and indeed natural, real-world envi-
ronments. This first genome-wide examination of
Daphnia transcriptional rhythms allows us to explore a
wide breadth of crustacean biochemistry, physiology,
and behavior that may be under rhythmic control. In
addition to an analysis of cyclic behavior using available
statistical software (JTK_CYCLE [32]), we employed a
comprehensive network modeling and analysis approach
to validate and discover both orthologous and novel
rhythmic gene regulation in D. pulex, as follows.
Established approaches to the statistical analysis of gene

expression patterns can provide valuable insights into cel-
lular functioning. However, these analyses often ignore the
functional relationships among genes and miss the oppor-
tunity to leverage the patterns of co-expression that result
from shared regulatory machinery or complex linkage in
networks of biological processes [33–36]. For this reason,
we modeled Daphnia gene expression data as a gene co-
expression network, in which nodes correspond to genes
and edges link genes with similar expressions [35]. Using
the resulting network data, we performed comprehensive
computational analyses to search for genes that share
topological properties (in the sense that they occupy simi-
lar network positions or cluster together) with the rhyth-
mic genes identified by independent analysis of the
expression data using JTK_CYCLE. Our goals were to illu-
minate the transcriptional signature of rhythmicity in a
model crustacean and develop a network-based analytical
approach to validate rhythmic genes and infer functional
relationships for genes lacking functional annotations.

Results and discussion
Global transcription analysis and JTK_CYCLE analysis
To perform an analysis of D. pulex rhythmic gene ex-
pression under laboratory conditions, we profiled
genome-wide expression patterns of mature, egg-bearing

females maintained on a 12:12 LD cycle with abrupt LD
transitions. RNA samples were collected every 4 hours
over 2 days and interrogated using custom high-density
12-plex NimbleGen microarrays. Gene expression pro-
files were mined for 24 h rhythmic, sinusoidal gene ex-
pression patterns using the JTK_CYCLE cosine wave-
fitting algorithm [32, 37, 38]. From the 21,002 genes
with expression levels above background in our micro-
array experiments, we identified 1,661 genes that were
rhythmically expressed using q < 0.1 (p < 0.03) and 22–
26 h period length cutoff criteria (See Fig. 2, Additional
file 1). These genes represent 5.7 % of the total D. pulex
gene set, and 7.9 % of the expressed genes. These rhyth-
mically expressed genes possess diverse biological func-
tions; however, many (14.0 %) of these genes lack any
functional annotation (i.e., have no associated orthoDB,
KOG, EC, nor GO annotation). Visualizations of top-
level GO term annotations of the rhythmically expressed
genes are provided in Fig. 3a and Additional file 2, and a
complete listing is found in Additional file 1. In Fig. 2b
we highlight some of the 1,661 rhythmic genes scored
with low q-values in the JTK_CYCLE analysis; note the
diversity in expression in time-of-peak expression
(phase), amplitude of rhythms, and raw-intensity values.
For two of these highlighted genes, a salivary C-type lec-
tin (JGI_V11_220785) and a β,β-carotene-15,15′-dioxy-
genase (JGI_V11_97232) we performed microarray
validation using qRT-PCR, see Additional file 3.
The medial peak-to-trough fold change of genes deter-

mined to be rhythmic by JTK_CYCLE was 2.06. How-
ever, many rhythmically expressed genes had much
higher daily fold-changes in expression (Fig. 2c). While
there were genes with peak expression at all times-of-the
day, there were a greater number of genes having a peak
expression during mid-day (~ZT 4 – ZT 8) and mid-
night (~ZT 16–20) than at other times-of-the day
(Fig. 2c). We report peak time-of-day expression in
Zeitgeber time (ZT), with ZT 0 defined as the time of
lights-on and ZT 12 defined as the time of lights-off.

Network data
We modeled the temporal gene expression data with a
gene co-expression network as follows: in the network,
nodes are genes, and two nodes are connected by an edge
if the corresponding genes show similar expression pat-
terns over time. We studied five different networks con-
struction methods using different gene expression
“correlation” (i.e., edge weight) measures and different
edge cut-offs [35]. These methods included: 1) signed
Pearson correlation with top N interactions, 2) absolute
Pearson correlation with top N interactions, 3) mutual in-
formation with top N interactions, 4) intersection of abso-
lute Pearson correlation and mutual information with top
10 N interactions, and 5) intersection of absolute Pearson
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correlation and mutual information with top 25 N interac-
tions) (see Methods). Each of these five methods captures
a different intuition of how well the genes’ expression
levels “correlate” over time. As such, it should be no sur-
prise that some of the networks look different (Fig. 4),
have different properties [39] (Additional file 4), and have
pairwise intersections that are relatively low (Additional
file 5). Because of this, we proceeded by analyzing each of
the five networks individually to reveal novel rhythmic
genes predicted from their network topology or structure.

Network-based prediction of rhythmic genes
For each network, we searched in the given network for
the subset of the 1,661 genes that have been identified as

rhythmic by JTK_CYCLE analysis of the expression data
(Additional file 6). Then, we pursued two directions for
identifying new rhythmic genes from network topology.
First, we checked if the subset of the 1,661

JTK_CYCLE-identified rhythmic genes that were in the
given network were statistically significantly “central” or
“peripheral” in the network [36, 40], and if so, we identi-
fied other genes with similar network positions and pre-
dicted these genes as additional rhythmic genes (see
Methods). Here, we used seven popular node centrality,
or peripherality, measures, each of which captures some-
what complementary information on the network pos-
ition of a node [40, 41]: betweenness, closeness,
clustering coefficient, degree, eccentricity, graphlet
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Fig. 2 The Daphnia genome is expressed in a highly rhythmic manner. a Hierarchical clustering of rhythmic Daphnia genes. Yellow indicates
higher expression, and blue indicates lower expression versus the mean value for each gene. All 1,661 Daphnia genes identified as rhythmic by
JTK_CYCLE are displayed. The heat map on the right is a continuation of the one on the left. b Example gene expression profiles of select genes
with low JTK_CYCLE q-values. Note the diversity in time-of-peak expression (phase), amplitude of rhythms, and raw-intensity values. Error bars
represent S.E.M. of technical replicates. For two of these genes, we performed qRT-PCR confirmation, see Additional file 3. c Histograms of
rhythmic gene amplitude (peak-to-trough fold change) and times of peak expression. The 1,661 genes called rhythmic by JTK_CYCLE had a
median fold change of 2.06. However, there are a significant number of rhythmic genes with a greater than 5-fold amplitude in expression. Peaks
of transcriptional expression occur at mid-day and mid-night. Day and night are indicated by the horizontal white/black bars. Histogram X-axis
values reflect the minimum fold change/time-of-day reflected in that bin (i.e. >1, ≥1.5, ≥2.0, ≥2.5, etc)
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degree, and k-coreness centrality. In this way, we pre-
dicted 3,475 genes by at least one combination of net-
work type and centrality measure to be rhythmic, of
which 3,019 were not among the 1,661 JTK_CYCLE-
identified rhythmic genes and are thus novel. Each pre-
diction was supported by up to 7 combinations of net-
work type and centrality measure (out of the 10 possible
combinations; see Methods).
Second, we checked whether the rhythmic genes statisti-

cally significantly grouped (i.e., clustered) together in the
network, and if so, we found other genes that clustered
with them and predicted these genes as additional rhythmic
genes (see Methods) [42–44]. Here, we relied on a popular
method called Markov clustering algorithm (MCL) [45]. In
this way, we predicted 445 genes from at least one network
to be rhythmic by the clustering analysis, of which 133
(Additional file 1) were not among the 1,661 JTK_CYCLE-
identified rhythmic genes and were thus novel. Each predic-
tion was supported by up to 3 different networks (out of
the 3 possible networks, see Methods).

Validation of the novel network-based rhythmic
predictions
Of the entire set of genes in the expression data, 7,262
genes were present (i.e., non-isolated) in at least one of

our five networks (Additional file 6) and could be tested
as being rhythmically expressed or not. Of the 1,661
JTK_CYCLE-identified rhythmic genes, 626 genes were
present in at least one of our networks (Additional file 6).
Recall that we predicted 3,475 and 445 genes by the cen-
trality and clustering analysis, respectively, of which 3,019
and 133, respectively, were not among the 1,661
JTK_CYCLE-identified rhythmic genes and were thus
novel (yet, our network-based predictions significantly
overlap with the JTK_CYCLE-identified rhythmic genes,
with p-values below 2×10−16, which validates the predic-
tions). Of all predictions, 387 were common to both the
centrality and clustering analysis (p-value below 2×10−16)
and were thus of high-confidence, of which 116 were
novel (Additional file 1). The overlaps of the different gene
sets are illustrated in Fig. 5a.
We provide as comprehensive as possible bioinformat-

ics validation of our novel predictions. First, we validated
the novel predictions via a functional enrichment ana-
lysis. Namely, we split genes from our networks into
three sets: 1) the 626 genes identified as rhythmic using
JTK_CYCLE that were in any of our networks (as posi-
tive control or “known” rhythmic genes), 2) our novel
predictions (either the 3019, 133, or 116 predictions
from the centrality analysis, the clustering analysis, or
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biological process (“BP”) GO term. Bar charts show the number of genes that have each top level biological process GO term. Genes may have
more than one GO term. The three bar charts differ in which rhythmic genes and GO annotations were considered. We used either JTK_CYCLE
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tations (“Network”). Whereas this figure displays biological process GO annotations, see Additional file 2 for molecular function GO annotations.
Also see Additional file 1. b Genes detected as rhythmic by network analysis, but not JTK_CYCLE, that are members of peroxidase, C-type lectins
(CTLs), and chitinase gene families described below. See Figs. 6 and 8 for members of the genes families identified as rhythmic by JTK_CYCLE
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both analyses, respectively), and 3) the remaining “nega-
tive control” genes that have not been predicted as
rhythmic by any approach in our study. Then, we mea-
sured the enrichment of Gene Ontology (GO) terms in
each of the three data sets, with the hypothesis that our

novel network-based predictions would be involved in
the same processes (i.e., GO terms) as the JTK_CYCLE-
determined rhythmic genes, but not as the negative
control genes; and this was exactly what we observed
(p-value of 4.4×10−5 with respect to the hypergeometric

Fig. 4 Visualization of the networks from our study. Illustration of SIGN N (signed Pearson correlation with top N interactions), ABS N (absolute
Pearson correlation with top N interactions), MI N (mutual information), and ABS-MI-10 N (intersection of absolute Pearson correlation and mutual
information with top 10 N interactions) networks. Intersection of absolute Pearson correlation and mutual information with top 10 N interactions
is not shown, as it resembles ABS-MI-10 N. In our study, for prediction purposes, we study the networks’ largest connected components. In blue
we show the subset of all genes from the given network that are among the 1,661 rhythmic genes determined using JTK_CYCLE statistical ana-
lyses of the expression data. In yellow we show the subset of all genes from the given network that are among the novel network-based pre-
dicted rhythmic genes, i.e., network-based predicted rhythmic genes that could not be identified using the JTK_CYCLE statistical analyses. Note
that the differences between some of these networks should not be surprising, since the networks were constructed using different network in-
ference approaches. Also, note that the network visualizations are only intended for illustration. One should not rely on visualizations to determine
how meaningful the networks are. For example, what appears to be a group (cluster) of rhythmic genes in the given figure/network might not
be reported as a statistically significantly meaningful cluster by network analysis. Or, what appears to be a single cluster in the figure might be
broken down and reported as multiple clusters by network analysis. Network analysis (rather than visualization) is a systematic and mathematic-
ally/computationally non-ambiguously precise way of interpreting the network data
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test, Fig. 5b, Additional file 7). Second, we further vali-
dated our novel predictions by searching for them in an
independent set (i.e. set not considered when making the
predictions in the first place) of “known” rhythmic genes.
Specifically, we calculated the significance of the overlap
between our novel network-based predictions and se-
quence homologs of rhythmic [8] mosquito genes as
“known” rhythmic genes. Fifty homologs of rhythmic
mosquito genes were present in at least one of our net-
works (anywhere in the given network). Our novel predic-
tions captured a statistically significant portion of these 50
genes (with p-values of 0.0028, 0.0129, and 0.0452 for our
novel centrality-based, cluster-based, and both centrality-
and cluster-based predictions, respectively), unlike the 626
genes identified as rhythmic using JTK_CYCLE (p-value
of 0.2591) or the negative control genes (p-value of 0.999).

These encouraging results (genes in our novel
network-based prediction set performing similar func-
tions as, or significantly overlapping with “known”
rhythmic genes) imply the effectiveness of the network
approach. When combined with the statistical analyses
(i.e. JTK_CYCLE) of expression data, this approach was
able to uncover additional biological knowledge com-
pared to the statistical analyses alone. Of course, in
addition to the above bioinformatics validation of our
novel predictions, future experimental validation is cer-
tainly of interest.

Network-based prediction of novel functional annotations
and their validation
We can use the same network approach as above (i.e.
the centrality and clustering analyses) to predict novel
functional annotations of currently uncharacterized
genes based on how well these genes group with
functionally annotated genes. In this context, we first
validated the accuracy of the network approach by
hiding gene-function associations using leave-one-out
cross-validation (see Methods) and measuring how ac-
curately we could predict the hidden associations. We
found that the prediction accuracy of the network ap-
proach is 95 % (p-value of 2.2×10−16 with respect to
the hypergeometric test). Given such a high accuracy,
we next applied the network approach to currently
uncharacterized genes to predict their functional an-
notations. In this way, we predicted 477 novel gene-
function associations spanning 253 uncharacterized
genes and 33 GO terms. Also, we predicted an add-
itional 287 novel associations spanning 121 character-
ized genes and 22 GO terms (see Additional file 1).
Hence, we demonstrated that our network approach
complements significantly and with high accuracy the
currently limited functional annotation data (See
Fig. 3a, Additional file 1, and Additional file 2.). In
the sections below, we highlight genes of interest
from various rhythmic gene families. Network analysis
revealed novel rhythmic genes in only three of these
highlighted gene families, peroxidases, C-type lectins,
and chitinases. The profiles of these identified genes
are visualized in Fig. 3b.

Rhythmic expression of immune genes
A pattern of diel vertical migration (DVM), which serves
to reduce exposure to predators and track resources, is a
well-documented behavior in many populations of
Daphnia living in large bodies of water. This DVM typ-
ically manifests as a downward migration during the day
and an upward migration at night [23]. While there is a
fitness benefit in terms of predator avoidance and re-
source acquisition, this behavior may also cause in-
creased exposure to pathogens during the daytime since
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Fig. 5 Validation of our network-based rhythmic gene and GO
annotation predictions. a Pairwise overlaps between the 626
JTK_CYCLE-derived rhythmic genes that are in any of our networks,
the network-based rhythmic genes predicted by the centrality
analysis, and the network-based rhythmic genes predicted by the
clustering analysis. Stars next to the overlap values indicate that all
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below 2×10−16, which validates our network approach. b Validation
of our network-based rhythmic genes in terms of GO term overlaps
with positive and negative control genes. Pairwise overlaps of
enriched GO terms between the JTK_CYCLE-identified rhythmic
genes, negative controls, and our novel network-based predictions
produced by both centrality analysis and the clustering analysis. Also
see Additional file 7
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many Daphnia parasites tend to live in water body sedi-
ments [46]. This observation suggests that there may be
an advantage to increasing the transcriptional activity of
genes involved in immune processes during the daytime
when Daphnia are lower in the water column to coun-
teract the increased time-of-day risk of infection.

Using D. pulex immune system genes identified by
McTaggart et al. [47] and using FlyBase and OrthoDB
[48, 49], we identified recognition and signal transduc-
tion genes, as well as chitinases that were rhythmically
expressed with maximum expression peaking almost ex-
clusively in the daytime (Fig. 6a). There was an
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Fig. 6 Rhythmic expression of Daphnia immune system components. Numerous genes with putative immune functions were found to have
rhythmic expression in D. pulex. a The Daphnia immune system can be separated into recognition proteins, signal transduction proteins, and
attack proteins and processes. The cartoon illustrates the relationship between these categories. There were a number of rhythmically expressed
pathogen recognition genes including two thioester-containing proteins (TEP), nineteen C-type lectins (CTLs), and three gram-negative bacteria-
binding proteins (GNBP). Additionally, three membrane-bound toll-like receptors (TLRs) were rhythmically expressed. For signal transduction, four
members of the IMD (Immune Deficiency) pathway were also found to be rhythmically expressed: IMD, Dredd, and two Relish paralogs. Expression
is presented as raw florescence values for GNBPs (for visualization purposes). Two additional rhythmic CTLs were identified using network analysis
and these are visualized in Fig. 3b. b 32 chitinase (CHT) genes, which may have direct immune functions (as a pathogen-chitinase) were found to
have rhythmic expression. For visualization purposes, the 26 with peak phase between ZT4 – ZT6 are presented. Two additional rhythmic
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to have rhythmic expression. Day and night for all plots in this figure are indicated by the horizontal white/black bars. Unless otherwise noted,
expression in this figure is presented as log2 of median normalized expression
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abundance of extracellular pathogen recognition mol-
ecules [i.e., pattern recognition receptors (PRRs);
Fig. 6a; Additional file 1]: First, we identified 19 C-
type lectins (CTLs), which activate prophenoloxidase/
melanization pathways and promote phagocytosis. Six-
teen of these peaked between ZT 4–6 and the other
3 at the very end of night (~ZT 20-0) (Two add-
itional rhythmic CTLs were identified using network
analysis and these are visualized in Fig. 3b). Next,
three gram negative binding proteins (GNBPs) that
activate Toll and prophenoloxidase/melanization path-
ways were found to be rhythmic (JGI_V11_203138,
ZT 6; JGI_V11_303036, ZT 6; JGI_V11_329548, ZT
18). Finally, we identified two rhythmic thioester-
containing proteins (TEPs), which promote phagocyt-
osis (JGI_V11_300538, ZT6; JGI_V11_61510, ZT6).
There were three paralogs of Toll-like receptors (TLRs)

proteins rhythmically expressed with expression peaking
in the morning (JGI_V11_3995, ZT4; JGI_V11_40744,
ZT4; JGI_V11_190084, ZT 6; Fig. 6a). These proteins
serve as PRRs (but are transmembrane not extracellular
proteins) and as components in the Toll signaling path-
way. This observation indicates that the Toll pathway may
be rhythmically upregulated by means of rhythmic expres-
sion of GNBPs and TLRs. Similarly, prophenoloxidase ac-
tivity/melanization may be rhythmic due to the 24 h
rhythmic expression of GNBPs and CTLs. Note the GNBP
paralog JGI_V11_329548 had an expression profile that
did not peak in the morning, but instead in the middle of
the night (ZT 18). TEPs and CTLs also promote phagocyt-
osis, so this immune response may also be regulated in a
time-of-day specific manner in D. pulex.
The IMD signal transduction pathway in D. pulex

also contained highly rhythmic genes like IMD
(JGI_V11_313869, ZT 6), Dredd (JGI_V11_45861, ZT 4),
and two Relish homologues (JGI_V11_329057, ZT 6;
JGI_V11_62213, ZT 7) (Fig. 6a). This result suggested the
IMD immune pathway is more sensitive to activation or
will mount a more robust response in the morning. In
mice, such a phenomenon exists, with expression of Toll-
like receptor 9 (TLR9) and subsequent TLR9 mediated in-
nate and adaptive immunity under control of the circadian
clock [50].
Of the 32 chitinases with rhythmic expression, 27 dis-

played peak expression in the morning (Fig. 6b). Since
chitinases can be extracellular they may contribute to
rhythmic immunity by directly hydrolyzing the cell walls
of chitin-containing pathogens. We note that network
analysis revealed an additional two rhythmically
expressed chitinases (Fig. 3b).
The rhythmic nature of many immune genes, which

generally peak in expression during the daytime (60 of
the 69 rhythmic, as determined by JTK_CYCLE, im-
mune genes discussed in this section peak in expression

between ZT2 - ZT8), is consistent with the hypothesis
that resistance to infection may be higher during the day
than the night. Rhythmic levels of extracellular PRRs,
chitinases, and IMD signaling pathway components
could drive this time-of-day difference. A time-of-day
specific resistance to pathogens has been noted in Dros-
ophila and mice [11, 12, 50], but remains to be investi-
gated in Daphnia.

Metabolic genes, vesicular-type ATPase subunits, and
tRNA synthetases are constitutively expressed
Organisms over a wide taxonomic span ranging from
mosquitoes to mice show extensive rhythmic expression
of genes involved in fatty acid (FA) degradation, the cit-
ric acid (TCA) cycle, and glycolysis, as well as vesicular-
type ATPases (V-ATPase) subunits and aminoacyl-tRNA
synthetases [8, 51]. Surprisingly, neither JTK_CYCLE
nor network analysis revealed noteworthy rhythmicity of
genes involved in these processes in D. pulex. Only a
few examples of metabolic genes (as identified on the
KEGG Pathway Database [52]) were expressed in a
rhythmic manner (Fig. 7, Additional file 1). No TCA
cycle components were rhythmically expressed despite
all annotated components showing transcriptional activ-
ity (Fig. 7). Similarly, of the 31 annotated genes playing a
role in fatty acid degradation, only a sterol carrier pro-
tein X-related thiolase (JGI_V11_221682, ZT 6) and
acyl-coA dehydrogenase (JGI_V11_327246, ZT 6) were
rhythmically expressed (Fig. 7). Finally, of 20 genes in-
volved in glycolysis, none were rhythmically expressed
(Fig. 7). We also do not detect expression rhythms of
any D. pulex V-ATPase subunits (Fig. 7). In contrast, in
An. gambiae, heads genes encoding at least 7 enzymes in
the glycolysis pathway and 5 in the TCA cycle and 9 of
12 V-ATPase subunits were rhythmically expressed [8].
It is plausible that D. pulex primarily regulates

metabolic gene expression to match available nutrient re-
serves and/or ambient temperatures, instead of antici-
pating future nutrient levels. Under the resource-rich,
temperature controlled, and oxygen-stable laboratory
conditions, it would therefore not be surprising that we
did not detect many rhythmic metabolic genes. Rearing
Daphnia under cycling temperature conditions or food
resource levels in the laboratory will be required to
understand if rhythmic metabolic levels indeed exist
under cycling environmental condition.
All annotated tRNA synthetases (ligases) displayed con-

stitutive expression (Fig. 7) with the exception of the tRNA
synthetase JGI_V11_187913 (ZT 18) (Additional file 1).
Rhythms in aminoacyl-tRNA synthetases would suggest an
organism has increased protein synthesis activity at par-
ticular times-of-day and could indicate there may be rhyth-
mic control at the translational level which produces,
enhances, or modifies 24 h rhythms downstream of gene
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expression. In mosquitoes, 12 of these aminoacyl-tRNA
synthetases are rhythmic, and expressed in a similar phase
[8], yet in D. pulex, we find that expression of annotated
tRNA synthetases was primarily constitutive, indicating it
is unlikely that there are 24 h rhythms in translation. How-
ever, there are various other steps involved in protein
translation, post-translational modification, and degrad-
ation that could still provide time-of-day regulation and
modification of protein levels.

Sensory processes
There are a variety of reasons why sensory biology may
be modulated by time-of-day. In the mosquito, sensitiv-
ity to human host odorants peak at night – the time
when the mosquito host-seeks for a blood meal [9]. In a
similar manner, D. pulex may adjust its sensory pro-
cesses in anticipation of changing food resource avail-
ability or times of greater risk of predation.
Electrophysiological studies in numerous terrestrial ar-
thropods reveal sensitivity to light is time-of-day
dependent (even under constant conditions, and is thus
is not a direct response to changing light conditions).
This change in sensitivity compensates for the orders-of-
magnitude differences in ambient light changes as the
day progresses [53], yet none of the D. pulex phototrans-
duction pathway genes identified by Rivera et al. [54]
were rhythmically expressed in D. pulex (Additional file
1). However, we found four rhabdomeric opsins (as

annotated by Colbourne et al. [19]), all from the LongB
clade, were rhythmically expressed (Fig. 8) and with a
similar time of peak expression, occurring in the morn-
ing (JGI_V11_198385, ZT 4; JGI_V11_305803, ZT 4;
JGI_V11_106095, ZT 4; JGI_V11_254506 ZT 6). In
addition to changes in ambient light caused by the daily
environmental LD cycle, Daphnia may respond to
changes in light intensity and wavelengths as they move
higher and lower in the water column. It has been noted
in Daphnia longispina that eye pigment migration is
under circadian control (observed under both normal
LD cycle conditions and constant illumination) [55].
Therefore, instead of regulating the phototransduction
cascade to control for changing ambient light condi-
tions, D. pulex may ‘shield’ its eyes in a time-of-day spe-
cific fashion such has been described in other
crustaceans [56].
Daphnids may also adjust their chemoperception

abilities/sensitivities in a time-of-day specific manner,
for example to respond to changing needs for preda-
tor avoidance. Among the gustatory receptors (Grs)
identified by Peñalva-Arana et al. [57], we found three
that were rhythmically expressed (Fig. 8): Gr12
(JGI_V11_327171) and Gr43 (JGI_V11_327170), both
peaking at ZT 6; and Gr36 (JGI_V11_329588) which
peaks late at night (ZT 22). Gustatory receptors can
be very specific in the odorants they detect [58]. It is
plausible that D. pulex shows time-of-day specific
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sensitivity to certain odorants, and not others. A
similar olfactory phenomena has been observed in the
mosquito, which is more sensitive to certain human
host odorants during normal host-seeking times-of-
day [9]. D. pulex could, for example, upregulate its
ability to sense predator kairomones at the time-of-
day when predation risk is highest.

Oxidative stress detoxification
It has been reported that Drosophila has daily rhythms in
resistance to oxidative stress [59]. We examined D. pulex
genes with known or putative roles in oxidative stress de-
toxification and found that many were rhythmically
expressed (Fig. 8). Catalase had rhythmic expression
peaking at mid-day (cat, JGI_V11_308727, ZT 6; Fig. 8),
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consistent with the peak time of catalase activity described
in D. longispina [60]. Four genes encoding putative perox-
idases (JGI_V11_304755, ZT 8; JGI_V11_307875, ZT 4;
JGI_V11_206041, ZT 10; ZT_V11_314049, ZT 10; Fig. 8)
were also rhythmically expressed and peak during the
daytime (Fig. 8). Interestingly, sodium oxidase dismutase 1
expression was weakly rhythmic, but with expression
peaking much later (SOD1, JGI_V11_329848, ZT20; Add-
itional file 1). We note that network analysis revealed an
additional two rhythmically expressed peroxidases
(Fig. 3b). These data suggest that response to oxidative
stress may be time-of-day specific. During the daytime,
when sunlight-induced oxidative stress would be most
likely to occur, D. pulex may be more prepared to respond
to oxidative stress.

Clock genes
We next looked at D. pulex homologues of arthropod
core molecular clock genes primarily as annotated by
Tilden et al. [61]. These ‘canonical’ clock genes make up
the transcriptional-translation feedback loops (TTFLs)
that encompass the molecular circadian clock. TTFLs
have been characterized in a variety of organisms includ-
ing terrestrial arthropods, rodents, and humans [28, 62].
However, the molecular clock has yet to be characterized
in Daphnia. Orthologs of the core molecular clock
mechanism in Drosophila are found in the D. pulex gen-
ome [61], suggesting that the elements of a conserved
arthropod clock are present in Daphnia. Tilden et al.
[61] identified well-characterized circadian clock genes
including clock, cycle, period, PAR domain protein 1ε,
vrille, eight timeless paralogs, and both cryptochrome 1
(a Drosophila-like photoreceptor) and cryptochrome 2 (a
mouse-like transcriptional repressor) [61]. Finding both
forms of cryptochrome suggests that the D. pulex has an
endogenous circadian molecular clock that is more simi-
lar to that of the monarch butterfly Danaus plexippus
and the mosquito An. gambiae than to Drosophila
(which lacks the cryptochrome 2 transcriptional repres-
sor) [8, 61, 63, 64].
Based on the observation that a full complement of

canonical clock gene orthologues were expressed in
D. pulex, and based on current insect clock models,
including those of Drosophila and the mosquito, we
would predict 24 h sinusoidal rhythmic expression
profiles for several of these genes in cells throughout
the organism [8, 13–15, 62–66]. This prediction in-
cludes at least one, if not both, of the two positive
loop components of the TTFL mechanism, clock and
cycle, the three negative loop components, period,
timeless and cryptochrome 2, and the members of the
interlocking loop, pdp1 and vrille.
Under LD cycle conditions and using our stringent

cutoff criteria, our analysis of microarray data did not

detect 24 h sinusoidal rhythmic expression of any of the
putative canonical clock genes [clock, cycle, period, PAR
domain protein 1ε, vrille, four of the eight timeless para-
logs (a - h), cryptochrome 1, cryptochrome 2, nor pig-
ment dispersing hormone (a neuronal clock output gene,
also know as pigment dispersing factor)] using
JTK_CYCLE or network analysis (Fig. 9, Additional file 1).
However, period (peak phase ZT 18) and cryptochrome 2
(ZT 16) were scored as rhythmic by JTK_CYCLE (q <
0.05, Fig. 9) when the period length cutoff criteria was re-
laxed to 28 h, and when the microarray data were sub-
jected to CircWave cosinor analysis (p < 0.05; period, R2 =
0.56, ZT 18; cryptochrome 2, R2 = 0.55, ZT 17.6) (Fig. 9).
Similarly, timeless-b (ZT 16), timeless-e (ZT 16), were
scored as rhythmic by JTK_CYCLE when the period
length was relaxed to 28 h, and timeless-f (ZT 8), and
timeless-g (ZT 8) were rhythmic at a period of 20 h. No
significant rhythmicity was detected in any of these time-
less paralogs by CircWave cosinor analysis. However, there
is phase concordance between period, timeless-b, timeless-
e and cryptochrome 2, which falls during the early/middle
of the night, as is observed in fruit flies, mosquitoes, hon-
eybees and some butterflies [4, 8, 13, 14, 29, 64, 66]. This
finding would be consistent with the protein products of
period, timeless (specifically timeless-b and timeless-e) and
cryptochrome 2 functioning as interacting elements of the
negative arm of the TTFL mechanism of the molecular
clock. Surprisingly, neither clock nor cycle, the presumed
positive loop TTFL components, or vrille, exhibit a hint of
rhythmicity. While not the focus of this investigation, the
lack of a consistent signature of high amplitude, high fi-
delity rhythmic clock gene expression suggests that the
Daphnia clock does not exhibit robust rhythmicity in the
canonical clock components (transcripts), at least when
examined in this case at a whole whole-animal tissue level.
Robust rhythmicity has however been described in several
other arthropods, including Drosophila, mosquitoes, the
honeybee and the butterfly [8, 13–15, 64, 66].
There are a number of possible explanations for the lack

of robust clock gene rhythmicity detected in this experi-
ment. First, there is evidence that specific tissues of cray-
fish express clock genes in anti-phase of one another; and
in mice the phase of clock gene expression can vary be-
tween tissues by as much as 4–8 h [67, 68]. As we assayed
entire organisms, it may be that differences in peak phases
between tissues reduced the amplitude of the oscillation
or appeared as multiple peaks of expression; giving the ap-
pearance of a lack of rhythmicity. Second, clock gene
rhythmicity may be limited only to a subset of tissues and
thus would not be detected in a whole-organism assay.
For example, rhythmic clock gene expression was not de-
tected in all peripheral tissues of the Zebrafish [69].
It is also feasible that D. pulex has an alternative, non-

canonical, core molecular clock that operates differently
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from well-characterized insect clocks. In fact, under con-
stant light conditions, D. magna has been reported to
have an unusually long 28 h free running period [23, 70].
Alternate clock mechanisms have been suggested in a
number of invertebrates including the nematode, Caenor-
habditis elegans [71], the sea squirt, Ciona intestinalis
[72], and in other crustaceans like the speckled sea louse,
Eurydice pulchra [73], and the prawn, Macrobrachium
rosenbergii [74].
In summary, under our laboratory diel conditions and

while assaying whole organism transcriptomic data, ro-
bust, high fidelity, high amplitude, 24 h sinusoidal expres-
sion of Daphnia canonical clock genes was not detected.
We suggest several possible explanations, but we cannot
distinguish among these alternatives. Future experiments
to determine the mechanism of Daphnia circadian clocks
should examine tissue-specific expression patterns of
clock genes under both diel and constant dark conditions.

Comparison with condition-dependent gene regulation
We next explored the overlap between D. pulex genes
we identified as rhythmic and those previously identi-
fied as having differential expression under various
experimental manipulations. Table 1 highlights the
proportion of genes previously identified as differen-
tially expressed (q < 0.05) under differing environmen-
tal temperatures [75], salinities [76], and resource
manipulations of carbon: phosphorus ratio [77] that
we also found to be rhythmic (JTK_CYCLE q < 0.05).
For example, 38 % of genes differentially regulated in
response to salinity stress were also found to be
rhythmically expressed. The degree of overlap sug-
gests that not controlling for RNA collection time
across treatments or replicates could result in false
positives or false negatives in differential expression
studies. Future experimental designs should take these
findings into consideration and time-of-day specific
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effects should also be considered when interpreting
previously collected data.

Conclusions
We present genome-wide diel transcriptional profiling of
Daphnia under controlled laboratory conditions. Our
analysis revealed that Daphnia express a great number
and diversity of genes in a highly rhythmic manner, in-
cluding genes involved in sensory processes, response to
oxidative stress, and immune-related genes. It is advan-
tageous for an organism to upregulate its ability to com-
bat or avoid environmental stressors at the times-of-day
they are most likely to encounter such risks. We
highlighted how during the daytime, Daphnia popula-
tions may be at greater risk of oxidative damage (from
the Sun), predation (from fish, which locate them visu-
ally during the day), and exposure to pathogens (which
they encounter at greater frequency at the bottom of the
water column in Daphnia populations that migrate
downwards during the day-time). It therefore should not
be surprising that genes that function in detoxifying oxi-
dative stress, chemoperception, and combating patho-
gens are rhythmically expressed.
We showed that while D. pulex has a full comple-

ment of the core clock genes found in other animals,

the expected high amplitude rhythmic expression of
these genes is not apparent when examined at the
whole animal level. Work in other crustaceans sug-
gests that clock rhythmicity may be limited to a sub-
set of tissues or has anti-phasic expression in various
tissues that would obfuscate the expression patterns
of these genes in a whole-organism assay. It is also
possible that D. pulex has an alternative molecular
clock. Our work contributes to a growing understand-
ing that there is less conservation than initially re-
ported in the mechanisms of arthropod clocks and
that more investigation is prudent in elucidating the
core clock of Daphnia.
Finally, we developed a comprehensive network mod-

eling and analysis approach that complements and en-
hances the standard statistical analyses of differential
expression (e.g., JTK_CYCLE). This network analysis,
when built on top of the statistical analyses, revealed
additional knowledge about rhythmicity that could not
be captured by the statistical analyses alone. Importantly,
we demonstrated the usefulness of the network ap-
proach to identify novel functional annotations for cur-
rently uncharacterized genes. As the number of available
arthropod genome sequence assemblies increases, and
the taxonomic breadth of these genomes widens, meth-
odological approaches that take into account the pat-
terns of co-expression and network configuration will
become vital additions to the process of functional
annotation.
Future work may include examining rhythms at the

protein and functional level and examining rhythms in
specific tissues (especially in regards to clock gene ex-
pression). Further, because other Zeitgebers (time-
givers), such as temperature rhythms, may enhance ob-
served rhythms [78], their role in governing Daphnia
rhythmicity should also be investigated.

Methods
Experimental material, RNA collection, extraction, and
microarray hybridization
A D. pulex genotype was collected from a vernal pond
in southwestern Michigan (42.31979 N 85.35837 W) on
May 1, 2011. This pond, referred to as “Roughwood”,
has a maximum depth of <2.0 M. Single adult females
were isolated in the lab to initiate isoclonal cultures and
these lines were maintained through parthenogenetic
reproduction. The experimental time course was per-
formed in August of 2011. Stock cultures of this geno-
type (Roughwood 40-11) were maintained for three
generations at 18 °C in 1 quart jars containing COMBO
water medium [79] and a 12 L:12D photoperiod (with
abrupt transitions). The media, containing resource in
the form of algae Scenedesmus acutus culture at a con-
centration of 200,000 cells/ml, was replaced every

Table 1 Comparisons between condition-dependent and tem-
poral regulation of gene expression

Experiment Conditions Genotypes Overlap d

Thermal regime a 18 °C vs. 28 °C Low tolerance
genotype C

11 % / 183

Low tolerance
genotype E

12 % / 199

High tolerance
genotype B

7 % / 116

High tolerance
genotype K

7 % / 116

Salinity stress b 5 gL−1 NaCl vs. control High tolerance
genotype

38 % / 631

Low tolerance
genotype

33 % / 548

Carbon:Phosphorous
ratio c

HiC:LoP (C:P ~800) vs.
LoC:HiP (C:P ~100)
(3 days)

G1: LoC:HiP
tolerance

4 % / 66

G2: HiC:LoP
tolerance

8 % / 133

HiC:LoP (C:P ~800) vs.
LoC:HiP (C:P ~100)
(6 h)

G1: LoC:HiP
tolerance

16 % / 266

G2: HiC:LoP
tolerance

9 % / 149

aYampolsky et al. 2014 [75]
bLatta et al. 2012 [76]
cChowdhury et al. 2014 [77]
dThe number and percent of genes both differentially expressed in the given
experimental treatment conditions (q < 0.05) and also rhythmically expressed
as determined by JTK_CYCLE in this present study (q < 0.05)
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second day to maintain a constant level of resource and
individuals were culled to maintain a density of 50 indi-
viduals per culture. To establish the experimental gener-
ation, female offspring from the second or third clutch
of second-generation females were collected within 48 h
of birth, pooled, and divided into twelve 1 quart jars
containing 750 ml of COMBO media and algae and
maintained as above with the same feeding regime and
12 L:12D photoperiod. When these third generation fe-
males were 10–12 day old the experiment began and
replicate pools of 30 animals per jar were collected,
rinsed in distilled water, and snap frozen on dry ice every
4 h over a 44 h period.
To assess patterns of gene expression, we used the D.

pulex Expression Array 12x135k GEO Accession
GPL11278 (See Colbourne et al. [19]). The platform is a
high-density NimbleGen (Roche-NimbleGen, Madison,
WI) microarray that accommodates 12 experiments per
glass slide, with each experiment interrogating 137,000
probes. Each predicted and experimentally validated
gene is represented by as many as three probes, whereas
the remaining probes are designed from transcriptionally
active regions whose gene models are not yet known.
Total RNA was purified from a single pool of animals

collected at each time point using TRIzol reagent (Invi-
trogen, Carlsbad, CA) extraction followed by RNA puri-
fication using a Qiagen RNeasy Mini Kit with on-
column DNAse treatment to isolate total RNA. RNAse-
cure (Ambion, Austin, TX) was used after RNA purifica-
tion to inactivate any remaining RNAases. The quality
and quantity of resulting RNA were assessed using a
Nano Drop (Thermo Scientific, Waltham, MA) and
RNA Nano LabChip for the Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA). Beginning with 1.0 μg of
total RNA, a single round of amplification using Messa-
geAmpTM II aRNA kit (Ambion) was performed for
each RNA sample. The cRNA (10 μg) was converted to
double strand cDNA with random primers using the
Invitrogen SuperScript Double-Stranded cDNA Synthe-
sis Kit (Invitrogen). From 1 μg double-stranded cDNA,
labeled cDNA was generated with NimbleGen’s Dual-
colour Labeling Kit (Roche NimbleGen).
RNA from each pooled sample was used to create four

technical hybridization replicates. Dual-colour hybridization,
post-hybridization washing, and scanning were done ac-
cording to Roche NimbleGen protocols [80]. Images were
acquired using a NimbleGen MS 200 with 2 μm reso-
lution, and GenePix 6.0 software (Molecular Devices,
Sunnyvale, CA). The image data from these arrays were
processed using NimbleScan v2.5 software (Roche Nim-
bleGen) to extract probe intensity values. These data
have been deposited in the NCBI Gene Expression Omi-
nibus and are accessible through GEO accession number
GSE67781.

Microarray data analysis
Gene expression values (i.e., gene intensity values) were
obtained from a summarization of intensity values of all
corresponding probes using the RMA (Robust Multi-array
Average) method [81]. The pre-processed microarray data
were imported into an in-house analysis pipeline using
Bioconductor [82] for normalization and analysis. All
genes were quantile-normalized across arrays, samples,
and technical replicates [83]. Unless otherwise noted, data
presented is normalized, but not log transformed.

JTK_CYCLE analysis of rhythmic gene expression
To determine the patterns of rhythmic gene regulation
we first used the JTK_CYCLE algorithm as previously
described [32, 37, 38]. JTK_CYCLE is a nonparametric
statistical algorithm designed to identify and characterize
cycling variables in large datasets. It applies the
Jonckheere-Terpstra-Kendall (JT) test and Kendall’s tau
(rank correlation), to find the optimal combination of
period and phase that minimize the p-value of Kendall’s
tau correction between the experimental time series and
each tested cyclical ordering, this being derived from co-
sine curves. JTK_CYCLE generates period length, phase,
and amplitude estimates, as well as corrects for multiple
comparisons post hoc. The reported q-value takes into
consideration the false discovery rate (FDR) across all
genes [84].
Prior to running JTK_CYCLE, genome features on the

microarray not mapping to a gene in the D. pulex v1.1
frozen gene set were excluded, as were all probes that
failed to exceed background levels in at least one sample.
A background fluorescence cutoff value of 136.5 was
used as it was a value that excluded >99.8 % of random
probes on the arrays. Genes were scored as being rhyth-
mic if they were found using the JTK_CYCLE algorithm
to have a q < 0.1 (a commonly used JTK_CYCLE cutoff )
and period length of 22–26 h.
Gene annotations followed the 2013–2014 gene anno-

tations from the Department of Energy – Joint Genome
Institute Daphnia Genome Browser [85] supported by
gene annotations from OrthoDb [48] and euGenes
Arthropod 2009.12 annotations [86]. Further gene and
gene family identifications were taken from Rivera et al.
[54], Colbourne et al. [19], McTaggart et al. [47],
Peñalva-Arana et al. [57], KEGG Pathways Database
[52], and from 2013 to 2014 Drosophila melanogaster
homologs listed on FlyBase [49]. For each gene family
mentioned in this paper (e.g., chitinases, putative clock
genes, glycolysis, etc.), the identities of all genes consid-
ered for that family are provided in Additional file 1.

Hierarchical cluster analysis
We performed hierarchical cluster analysis (Fig. 2) using
Cluster 3.0 and visualized the results using Java
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TreeView. Data were mean centered, normalized across
the time course for each gene, and centroid linkage clus-
tering performed [87, 88].

Real-time quantitative RT-PCR (qRT-PCR) analysis
Total RNA (as above) was used for cDNA synthesis
using a High Capacity cDNA reverse transcriptase kit
(Applied Biosystems, Foster City, CA) primed with ran-
dom hexamers. PCR thermocycling and qRT-PCR were
performed using SYBR green reagents per manufacture’s
protocol using an Applied Biosystems 7500 Fast Real-
Time PCR System. Quantification was based on the gen-
eration of standard curves. Dissociation curves to test
for primer dimers were generated using dissociation
curve software (Applied Biosystems). Normalization of
genes was calculated relative to a D. pulex gene deemed
constitutively expressed over the 24 h, Alpha tubulin
(JGI_V11_301837). See Additional file 3 for primer se-
quences used.

Cosinor analysis
CircWave v1.4 software, an extension of cosinor analysis,
was also used to analyze clock gene expression rhythmi-
city. This analysis fits a Fourier curve (one sine wave) to
the data. The p values reported are the result of F-tests
from the software [89].

Network construction
We modeled temporal gene expression data with a gene
co-expression network as follows: in the network, nodes
are genes, and two nodes are connected by an edge if
the corresponding genes show similar expression pat-
terns over time. To measure similarity between expres-
sion profiles of two genes, we used one of the following
three popular edge weight methods: signed Pearson cor-
relation, absolute Pearson correlation, and mutual infor-
mation, see Rider et al. [35] for details. Each edge weight
method assigned to every pair of genes a score that cap-
tures some intuition of how well the genes’ expression
levels “correlate” over time; then, we constructed a co-
expression network by predicting the top K highest-
scoring node pairs as edges in the network. We varied K
from N (where N is the number of genes in the expres-
sion data) to 10N in increments of N, and we also tested
K = 25N, 50N, and 100N, in order to evaluate the effect
of the value of parameter K on the resulting network
structure. Intuitively, we wanted to choose this value in
a way that keeps only significant edges and provides a
meaningful representation as well as interpretation of
the data [90]. Namely, for each edge weight method, we
aimed to construct a network that ideally linked all
genes (i.e., has no isolated nodes), in order to include
into the network as much information from the data as
possible. At the same time, we aimed to construct a

network that is not too dense (where density is defined
as the number of edges in the network out of all possible
edges), in order to mimic the sparse nature of many
real-world networks as well as avoid randomness in net-
work topology [90, 91]. Empirically, by studying the
number of non-isolated nodes, edges, connected compo-
nents, and nodes and edges in the largest connected
component, we found that as K increases, the number of
non-isolated nodes barely increases, while the network
density increases drastically. Therefore, since larger
values of K increase network density without introdu-
cing many new nodes into the networks, which could
unnecessarily increase computation complexity of net-
work analysis methods or include “lower-confidence” in-
teractions, we empirically decided to focus on the
following networks (i.e., their largest connected compo-
nents): signed Pearson correlation with top N interac-
tions, absolute Pearson correlation with top N
interactions, and mutual information with top N interac-
tions. Also, since edges that are captured by both Pear-
son correlation as well as mutual information could be
of higher confidence, we also studied (largest connected
components of) the intersections of absolute Pearson
correlation and mutual information with: 1) top 10 N in-
teractions and 2) top 25 N interactions. Thus, we stud-
ied a total of five networks.

Network-based prediction of new rhythmic genes – node
centrality-based analysis
For a given network and a given centrality measure, i.e.,
for each of 5×7 = 35 possible cases (where 5 corresponds
to the number of studied networks and 7 corresponds to
the number of studied centralities), in 11 cases we ob-
served statistically significant differences (p-values below
0.01) between network positions of the rhythmic genes
and the remaining genes. Next, for each of the 11 cases,
we ranked all genes in the network from the most cen-
tral to the least central (or vice versa). We took the top
K% most (or least) central genes, where we varied K
from 1 to 100 % in increments of 1 %. Then, we com-
puted precision (the portion of the top K% genes that
are JTK_CYCLE-identified rhythmic genes), recall (the
portion of JTK_CYCLE-identified rhythmic genes from
the given network that are among the top K% genes),
and F-score (which combines precision and recall into a
single value that is easier to interpret than the two indi-
vidual and typically “contradictory” measures). At the
value of K where F-score peaks (meaning that the meth-
odology achieves the highest prediction accuracy at that
value of K), we measured the enrichment of the top K%
genes in the JTK_CYCLE-identified rhythmic genes
(with respect to the hypergeometric test). In 10 out of
the 35 possible cases, we observed statistically significant
enrichments signal (with p-values below 0.05 after
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Bonferroni correction for multiple hypothesis testing,
which was done using p.adjust package in R). In each of
the 10 cases, we took the remaining (non-JTK_CYCLE-
identified) genes among the top (or bottom) K% genes
and predicted them as network-based rhythmic candi-
dates. We recorded how many of the 10 combinations of
network type and centrality measure support each pre-
diction, because the more the combinations, the higher
the prediction confidence.

Network-based prediction of new rhythmic genes –
network clustering-based analysis
We clustered each network with Markov clustering algo-
rithm (MCL) (with the inflation parameter set to 2, be-
cause this value gives empirically optimal cluster size
distribution, i.e., not too many very small clusters or too
few very large clusters). Then, focusing on meaningful
clusters (of size at least two and containing at least two
JTK_CYCLE-identified rhythmic genes), for each value
of K in 1–100 % range, we found all clusters that have
enrichment in the JTK_CYCLE-identified rhythmic
genes greater than K% (i.e., clusters in which at least K%
of the genes are JTK_CYCLE-identified rhythmic genes),
and we measured the statistical significance of the en-
richment via the hypergeometric test (at a p-value
threshold of 0.05 after Bonferroni correction for multiple
hypothesis testing). For each of the resulting significant
clusters, we predicted the genes in the cluster as
network-based rhythmic genes. We took all predictions
from all significant clusters and computed the overall
prediction accuracy via precision, recall, and F-score
measures. Further, in order to ensure that we could not
achieve the same prediction accuracy by chance, we ran-
domly clustered the network 100 times and repeated the
above steps to compute “randomized” precision, recall,
and F-score. Then, we used these randomized results to
determine “optimal” K at which to make predictions
from the real clusters. Namely, we selected the value of
K at which F-score peaks, but only if that F-score value
is statistically significantly high compared to the ran-
domized F-score values. For three of our five networks
(absolute Pearson correlation with top N interactions,
intersection of absolute Pearson correlation and mutual
information with top 10 N interactions, and intersection
of absolute Pearson correlation and mutual information
with top 25 N interactions), results are statistically sig-
nificantly better from the actual clusters than from the
randomized clusters, and we predicted new rhythmic
genes from these three networks (and we left out the
other two networks from consideration when making
predictions). We recorded how many of the three net-
works support each prediction, as the higher the number
of networks, the higher the prediction confidence.

Network-based prediction of novel functional annotations
and their validation
To validate the network approach in the context of pre-
dicting novel gene-function associations, we used leave-
one-out cross-validation, as follows. When considering
all genes in any one network, we hid functional informa-
tion for one gene of interest at a time. Then, we used
functional information about all other genes that group
with the gene of interest (with respect to either central-
ity of clustering analysis) to potentially predict func-
tion(s) of the gene of interest. Namely, if the given gene
group is statistically significantly enriched in a given
function (with p-value below 0.05 after Bonferroni cor-
rection for multiple hypothesis testing), we annotated
the entire gene group with that function, including our
gene of interest. We repeated this procedure for all
genes and got the set of predicted gene-function associa-
tions for each of centrality and clustering analysis. For
increased confidence, we considered association predic-
tions that are in the intersection of the two analyses. For
the resulting predictions, we measured their accuracy via
precision, which is the percentage of associations that
we predicted via the network approach which are in the
known functional annotation data. Novel predictions are
provided in Additional file 1.

Additional files

Additional file 1: JTK_CYCLE and network analysis results. The
spreadsheet shows, for each D. pulex gene: 1) Gene annotations 2)
JTK_CYCLE derived statistics, 3) network analysis rhythmic gene
predictions and statistics, and 4) network analysis functional annotations,
predictions, and statistics. (XLSX 1853 kb)

Additional file 2: Molecular function GO annotations of our rhythmic
genes. Pie charts indicate the number of genes with and without a
molecular function GO term. Bar charts show the number of genes that
have each top level molecular function GO term. Genes may have more
than one GO term. The three bar charts differ in which rhythmic genes
and GO annotations were considered. We used either JTK_CYCLE
determined list of rhythmic genes (“JTK”) or the expanded list containing
also our network-based rhythmic predictions (“Network”). We used the
existing list of GO annotations from the Joint Genome Institute (“JGI”) or
the expanded list containing also our network-based predicted GO anno-
tations (“Network”). Whereas this figure displays molecular function GO
annotations, see Fig. 3 for biological process GO annotations. Also see
Additional file 1. (TIF 2814 kb)

Additional file 3: Microarray validation using qRT-PCR. Microarray valid-
ation was performed on two rhythmic genes, a salivary C-type lectin and
a β,β-carotene-15,15′-dioxygenase using qRT-PCR. The qRT-PCR gene ex-
pression is relative to Alpha tubulin. Day and night are indicated by the
horizontal white/black bars. Primer sequences are provided. (PDF 271 kb)

Additional file 4: Properties of our networks. The size, density, average
diameter, and average clustering coefficient of the five networks (i.e.,
their largest connected components), which we consider in our study.
We also studied additional network properties, including the degree
distribution, clustering spectrum, and graphlet frequencies (results not
shown). (DOCX 57 kb)

Additional file 5: Intersections between our networks. Pairwise network
intersections, in terms of the number of edges common to two given
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networks divided by the number of edges present in the union of the
two networks. (DOCX 55 kb)

Additional file 6: Information on the rhythmic genes in our networks.
The number of all nodes or the subset of the 1,661 JTK_CYCLE-identified
rhythmic genes, for each network and all five networks combined. (DOCX
68 kb)

Additional file 7: Validation of our network-based rhythmic genes in
terms of GO term overlaps with positive and negative control genes.
Pairwise overlaps of enriched GO terms between the JTK_CYCLE-identified
rhythmic genes, negative controls, and our novel predictions produced by
(A) centrality analysis or (B) the clustering analysis. (PDF 347 kb)
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