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Abstract

Background: Host-specific environmental factors induce changes in Bacillus anthracis gene transcription during
infection. A global transcription regulator, CodY, plays a pivotal role in regulating central metabolism, biosynthesis, and
virulence in B. anthracis. In this study, we utilized RNA-sequencing to assess changes in the transcriptional patterns of
CodY-regulated B. anthracis genes in response to three conditions of environmental starvation: iron, CO,, or glucose
deprivation. In addition, we performed chromatin immunoprecipitation on newly identified CodY-mediated genes.

Results: Environmental deprivation induced transcriptional changes in CodY-regulated genes in both wild-type and
codY null strains, and both CodY-specific and environment-specific patterns were observed. In the iron-depleted
condition, overexpression of iron homeostasis genes was observed independent of codY deletion; however, transcription
of siderophore and amino acid biosynthesis genes was CodY dependent. Although CodY has a significant regulatory role
in central metabolism and the carbon overflow pathway, metabolism-associated genes exhibited CodY-independent
expression patterns under glucose starvation. Genes that were differentially expressed in response to CO, availability
showed CodY-dependent regulation, though their maximal expression did require a supply of CO,/bicarbonate.

Conclusions: We speculate that CodY regulates the expression of environmental-responsive genes in a hierarchical
manner and is likely associated with other transcription regulators that are specific for a particular environmental change.
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Abbreviations: BCAA, Branched-chain Amino Acid; BHI, Brain Heart Infusion; ChIP-gPCR, Chromatin Immunoprecipitation

Quantitative Polymerase Chain Reaction; CO,, Carbon Dioxide; DAVID, the Database for Annotation, Visualization and
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Background

Bacillus anthracis, a gram-positive, spore-forming bac-
terium that is the etiological pathogen of the zoonotic
disease anthrax, is constantly exposed to different envir-
onmental conditions in its host, strongly influencing its
physiology. Several environmental factors are known to
promote survival, growth and virulence. One such factor
is the presence of carbon dioxide (CO,), a gaseous waste

* Correspondence: ygchai@hanyang.ac.kr

1Department of Molecular and Life Science, Hanyang University ERICA, 55
Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of
Korea

“Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro,
Seongdong-gu, Seoul 04763, Republic of Korea

( ) BiolMed Central

product generated by central metabolism and cellular
respiration. An infectious pathogen would encounter an
elevated level of CO,/bicarbonate in infected cells as
well as in blood vessels during invasion, switching from
aerobic respiration to fermentative growth, adaptation,
and virulence induction in various pathogens. Of note,
CO,-induced virulence factor expression in B. anthracis
is well documented, as expression of anthrax toxin
components and capsule synthesis are enhanced in the
presence of bicarbonate and/or high atmospheric CO,
levels [1-4].

Glucose availability is also considered an important
signal for bacterial pathogens. However, the effect of
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starvation varies among species. For example, glucose
can decrease virulence gene expression in the gram-
negative pathogen Escherichia coli O157:H7 [5], whereas
glucose positively regulates virulence-related processes
in Vibrio cholerae (6] and Helicobacter pylori [7]. As for
B. anthracis, the presence of glucose increases transcrip-
tion of anthrax toxin activator atxA, in turn positively
regulating transcription of protective antigen, one of
three anthrax toxin components. This glucose-induced
AtxA expression requires the carbon catabolite protein
CcpA through an indirect mechanism, forming a
molecular link between metabolism and B. anthracis
pathogenesis [8].

In addition to CO, and glucose, iron availability in the
host environment is a major signal for any pathogenic
bacterium, as iron is involved in bacterial invasion, sur-
vival, motility, capsule biosynthesis and toxin production
[9]. To utilize iron in cells or serum, bacterial pathogens
express iron-chelating siderophores to scavenge and ex-
tract sequestered protein-bound iron ions [10, 11]. As for
B. anthracis, it expresses the siderophores, petrobactin,
and bacillibactin to extract iron in the host system [12],
and deletion of iron uptake genes attenuates growth in
macrophages and virulence in mice [13]. Overall, host-
related environmental factors have a significant impact on
bacterial gene expression with regard to stress response,
adaptation, survival, and pathogenesis.

Multiple extracellular signals induce complex changes
in bacterial gene expression to adapt to new conditions.
Simultaneous gene regulation in response to a rapidly
changing intracellular milieu suggests the existence of
global transcription regulator(s) that integrate extracellu-
lar stimuli to choreograph gene transcription. One of
the potential gene regulators responding to environmen-
tal stimuli is the global transcriptional regulator Cody,
which represses early stationary phase genes during
growth via direct and indirect mechanism [14]. CodY
regulates the expression of the genes closely related to
metabolism, adaptation and virulence in various gram-
positive pathogens [15]. Its virulence regulation in B.
anthracis virulence was documented in several litera-
tures [16—18], including a recent CodY overexpression
study that showed defects in B. anthracis sporulation
and pellicle formation [19].

It is notable that CodY-directed gene regulation is
closely associated with responses to environmental stim-
uli. Indeed, nutrient availability is directly associated
with CodY binding activity, as starvation leads to deple-
tion of two CodY effectors, GTP and branched-chain
amino acids (BCAAs). Without bound effectors, CodY
loses its binding affinity and is released from its binding
site, followed by derepression of genes involved in vari-
ous metabolic functions [20, 21]. Previous reports have
shown that CodY functions in harmony with CcpA in
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the regulation of metabolism-related genes. CodY is also
known to repress genes that are related to iron uptake
and scavenging in B. anthracis [17]. However, it remains
unclear whether the CO,-sensing mechanism is linked
to CodY regulation in pathogenic bacteria. At least in B.
anthracis, post-translational accumulation of AtxA is
positively regulated by CodY via unknown mechanisms
[18], with its activity also being influenced by CO, [2].
The fact that AtxA is regulated by CodY in a CO, at-
mosphere suggests potential coordinated regulation be-
tween CodY and CO,-sensing mechanisms in B.
anthracis. Although these host-specific environmental
stimuli induce stimulus-specific gene expression, it is
not yet clear how CodY regulation is connected to
environmental-specific responses. Here, we report B.
anthracis expression profiles in response to both CodY
deletion (codY mutant) and deficiency of three environ-
mental factors, iron, CO,, or glucose, revealing the ex-
pression patterns of CodY-mediated genes in B.
anthracis exposed to various environmental stimuli in a
host-like system.

Results and Discussion

RNA-sequencing provides additional gene expression
patterns in B. anthracis Sterne with a codY knockout
mutation

Transcriptomic profiling using a microarray analysis pre-
viously revealed a variety of genes regulated by CodY in
B. anthracis [18], suggesting its role as a pleotropic regu-
lator that connects regulatory pathways. To further ex-
pand the B. anthracis CodY regulon and to set a
standard for our experiment, we initially isolated total
RNA from B. anthracis Sterne wild-type (34 F2) and
codY mutant (BCD22) strains. The cells were cultured in
Ristroph medium [22], a defined medium designed to
mimic a host-like environment and to maximize anthrax
toxin production, and collected during mid-exponential-
phase growth. We then performed RNA-sequencing
analysis in triplicate using an Illumina HiSeq 2000.

As a result, we identified 251 genes affected by CodY
in B. anthracis Sterne. Among these genes, 154 up-
regulated and 97 down-regulated genes were statistically
significant (¢ value <0.05) in the codY mutant strain
relative to its parental 34 F2 strain (Additional file 1:
Dataset S1). The genes identified in the dataset include
both direct and indirect CodY targets, as determined by
the presence of previously identified CodY binding mo-
tifs [16]. Overexpressed genes in the codY mutant strain
(i.e., those genes repressed by CodY in 34 F2) are closely
related to central metabolism, nucleotide biosynthesis,
amino acid biosynthesis, the stress response, and poten-
tial virulence, in agreement with previous B. anthracis
transcriptome profiling studies [18]. Under-expressed
genes (positively regulated by CodY) encode tRNA
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synthases, peptidases, and transporter proteins with vari-
ous targets; however, due to a large number of hypothet-
ical proteins, their relationships were largely ambiguous.
One under-expressed gene is BAS4903, the gene product
of which covalently links methionine to its cognate
tRNA. In addition, several genes that had previously not
been identified in a microarray approach were revealed
by RNA-sequencing. For instance, indirect CodY target
genes (i.e., genes without a consensus CodY binding
motif proximal to their promoter region) include an
NLP/P60 family protein (BAS1812) and the tellurium re-
sistance operon yceCDEF [BAS0385 (yceC), BAS0387
(yceE)], the functions of which are suggested to be im-
portant to virulence and survival [23, 24]. Overall, the
data showed diverse gene targeting by CodY, involving
both direct and indirect regulation, and provided new
gene sets that are involved in cellular metabolism, sur-
vival and virulence in B. anthracis.

RNA-sequencing reveals environmental-specific gene
expression patterns for CodY-regulated genes in

B. anthracis Sterne

Host environmental effects on the survival and virulence
of microbial pathogens have been broadly studied and well
documented, especially for B. anthracis. In this study, we
attempted to profile gene sets that respond to the extra-
cellular stimuli readily encountered in the host system,
which is a microaerobic environment with limited iron
and glucose availability. To identify gene sets in B. anthra-
cis that are affected by environmental changes under the
host-like condition, we performed RNA-sequencing using
RNA libraries prepared from four types of Ristroph media:
iron-depleted Ristroph (R®), aerated Ristroph (R i.e.,
medium prepared without bicarbonate and cultured in a
shaking incubator without CO, introduction), glucose-
starved Ristroph (R“™), and a control Ristroph medium.
Surprisingly, a small number of differentially expressed
genes were identified for the parental strain exposed to
environmental deprivation (Additional file 2: Dataset S2).
Compared with that grown in the control Ristroph
medium (34F2%), seven overexpressed and 29 under-
expressed genes were observed for the 34 F2 strain grown
in R (34 F27) and nine overexpressed and 19 under-
expressed genes in 34 F2 grown in R™® (34 F2"%); in con-
trast, 32 overexpressed and 39 under-expressed genes
were observed for 34 F2 grown in RC (34 F27Cly) (Fig. 1).
Few differentially expressed genes were redundantly iden-
tified in two [eg, BAS2111 (34 F27¢ and 34 F27%9),
BAS4985 (34 F2™ and 34 F2°°") or BAS5333 (34 F2™°
and 34 F2°)] or all of the conditions (e.g, BAS0253,
BAS4267, and BAS5155). Approximately one-third of the
genes differentially expressed in 34 F2 under starvation
encoded hypothetical proteins with unknown domains
(34 F27F¢ 7/36; 34 F2°Bi© 11/28; 34 F2°°!" 19/71). Two
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hypothetical proteins found in all conditions were
BAS0886 and BAS3872, harboring a sulfite exporter TauE
domain and a domain of unknown function, respectively.

Next, to examine the effect of environmental changes
on B. anthracis CodY regulation, we generated gene pro-
file datasets from the codY mutant strain grown in
Ristroph, R*¢, R®, and R"®". By comparing differences
in expression with BCD22 grown in Ristroph medium
(BCD®), a large number of genes were differentially
expressed in response to starvation (Fig. 1, Additional
file 3: Dataset S3); 243 differentially expressed genes
were observed in BCD22 grown in R*® (BCD™®) (70 up-
regulated; 173 down-regulated), 476 in BCD22 grown in
RPc (BCD™®) (283 up-regulated and 193 down-
regulated), and 144 in BCD22 grown in RS (BCD ")
(36 up-regulated and 108 down-regulated). The number
of overlapping genes between BCD ' and BCD ™ was
105, that of between BCD*® and BCD“™ was 42, and
that of between BCD™® and BCD ™ was 68. Among
the overlapping genes, 27 were differentially regulated in
all starved conditions. Biological process gene ontology
(GO) analysis of genes found in the all three conditions
showed enrichment of redox processes and central me-
tabolism (Additional file 4: Dataset S4). Genes down-
regulated in BCD ™™ were predicted to contribute to ni-
trogen metabolism and amino acid biosynthesis, whereas
aerobic respiration-related processes were predicted
based on genes down-regulated in BCD®, The BCD ™
condition revealed no other biological processes.

We then analyzed gene datasets from a CodY-
dependent perspective (Additional file 1: Dataset S1) by
comparing RNA-sequencing data between 34 F2 and
BCD22 grown under identical conditions (eg, 34 F2*°
versus BCD ). However, the number of differentially
expressed genes was smaller than we first anticipated, with
67 genes in R, 61 in R, and 49 in R"%™ that were dif-
ferentially expressed by the codY knockout strain. Genes
that were previously identified to harbor CodY binding
sites (inhAl, inhA2, and BAS3038) and that were associ-
ated with the deprived molecule (BAS4424 and BAS4413)
were found in the analyses, but approximately one-third
of the differentially expressed genes were hypothetical
proteins (R, 26/67; R'®<, 23/61; R, 17/49). A few
hypothetical proteins had putative functions that may
contribute to bacterial physiology, such as BAS5235
(prespore-specific transcriptional regulator RsfA-like do-
main) and BAS0033 (O-methyltransferase domain). The
small number of differentially expressed genes in the pre-
sented analyses may indicate that environment-specific
gene regulation is CodY-dependent to a limited degree,
and that it involves a few number of genes of unknown
functions.

As CodY was observed to have a reduced regulatory
role regarding those condition-specific genes in B.
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Fig. 1 Differentially expressed genes in B. anthracis 34 F2 and BCD22 in response to environmental depletion. The Venn diagrams of the genes
with statistical significance (g < 0.05) in each environmental deprivation treatment (Fe, CO,, and Glu) for 34 F2 and BCD strains. The number of
differentially expressed genes for each condition, including overlapping genes identified in two or more conditions, is presented in the circles.
Statistical significance (p values) of overlaps of the Venn diagrams determined by hypergeometric distribution are presented. As for the
intersections (i.e, five genes in 34 F2 and 27 genes in BCD), p values were much smaller than those of other presented overlaps
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anthracis, we focused on the regulatory roles of environ-
mental stimuli on the expression of CodY-regulated
genes. To further determine the effect of host environ-
mental factors on transcription patterns in B. anthracis,
we compared the expression patterns of the CodY-
regulated gene set generated from the Ristroph samples
with those of the gene sets from three starvation condi-
tions. The fold-change values from eight different gene
sets were then subjected to k-means clustering to
categorize in accordance with their distinct expression
patterns, by setting 16 clusters for both negatively and
positively regulated genes separately (Fig. 2, Additional
file 5: Dataset S5). The number of clusters for k-means
clustering was determined empirically to classify genes
in accordance with their original expression fold-change
values as much as possible. The genes positively regu-
lated by CodY were generally repressed under all of the
tested conditions, with changes in the degree of repres-
sion by derepression due to the codY knockout (Fig. 2(a)).
The genes negatively regulated by CodY displayed di-
verse expression patterns in response to environmental
changes: some genes were dominantly regulated by at
least one environmental stress over the codY deletion
(clusters 1, 2, 3, 10, 12, 13 and 16), whereas other genes
showed CodY-dictated regulation in spite of the deple-
tion of a factor (clusters 4, 5, and 9) or exhibited rather
complicated regulation patterns (clusters 6, 7, 8, and 11)
(Fig. 2(b)). Taken together, these observations suggest
that gene regulation in response to host-specific stimuli
and presence of CodY is conditional and/or condition-
dependent.

Validation of RNA-sequencing results using quantitative
PCR

To validate gene expression patterns identified in RNA-
sequencing and k-means clustering, we performed

quantitative real-time polymerase chain reaction
(qRT-PCR) analyses. Genes to be validated were selected
from different clusters; from UP cluster I, we chose the
triosephosphate isomerase (tpiA; BAS4987) and tellur-
ium resistance (yceC; BAS0385) gene. From DN cluster
4, we chose the methionyl-tRNA synthetase gene
(BAS4903). From cluster 6, we chose a putative ArsR
family transcriptional regulator (BAS0563). From UP
cluster 7, we chose the phosphopyruvate hydratase gene
(eno; BAS4985). From DN cluster 11, we chose the LysR
family transcriptional regulator gene (BAS5069). From
UP cluster 14, we chose the immune inhibitor A metal-
loprotease gene (inhAl; BAS1197). As a result, the qRT-
PCR expression profiles of the selected genes were simi-
lar to those identified by the RNA-sequencing analysis
for conditions under which they were statistically signifi-
cant, though differences in the extent of the fold change
values were observed (Table 1).

In addition to qRT-PCR validation, we selected genes
from the RNA-seq datasets and performed chromatin
immunoprecipitation quantitative polymerase chain re-
action to further validate CodY interaction (ChIP-qPCR)
(Fig. 3). Of note, the selected genes were chosen based
on the presence of previously defined CodY binding se-
quence(s) (Table 2) [16]. We observed a 1.5-fold to 3-
fold enrichment of CodY at target sequences relative to
the negative control (anti-IgG). The binding of CodY to
its target sequences varied among the selected genes; the
strongest binding to predicted CodY sites was observed
for BAS4069 (approximately 3.8-fold enrichment), with
BAS4252 showing the weakest (approximately 1.4-fold
enrichment). Such variation in CodY enrichment at its
motif may represent the differential binding strength of
Cody, possibly due to the sequential variation in binding
sites compared to the consensus binding sequence,
which is similar to what has been previously observed
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Fig. 2 Expressional changes in CodY-mediated B. anthracis genes in response to the depleted conditions. The genes negatively regulated by
CodY were distributed to 16 clusters (UP and a), and the genes positively regulated by CodY were distributed in 16 clusters (DN and b), although
the variations among the DN clusters were not as dynamic as those of the UP clusters. The log, fold-change values were determined from the
means of three independent RNA-sequencing analyses

for B. subtilis [25]; this assumption, however, requires
additional molecular validation. No significant correl-
ation between the binding strength and level of fold
change in gene expression was observed. Collectively, we
observed differential expression of CodY-mediated genes
in response to different environmental signals and con-
firmed that CodY binds to those genes with CodY bind-
ing sequences found in this work.

Iron homeostasis and CodY regulation - mutual
relationship encompassing amino acid biosynthesis

As mentioned above, iron acquisition is essential for
bacterial survival and virulence. Therefore, utilizing iron
from the host system is important for the pathogenesis

of B. anthracis. Strategies bacteria use to do so include
degrading iron-bound heme proteins, chelating free iron
using siderophores, and taking up iron-bound sidero-
phores. In B. anthracis, several genes are involved in
iron acquisition and utilization, including petrobactin,
bacillibactin, and iron-regulated surface determinant
(Isd) genes [12], which are readily overexpressed in iron-
depleted medium [26]. Interestingly, overexpression of
iron metabolism-related genes (feoB, isdE, and isdX) by
iron depletion was observed in the codY null strain
(Fig. 4(a), Additional file 3: Dataset S3), suggesting that
the changes in expression of iron-associated genes oc-
curred in an iron availability-dependent manner rather
than as the result of the codY mutation. Transcription of
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Table 1 Validation of RNA-sequencing data by gRT-PCR

Target gene Condition Fold-change in Fold-change in
RNA-sequencing® gRT-PCR
BAS0563 34F 20 1 1
Cluster 6 34F2Fe 1417 40252
34F2 B ND 148
34F2Cl ND 133
BCD® 6.17 6.69
BCD'® ND 1044
BCD B 2350 1975
BCDM ND 330
eno (BAS4985) 34F2° 1 1
Cluster 7 34F2Fe 0.13 225
34F2 8¢ ND 7.70
34F 26 0.14 024
BCDR 7.13 325
BCDT® 097 557
BCD ™ 036 0.26
BCD 0.08 037
tpiA (BAS4987) 34F 2R 1 1
Cluster 1 34F2F ND 052
34F2 B¢ 0.02 449
34F M 036 004
BCD® 9.85 195
BCD'® 15 162
BCD®* ND 0.07
BCDM ND 0.04
inhAT (BAS1197)  34F2F 1 1
Cluster 14 34F2Te ND 087
34F2 B ND 043
34F2 0l 025 266
BCD® 1061 3771
BCD'® 182 37.56
BCD B 043 474
BCDM 2.00 2099
BAS4903 34F2° 1 1
Cluster 4 34F2"e ND 062
34F28¢ ND 038
34F 26 002 070
BCD® 0.13 0.15
BCD™® ND 0.12
BCD B 037 060
BCDM 094 099
BAS5069 34F 2% 1 1
Cluster 11 34F2F¢ ND 055
34F2 B¢ 043 037
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Table 1 Validation of RNA-sequencing data by gRT-PCR

(Continued)
34F2°CM 036 075
BCD® 0.14 0.10
BCD™® 0.13 0.12
BCD B¢ 3.01 0.90
BCD M ND 633

yceC (BAS0385) 34F2R 1 1

Cluster 1 34F27¢ 135 813
34F 28 ND 0.72
34F2C 162 0.22
BCD® 13.06 568
BCD ™ 126 736
BCD ¢ ND 027
BCD M ND 135

®ND, not detected in RNA-sequencing

iron acquisition and metabolism-associated genes is
tightly regulated by the ferric uptake repressor (Fur) pro-
tein [27]. Fur represses transcription in the presence of
ferrous ions by binding to conserved regulatory motifs
(termed Fur boxes) that precede the promoters of iron
metabolism genes, thereby affecting virulence and iron
homeostasis [28]. Fur boxes are found in Isd genes and
several other iron metabolism-associated genes in B.
anthracis [29, 30], suggesting dominant regulatory
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Fig. 3 The CodY binding to newly identified CodY-mediated genes
in B. anthracis. The CodY binding enrichment to its binding motif
proximal to the CodY-mediated genes identified in the transcriptome
is quantitatively measured by chromatin immunoprecipitation and
gRT-PCR. The enrichment of the CodY binding motif is relative to the
abundance of the target sequences in the input sample. The values are
presented as the means + SE. *; the level of statistical significance
between CodY and IgG enrichment was determined by one-way

ANOVA followed by Tukey's HSD post hoc test (*: p < 0.05, **: p < 0.01)
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Table 2 CodY binding sites of ChIP-gPCR target genes
CodY binding site®

Target gene

BAS0036 AATTTAAAAATTTTTCTGAAAA

BAS1197 ATATCACAATTCAACAATG

BAS1350 ATTGACTAAATTTTCATACAAAACATT

BAS3379 AAAATTAGTAGAATAATAGTTAATAAGAATCTT

BAS3621 CTTAGAAAATTCAGAATGGTAAAATAATATATAAATC
GTTGTATGAAAAT

BAS4069 GGAACATACACAGTAAACGATGCGATGTTAGAAGAT
TTAAAAAATGGTTTTAGTGGTCATCACGCTT

BAS4252 TGAAACTCCCCCTAATAAAAAGTGCCAATATTCCAAA

*The presented CodY binding sites were identified by Chateau et al. [16]
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control by Fur over its regulon. In addition, according to
previous in vitro binding analyses, only two iron-
associated genes (BAS1235 and BAS4949) have been
identified as direct CodY targets [16], even though codY
deletion in B. anthracis impaired expression of iron up-
take genes [17]. Taken together, our findings show that
CodY does not directly regulate the expression of iron
homeostasis genes, and that these iron homeostasis
genes are more sensitive to iron availability than to
CodY activity.

Several metabolic processes are iron dependent, in-
cluding amino acid biosynthesis. Production of glutam-
ate, one of the most abundant amino acids in gram-
positive bacteria, is dependent on iron availability as iron
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decrease or red indicating an increase in the read count relative to the parental 34 F2 strain. The term p is the statistical significance by the
Kruskal-Wallis H nonparametric test for the expression trend of each gene in the wild-type (34 F2) and codY null (BCD22) strains under different
conditions. Statistical significance in bar graphs were determined by ANOVA followed by Tukey's HSD post hoc test (*: p < 0.05, **: p < 0.01)

N
b 150 | W 34F2° L
° [SWE
2 120 1 —scd”
5 Eseco™
-$ 90
o Kk
S 602 %
@ 8
>
= 6
8
[}
e 4
2
0
ccpA spo0A
34F28  BCDR  34F2%u BCDSM p
citB (BAS3408) $0.05
gitB (BAS0498)  <0.05
ack (BAS4535)  50.05
rocG (BAS1401) <0.05
B
0 235 470
34F2R  BCDR  34F2Cu BCDSW p

SPOOF (BAS5185) 5 0.05
SPoOA (BAS4869) 50.05
abrB (BAS0036)  £0.05
KkapD (BAS4986)  £0.05

o 29.0 105.0
204 [ EVoy
(I 34F2°**
1.5 [—Jscb?
[ BCo™*

Relative fold-change

atxA

pagA

BCD®ic

27170




Kim et al. BMC Genomics (2016) 17:645

is a cofactor of glutamate synthase [31]. In previous
studies, transcription of the glutamate synthase genes
gltAB and aconitase gene citB was repressed during iron
starvation [32] and also by CodY [33, 34]. We found that
the citB (BAS3408) gene was overexpressed in BCD
compared to 34 F2 when grown in both Ristroph and
R media. However, comparison of the fold change
values between BCD® and BCD™™ showed reduced citB
gene expression by iron depletion. This diminished induc-
tion was also observed in the glutamate synthase gene
transcription (BAS0498) and other metabolism-related
genes (Fig. 4(b)). GO biological process analysis of the
genes from BCD ' compared to those of BCD® showed
down-regulation of amino acid biosynthesis. Based on
these observations, we speculate that both iron and CodY
regulate biomolecule precursor metabolism in a consecu-
tive manner. Derepression of iron-dependent metabolism
genes by the codY mutation depicts the CodY activity dur-
ing adaptation to environment with limited iron sources;
reduced iron availability would trigger the stringent re-
sponse as less amino acid products are produced from
iron-dependent amino acid biosynthesis. This in turn
reduces the binding affinity of CodY to its regulatory
sequences, and derepresses amino acid biosynthesis
genes, producing a new set of amino acids. Newly syn-
thesized amino acids may then be used for siderophore
assembly to overcome iron starvation. Functional ana-
lysis of CodY with iron-mediated amino acid biosyn-
thesis using metabolomic approaches would provide a
better understanding of the role of CodY in iron
starvation.

Hierarchical regulation between CodY and the glucose-
dependent regulator during carbon starvation

Genes that were negatively regulated by CodY from this
work displayed dynamic transcription patterns in re-
sponse to both codY mutation and glucose starvation,
whereas other sets of differentially expressed genes were
mostly repressed by depletion and derepressed by the
codY mutation (i.e., iron and CO,). Notably, transcrip-
tion patterns shown from genes that fell into UP clusters
2, 3,6,7,10, 12, 13, and 14 were insensitive to the codY
mutation under glucose starvation (Fig. 2(b)). Biological
process analysis predicted that these clusters included
glucose metabolism-associated genes, and pathway ana-
lyses also showed that these glucose-sensitive genes were
involved in pyruvate metabolism and the TCA cycle.
However, no significant biological processes were identi-
fied in other genes that were derepressed or at least
showed diminished repression by the codY mutation (UP
clusters 4, 5, 9, and 16). Judging from the observed tran-
scriptional patterns, glucose metabolism may be less
dependent on CodY regulation during glucose starva-
tion. Indeed, the regulation of central metabolism is not
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only controlled by CodY but also by other regulators. In
particular, CcpA plays a significant role in carbon me-
tabolism, and in many cases, co-recruitment with other
regulators determines its activity [35-40]. Transcrip-
tional level of ccpA in this work was not significantly af-
fected by glucose starvation nor codY deletion
(Fig. 4(b)), suggesting that if any changes in CcpA regu-
lon were to occur, it may have been triggered by change
in CcpA activity. Comparing the expression patterns in
BCD ™ with BCD® or 34 F2°°™, those genes associated
with glucose metabolism and the TCA cycle were differ-
entially expressed in a glucose-dependent manner, mask-
ing the regulatory effect of codY deletion. Nonetheless,
they were differentially expressed in response to codY de-
letion in Ristroph, indicating complexity in regulation of
glucose metabolism. Based on these previous observations
and our findings, we propose that CodY plays a supportive
role in coordinating glucose-dependent central metabol-
ism and other glucose-related processes during starvation
in a cooperative manner with CcpA and other glucose-
dependent regulators. Interaction between CodY and
other regulators, such as CcpA and RpoA, has been docu-
mented in B. subtilis [41], further supporting our premise
of CodY regulation involving additional gene regulators.

Transcription patterns of genes that were categorized
in UP clusters 1, 8, 11, and 15 showed repression by the
codY mutation under glucose starvation. Biological
process analysis predicted that these clusters included
the monosaccharide metabolic process. Although few
genes were shown to be associated with glycolysis/gluco-
neogenesis, the other genes were related to stress re-
sponse and cell wall/membrane and also include other
vegetative genes. Repression of CodY-mediated genes by
codY mutation during starvation may be explained by
the following scenario: the codY deletion may have re-
sulted in failure of the usage of alternative nutrient
sources, leading to reduced production of biological pre-
cursors and stalled transcriptional machinery. Because
glucose is not utilized as a main nutrient source during
starvation, B. anthracis would switch gene regulation for
use of other substances as its carbon source, with CodY
playing a pivotal role in the process. Deletion mutation,
however, may have caused a regulatory defect in nitro-
gen metabolism, resulting in failure to utilize amino
acids and mimicking a near-complete starvation condi-
tion for B. anthracis. Lack of carbon sources would sup-
press any energy-consuming activities, including the
transcription of genes required during vegetative growth.
Down-regulation of vegetative genes under glucose and
nitrogen starvation was observed in B. licheniformis [42],
though each starved condition was observed separately.
Taken together, our findings portray CodY as an essen-
tial regulator for coordinating proper transcription of
vegetative genes during glucose starvation.
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Nutrient starvation induces sporulation. Surprisingly,
sporulation regulator genes were down-regulated by the
codY mutation during glucose starvation (Fig. 4(c)). One
of the notable changes was repression of the sporulation
regulator spo0OA gene in BCD “™, Its transcription was
enhanced in both BCD® and 34 F2"™ (spo0A expression
in BCD® was greater than that of in 34 F2°) compared
to 34F2% (expression not detected). However, spoOA
transcription was repressed in BCD ™™, and its expres-
sion level in BCD ™ was significantly lower than that of
in BCD® and 34 F2°"* (BCD“"*/BCD" = 0.05; BCD "/
34 F2°9™=0.12). This unexpected repression suggests
that CodY may act as a positive regulator for spo0OA
transcription in the mid-exponential growth phase dur-
ing starvation. A positive effect of CodY on spo0A ex-
pression was previously identified in B. subtilis [43],
which suggested a complex regulatory pathway in
SpoOA-mediated sporulation during carbon starvation,
contradicting a previous model where CodY represses
transcription of sensor kinase kinB and extracellular Phr
peptides (phrA and phrE) that positively regulate sporu-
lation [34, 44, 45]. As for this study, transcription of
kinB and Phr peptides was not detected. One possible
explanation for CodY as a positive regulator for spo0A
transcription is that there may be CodY-regulated sporu-
lation inhibitors that repress spoOA transcription. This
assumption, however, requires identification and func-
tional characterization of such inhibitors.

Intervention of potential CO,-dependent regulators at
CodY-mediated CO,-responsive genes

Genes that were differentially expressed in response to
CO, deprivation can be categorized into two classes: (i)
CodY-mediated genes that were repressed by CO,
deprivation and derepressed by codY mutation, and (ii)
genes that were not affected by the mutation. The genes
that were derepressed by codY deletion (i.e., genes from
UP clusters 3, 4, 5, 6, 11, 12, 14, and 15) were involved
in amino acid catabolism and ABC transporter system,
but their expression levels in BCD™® were lower than
those of in BCD®. The expression patterns in this study
coincided with a comparative transcriptome profiling of
B. cereus strains under CO, or aerobic atmospheres [46].
Our findings suggest that CodY acts as a repressor dur-
ing aerobic growth and that transcription of CodY regu-
lon is also affected by the presence of CO,/bicarbonate.
One of the interesting findings is that the CO,-depleted
transcriptome showed diminished derepression of CodY-
mediated genes. One instance is the diminished tran-
scription of the immune inhibitor A metalloprotease
(inhAl) gene, one of many secreted B. anthracis prote-
ases that targets various substrates contributing to viru-
lence [47] or benefiting cell survival [48]. Transcription
of inhAl occurs under both air and in toxin-inducing
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conditions (i.e., 5 % CO, and bicarbonate), with the lat-
ter condition being more favorable for higher expression
[49]. It is also suggested that inhAl is a direct target of
CodY [16]. Our transcriptome profiling, qRT-PCR and
ChIP-qPCR data showed overexpression of inhAl in the
BCD strain and enrichment of CodY at its binding site
proximal to the inhAl1 ORF (Fig. 3 and Table 1), con-
firming previous observations. Interestingly, inhA1l over-
expression in BCD® was significantly diminished in
BCD ™, suggesting that additional CO,-related regula-
tors are required for full inhA1 expression. This raises
the possibility of direct/indirect interplay between
CO,-dependent regulators and CodY. Examples of
such CO,-dependent regulators are the aerobic/anaer-
obic two-component system ResD-ResE in B. subtilis
[50, 51] and the homologue system BrrA-BrrB in B.
anthracis [52]. Interaction of these systems with CodY
requires further investigation, which is required to
fully elucidate the underlying mechanism.

The genes insensitive to codY mutation (clusters 1, 2,
7, 8,9, 10, 13, and 16) were predicted to be involved in
glycolysis and fermentation (e.g, BAS2111, BAS4492,
BAS4869, BAS4986, BAS4987, and BAS4989) (Fig. 4(c)).
This observation suggests that transition from aerobic to
anaerobic respiration is indirectly mediated by CodY, at
least in terms of glycolysis and fermentation-related gene
transcription. Regulation of anaerobic fermentation
genes is well documented in B. subtilis, as the extracellu-
lar COy/bicarbonate level is relayed via a regulatory
cascade that involves ResDE and the anaerobic transcrip-
tion regulator Fnr, which in turn activates expression of
lactate dehydrogenase and alcohol dehydrogenase [53]. As
no CodY binding sites proximal to anaerobic fermentation
genes were found nor was any solid regulatory connection
between CodY and CO,/bicarbonate established, our find-
ings show no direct involvement of CodY in transcription
of anaerobic metabolism-related genes during the aerobic-
anaerobic transition.

One of CO,-mediated regulatory pathways in B.
anthracis includes virulence expression regulation by the
anthrax toxin activator AtxA. Although its interaction
with CO, is yet unclear, it was previously suggested that
elevation in the level of CO,/bicarbonate enhances mul-
timerization of AtxA, and that the AtxA multimerization
is closely associated with its protein function [2]. In this
work, reduced induction of anthrax toxin component
protective antigen was observed in all perturbed condi-
tions (i.e., 34 F2™, BCD® and BCD ™) (Fig. 4(c)). Tran-
scriptional level of atxA gene was somewhat changed in
34 F27P° and BCD® but was within the error range, sug-
gesting that the sole effect of CO,/bicarbonate or codY
deletion on atxA transcription is minor. On the con-
trary, atxA transcription was significantly depressed in
BCDBic (Fig. 4(c)). Although the underlying mechanism
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is unclear, we are tempting to explain the presented
result as follows: CodY may be a member of gene
regulatory complex for atxA transcription along with
other CO,-responsive regulators (such as the two-
component system BrrA-BrrB [52]), as shown previ-
ously that there is a CodY binding site proximal to
atxA promoter [16], but the binding affinity is weak
and its effect on the transcription is minor. Instead, it
may cause DNA curvature that would repress tran-
scription but induce recruitment of regulatory com-
plex, allowing atxA to be transcriptionally “poised”.
Bicarbonate deprivation or codY deletion may reduce
atxA transcription, but both conditions can compen-
sate each other to sustain atxA transcription. As for
the BCD™® condition, synergic regulation of CodY
and CO,-responsive regulators on the atxA promoter is
lost, ultimately leading to depression of atxA and anthrax
toxin gene transcription. Further characterization and val-
idation of CO,-responsive regulators with CodY may re-
veal the regulatory mechanism between CO,/bicarbonate,
nutrition and virulence expression.

Conclusions

We attempted to determine the expression patterns of B.
anthracis genes that are directly or indirectly regulated by
CodY in response to different environmental deprivation
conditions using high-throughput sequencing. We identi-
fied CodY-mediated genes that were either sensitive or in-
sensitive to environmental changes, with some being
involved in regulation under more than one starvation
condition. Although transcriptional repression in response
to environmental factor deprivation was derepressed by
codY mutation in several cases, the CodY-mediated genes
displayed complex expression patterns, being either posi-
tively or negatively regulated in response to the mutation.
The genes with complex transcription patterns were
closely related to specific biological pathways that utilize
the deprived environmental factor(s) for proper regulation
and metabolism. These biological pathways were regulated
by multiple regulators that may act in a global or a
pathway-specific manner, such as the Fur regulon for iron
metabolism and CcpA for glucose metabolism. Our tran-
scription profiles suggest that CodY regulation is sophisti-
catedly coordinated with other regulators during the
environmental changes evaluated (Fig. 5): (i) iron metabol-
ism is regulated by iron-dependent regulators, is inde-
pendent of CodY repression but affects CodY-mediated
regulation indirectly by altering iron-dependent amino
acid biosynthesis; (i) CodY assists other glucose-
dependent regulators in the regulation of glucose catabol-
ism and the TCA cycle, and indirectly coordinates proper
transcription of vegetative genes in response to glucose
availability; and (iii) CodY retains its role as a global regu-
lator for those CodY-mediated genes that require CO,/

Page 10 of 15

bicarbonate for full expression but has less of a regulatory
role in aerobic-anaerobic respiration, at least in enzyme
gene regulation. The complex nature of CodY regulation
in response to environmental factors suggests the involve-
ment of other pleiotropic or pathway-specific regulators.
As numerous gene regulators and regulatory proteins be-
long to the CodY regulon [54], functional characterization
of CodY-mediated gene regulators would elucidate this
complex phenotypic changes. Our findings also depict
CodY as a supportive regulator rather than a signal-
integrating hub in response to the deprived conditions
studied. This transcription study provides useful insight
into CodY regulon in B. anthracis during various environ-
mental changes that would ultimately affect its physiology
and virulence. However, we only examined a limited set of
environmental stimuli that B. anthracis experiences dur-
ing its life cycle inside or outside of the host system. Fur-
thermore, interaction of CodY with other regulators
requires validation of their direct physical contact or indir-
ect regulation during transcriptional regulation in the
host-like environmental niche. Other environmental fac-
tors, such as amino acid starvation, are being studied by
many research groups [55]. Integration of datasets gener-
ated using environmental factors that affect other physio-
logical and virulence features of B. anthracis would
provide better information for understanding its adapta-
tion and pathogenesis in the host system.

Methods

Bacterial strains and media conditions

Strains and vectors used in this study are listed in Table 3.
B. anthracis Sterne 34 F2 was used as the parental strain
for this experiment. The codY knockout mutant BCD22
was constructed using an integration vector pKS1, which
was kindly provided by Dr. Konstantin Shatalin using the
method previously described [56]. In brief, a gene frag-
ment containing 500 bp upstream of codY and another
fragment containing 500 bp downstream of codY were
amplified with primer sets 500CodYUP and 500CodYDN,
respectively. The upstream fragment was inserted into
pKS1 that had been digested with Eagl and Pstl, and then
the downstream fragment was inserted after digesting
with HindlIIl and Kpnl. The constructed plasmid was des-
ignated as pKSCodY. After removing methylation by
transforming the plasmid into E. coli ER2925, pKSCodY
was introduced into B. anthracis Sterne as described by
Koehler’s group [3]. Replacement of the codY open read-
ing frame was performed according to the method de-
scribed previously with modifications as follows:
transformed cells displaying both kanamycin (Km) and
erythromycin (Em) resistance were selected and grown in
LB + Em at 42 °C (non-permissive) for 5 generations. Cells
resistant to Km and Em were selected and grown in LB
without antibiotics at 30 °C (permissive) for approximately
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5-10 generations. The cultures were diluted and spread
on LB + Km plates and incubated at 37 °C. The cells that
lost Em resistance were identified by replica plating. The
Em-susceptible colonies were selected to extract the
genomic DNA, and the loss of codY was confirmed by
sequencing and immunoblotting using anti-CodY anti-
body (Additional file 6: Figure S1).

The Ristroph medium was used as a host-mimicking and
toxin-inducing medium for this experiment. Cells were ini-
tially grown overnight in brain heart infusion (BHI)
medium, supplemented with Km when growing knockout
mutant cells, and inoculated to Ristroph media (initial
ODgpo = 0.05). Unless stated otherwise, all cells were inocu-
lated in the Ristroph medium and grown at 37 °C under
5 % CO, atmosphere with shaking (150 rpm). In this
experiment three environmental factors were manipulated
to observe the effect of environmental factors on B.
anthracis gene expression: CO,, iron and glucose. For iron
depletion stress, 450 pM of 2,2’-dipyridyl (Sigma-Aldrich,

Table 3 Strains and plasmids used in this study

St. Louis, MO, USA) was added to the Ristroph medium
prior to inoculation. For air/CO, differential gene expres-
sion analysis, sodium bicarbonate was omitted in the
process of preparing the Ristroph medium, and cells were
grown with aeration in a shaking incubator without CO.,.
For glucose starved samples, glucose was omitted in the
process of preparing the Ristroph medium. Cells were har-
vested at the mid-exponential phase (ODgg=0.5 — 0.6),
washed with PBS, and frozen at —80 °C until further use.

RNA extraction, library preparation and RNA-sequencing

The total RNA samples from the collected cells were ex-
tracted using the Qiagen RNeasy Mini Kit in accordance
with the manufacturer’s instructions. Prior to library prep-
aration, ribosomal RNAs from the total RNA samples were
depleted using a RiboMinus Bacteria/Yeast Transcriptome
Isolation Kit. The library construction for Illumina HiSeq
sequencing was performed using the NEBNext® Ultra™ Dir-
ectional RNA Library Prep Kit for Illumina® and according

Bacterial strains Description®

Source or reference

B. anthracis strains

Laboratory stock

This study

New England Biolabs
New England Biolabs

An integration vector designed for efficient gene inactivation in B. anthracis; Km®, Em"® [56]

34 F2 Wild-type Sterne; pXO1*, pX02~

BCD 34 F2 AcodY=aphA3, Km®

E. coli strains

DH5a supE44 Alac U169 (@80lacZAM15) hsdR17 recAl endAT gyrA96 thi-1 relAl

ER2925 ara-14 leuB6 fhuA31 lacY1 tsx78 gInV44 galk2 galT22 mcrA dem-6 hisG4 rfbD1
R(zgb210:Tn10)TetS endAl rpsL136 dam13:Tn9 xylA-5 mtl-1 thi-1 mcrB1 hsdR2

Plasmids

pKS1

pBCD22 pKS1 derivative harboring 500 bp fragment upstream and 500 bp fragment downstream

of codY flanking aph3A; Km®, Em®

This study

2KmP®, kanamycin resistant; Em®, erythromycin resistant
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to the manufacturer’s instructions. Pair-end sequen-
cing on Illumina HiSeq2000 was performed at Macro-
gen (http://www.macrogen.com/kor/) in triplicate.

Data analysis

The expression profiling of the B. anthracis parental and
mutant strains was determined using Rockhopper version
1.30 according to the authors’ instructions (for more in-
formation, refer to [57]). Reads were aligned to a reference
genome (B. anthracis str. Sterne, NC_005945.1), following
the process similar to Bowtie2 [58]. Quality of read align-
ment was controlled by Phred score threshold [59, 60].
Rockhopper normalized read counts by the upper quartile
gene expression level after excluding genes with zero ex-
pression [61]. The genes were considered differentially
expressed if the g-value (determined using the
Benjamini-Hochberg procedure [62]) was equal to or
below 0.05 (g<0.05) and if the log,-fold-change was
greater than 1 or less than -1. For Venn diagram,
significances of overlapped genes were determined by
hypergeometric distribution test.

Differentially expressed genes from the dataset were
functionally annotated using the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) in-
formatics tool version 6.7 [63]. For GO Term analysis
we used the GO FAT default setting (“Bacillus anthra-
cis” as the provided background). Fold enrichment
values and statistical significance values (i.e., p values,

Table 4 Primers used in this study
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Bonferroni, Benjamini, and FDR) were calculated by DA-
VID software. The significances of GO terms were deter-
mined using p values.

Clustering analyses were performed in MultiExperi-
ment Viewer (MeV, version 4.7.3) using the 34F2R vs
BCDX gene set [64]. K-means clustering were performed
using Pearson correlation distance. Significance between
conditions were assessed using Kruskal-Wallis H non-
parametric test.

Quantitative PCR and CodY ChIP-qPCR

All primers used in this study are listed in Table 4.
To validate the expressional patterns identified from
the RNA-sequencing data, quantitative real-time PCR
(qRT-PCR) was performed with cDNA templates syn-
thesized from previously extracted RNA samples,
SYBR® Premix Ex Tag™ II (TaKaRa BIO) and the ap-
propriate primers using the ABI 7500 Real-Time PCR
system (Applied Biosystems, Carlsbad, CA, USA), as
follows: First-strand cDNA templates were synthesized
from extracted RNA samples using SuperScript II Re-
verse Transcriptase (Invitrogen) following the manu-
facturer’s instructions. Quantitative real-time PCR
(qQRT-PCR) was performed as follows: 10 pl of SYBR®
Premix Ex Taq™ 1I, 0.4 pl of ROX, 4 pmol of forward
primer, 4 pmol of reverse primer, and 1 pg of cDNA
were added with water to a final volume of 20 pl
The mixture was amplified for 40 cycles with an

Oligonucleotide® Sequence® (5 — 3)

Forward Reverse
500CodYUP ATAGGATCCGAATTATTAGCAAAAAC ATATCTAGATTAGTTTGTTTTTAATTTAGCA
500CodYDN GGGCGGCCGCGTATCACGTGAAGG TGTGC CACCTGCAGTGGAAACTAGGGCGA GTCAC
BAS0563 ACACCACAAGAGACATGTTCT CGCATGTAATATTCTCGTACGTGT
yceC (BAS0385) TCGATTTAACGAAAGGACAACCA ACAACGGATGCATCACAATCT
inhAT (BAS1197) CATCAATCGCTTTGACAGCTGT GCGCATCTGCTAAACGTTCT
BAS4903 GGCCGTATGCAAATGGTTCG GCCCGAATTGCAATTGGTGT
eno (BAS4985) TGTTTATGCTCGCGAAGTCCT TGCTTCGTGCTCACCAGTAG
tpiA (BAS4987) GCGTAAACCAATTATCGCAGGT ACCAGGCGCTCTAAGAATAGA
BAS5069 TCGCAAGATTAGAGCATATGACA GCCCTTGGCGGTCAAATAAC
BAS0036ChIP ATTTTTAAATTGTAAGTGGAGATTGT ACCATCTATTACTCATATTTCAAGAA
BAS1197ChIP TTCAGAAAACATTGTTGAATTGTG ATTTGTAAAAATTCCATAGTTAGCAT
BAS1350ChIP AGCACAAATGATACTTGCAAA TTAACGACATGTGTTGGACT
BAS3397ChIP ATTTTTCGAGTTTTGTAAAGTGTT TCAATGAGGTATAGTGTTTTAAAAGA
BAS3621ChIP AGTTAATGAACATGCAATTTTCAT GTAGTTTTATTTACTTAGAAAATTCAGAAT
BAS4069ChIP ATCGCATCGTTTACTGTGTA GGATTACTTCGTCCAATCGA
BAS4252ChIP TAACTTTTTGGAATATTGGCACT TTTTCATTGAAACTCCCCCT
BAS4963ChIP AGCTCTCTGGAAAGAATGTG CGTAAAAGCGTTGAAAAGGA

2ChIP, chromatin immunoprecipitation; denotes primers that were used in ChIP-qPCR

bBoldface bases denote a restriction enzyme target site
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initial melt at 95 °C for 15 s and 60 °C for 1 min.
The threshold cycle (C,) of each gene was normalized
to that of the housekeeping gene gyrB [65]. The rela-
tive expression differences were calculated using the
278ACt hethod [66].

To validate the CodY binding to the identified
genes, chromatin immunoprecipitation quantitative
PCR (ChIP-qPCR) was performed. Primers for ChIP-
qPCR were designed based on the CodY binding se-
quences identified from a previous in vitro CodY
binding analysis [16]. Immunoprecipitation of CodY-
bound DNA fragments was performed as follows:
34 F2 cells were inoculated in 400 ml Ristroph
medium and grown at 37 °C under 5 % CO, atmos-
phere until reaching mid-exponential absorbance. For-
maldehyde was then added for crosslinking to final
concentration of 1 %, and incubated at 25 °C for
30 min. Glycine was added to quench the reaction
(final concentration of 125 mM), and cells were har-
vested by centrifugation at 14,000 g for 30 min. After
washing with PBS, cells were resuspended in 1.5 ml
sucrose-malate-magnesium buffer (20 mM maleic
acid, 500 mM sucrose, 20 mM MgCl,) supplemented
with 1 mg/ml lysozyme and 1 mM PMSE, and incu-
bated at 37 °C for 1 h. Cells were then collected by
centrifugation at 6000 g for 5 min at 4 °C, and resus-
pended in 0.5 ml Brij buffer [100 mM Tris-Cl,
200 mM NaCl, 1 % (v/v) Triton X-100, 0.1 % (w/v)
sodium deoxycholate, 20 % (w/v) glycerol, 0.2 % (w/v)
Brij 58 (Sigma-Aldrich), pH 7.5]. Resuspended cells
were treated with 10 pl RNase A (10 mg/ml),
50 pl Mg-Ca buffer (100 mM MgCl,, 50 mM CaCl,),
and 1 U DNase I (New England Biolabs, Ipswich,
MA), and incubated at 37 °C for 1 h with shaking.
DNA fragmentation was terminated by adding 1.5 ml
Solution A [20 % (w/v) sucrose, 50 mM NaCl,
10 mM EDTA, 10 mM Tris, pH 8.0]. Cells were then
sonicated using Diagenode Bioruptor® Plus Sonication
Device to fragment genomic DNA to size of 70 —
200 bp (high; 10 s ON, 10 s OFF cycle for 15 min).
Samples were centrifuged at 14,000 g for 15 min to
remove any debris. Fragmented DNA samples were
then immunoprecipitated using a method described
previously [67] with modifications of using anti-CodY
antibody as a primary target antibody and washing
with Solution A buffer for five times. Immunoprecipi-
tated DNA fragments were de-crosslinked by heating
samples at 65 °C for 16 h, and purified using phenol-
chloroform purification. Purified DNA samples were
used to perform qPCR, using the aforementioned
qRT-PCR method with modifications of using no less
than 0.5 ng DNA per reaction instead of 1 ug cDNA,
and annealing and elongation step temperature of
55 °C instead of 60 °C.
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Additional files

Additional file 1: Dataset S1. Comparison of differentially expressed
genes between B. anthracis Sterne 34 F2 and codY-deleted strain BCD22
in various deprived conditions. (XLSX 44 kb)

Additional file 2: Dataset S2. Differentially expressed genes of B.
anthracis Sterne 34 F2 in various deprived conditions. (XLSX 23 kb)

Additional file 3: Dataset S3. Differentially expressed genes of codY-deleted
B. anthracis Sterne BCD22 in various deprived conditions. (XLSX 74 kb)

Additional file 4: Dataset S4. Gene ontology analysis of differentially
expressed genes in codY-deleted B. anthracis Sterne BCD22 in various
deprived conditions (XLSX 17 kb)

Additional file 5: Dataset S5. k-means clustering of CodY targets in
various deprived conditions. (XLSX 14 kb)

Additional file 6: Figure S1. Validation of the codY deletion in B.
anthracis BCD22. Immunoblotting of protein samples from a control

34 F2, codY-deleted BCD22, and codY-complemented BCC7 against
anti-CodY antibody. Equal amount of protein (10 pg) was used for each
sample. (TIF 87 kb)
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