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Abstract

Background: Long non-coding RNAs (IncRNAs) have been studied extensively over the past few years. Large
numbers of INCRNAs have been identified in mouse, rat, and human, and some of them have been shown to play
important roles in muscle development and myogenesis. However, there are few reports on the characterization of
INcRNAs covering all the development stages of skeletal muscle in livestock.

Results: RNA libraries constructed from developing longissimus dorsi muscle of fetal (45, 60, and 105 days of
gestation) and postnatal (3 days after birth) goat (Capra hircus) were sequenced. A total of 1,034,049,894 clean reads
were generated. Among them, 3981 IncRNA transcripts corresponding to 2739 IncRNA genes were identified,
including 3515 intergenic INcCRNAs and 466 anti-sense IncCRNAs. Notably, in pairwise comparisons between the
libraries of skeletal muscle at the different development stages, a total of 577 transcripts were differentially
expressed (P < 0.05) which were validated by gPCR using randomly selected six INcCRNA genes. The identified goat
INcRNAs shared some characteristics, such as fewer exons and shorter length, with the IncRNAs in other mammals.
We also found 1153 IncRNAs genes were neighbored 1455 protein-coding genes (<10 kb upstream and
downstream) and functionally enriched in transcriptional regulation and development-related processes, indicating
they may be in cis-regulatory relationships. Additionally, Pearson’s correlation coefficients of co-expression levels
suggested 1737 IncRNAs and 19,422 mRNAs were possibly in trans-regulatory relationships (r> 0.95 or r < —0.95). These
co-expressed mRNAs were enriched in development-related biological processes such as muscle system processes,
regulation of cell growth, muscle cell development, regulation of transcription, and embryonic morphogenesis.

Conclusions: This study provides a catalog of goat muscle-related IncRNAs, and will contribute to a fuller
understanding of the molecular mechanism underpinning muscle development in mammals.

Keywords: Muscle development, LncRNA, Goat, Transcriptome, cis-acting, trans-acting, Differential expression

Background

Genome-wide transcriptional studies have revealed that
large regions of eukaryotic genomes are transcribed into a
heterogeneous population of non-coding RNAs (ncRNAs).
Generally, ncRNAs shorter than 200 nucleotides are
usually described as small/short ncRNA, such as micro-
RNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small
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interfering RNAs (siRNAs), and classical ncRNAs such as
ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and
small nucleolar RNAs (snoRNAs), whereas ncRNAs
longer than 200 nucleotides are described as long
ncRNAs (IncRNAs). In the past few years, an increasing
number of IncRNAs have been discovered in mammal,
including Homo sapiens [1, 2], Mus musculus [3-7],
Bos taurus [8, 9], Sus scrofa [10-13], and Ovis aries
[14]. And accordingly unveiled that IncRNAs play critical
roles in biological processes like transcriptional regulation
[15-17], epigenetic modification [18-20], development
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[21-23], cell differentiation [24—26], as well as in some
diseases [27-29].

As important economic animals worldwide, domestic
goats (Capra hircus) are raised mainly for meat production.
Thus, unveiling the molecular mechanisms underneath
skeletal muscle formation and development is of vital
interest. Muscle development is a complex process that re-
quires the concerted expression and interaction of multiple
factors [30]. Several recent studies have indicated that
IncRNAs play crucial roles in myogenic differentiation and
myogenesis [31-35]. Nevertheless, currently the majority
strategy for exploring molecular mechanisms underlying
skeletal muscle growth and development in mammals
[36-38] is detecting the expression and functions of
coding genes like the MRF (myogenic regulatory factor)
[39, 40], MEF2 (myocyte enhancer factor-2) [41, 42]
families, and the paired box proteins [43], though high-
throughput sequencing technologies is also employed to
profile expression of miRNA and mRNA expression in
goat [44, 45]. Therefore, information about skeletal muscle
development-related IncRNAs is still limited especially
in goats.

Here, we report the systematic identification and
characterization of IncRNAs in fetal and postnatal goat
skeletal muscle using an Illumina HiSeq 2500 platform.
A total of 3981 IncRNA transcripts were identified and
577 of these transcripts were significantly differentially
expressed in pairwise comparisons between RNA librar-
ies of skeletal muscle at the different development
stages. To the best of our knowledge, no other report on
muscle IncRNAs and their biological functions in goat is
currently available. Our results will provide a useful re-
source for better understanding the regulatory functions
of IncRNAs in goat and for annotating the goat genome,
as well as contribute to better comprehending skeletal
muscle development in mammals.

Results

Overview of RNA sequencing (RNA-seq)

To identify IncRNAs expressed in goat skeletal muscle
development, we constructed 11 ¢cDNA libraries (E45-1,
E45-2, E45-3, E60-1, E60-2, E105-1, E105-2, E105-3,
B3-1, B3-2, B3-3) from goat longissimus dorsi muscle
samples at four developmental stages: three gestation
stages at 45, 60, and 105 days of gestation (E45, E60, and
E105), and one postnatal stage (B3). Three biological repli-
cates for E45, E105, and B3, and two biological replicates
for E60 were used. The libraries were sequenced using
an Illumina HiSeq 2500 platform and 125 bp paired-end
reads were generated. A total of 1,052,994,828 raw
reads were generated in all 11 libraries. After discarding
adaptor sequences and low-quality reads, we obtained
1,034,049,894 clean reads. The percentage of clean reads
in each library ranged from 97.90 to 98.53 % (for details of
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the sequencing results see Additional file 1). We mapped
the clean reads to the goat reference genome sequence
(CHIR_1.0, NCBI). Approximately 75.20-86.60 % of the
clean reads in all the libraries were mapped to the goat
reference genome (Additional file 1). The mapped se-
quences in each library were assembled and a total of
56,710 unique assembled transcripts were obtained.

Identification of IncRNAs in goat skeletal muscle

We developed a highly stringent filtering pipeline to dis-
card transcripts that did not have all the characteristics
of IncRNAs (Fig. 1). Our pipeline yielded 3981 IncRNA
transcripts, including 3515 intergenic IncRNAs (88.29 %)
and 466 anti-sense IncRNAs (11.71 %) (Additional file 2),
These transcripts corresponded to 2739 IncRNA genes, an
average of 1.5 transcripts per IncRNA locus. We found
that the IncRNA transcripts were distributed in all chro-
mosomes except the Y chromosome (Additional file 3).
The Illumina RNA-seq also produced 24,383 protein-
coding transcripts with an average length of 1978 bp and
8.4 exons, which was longer than the IncRNA genes,
which averaged 1296 bp in length and 2.4 exons. However,
the exon size in the protein-coding genes was smaller than
the exon size in the IncRNA genes (most of protein-
coding genes were within 200 bp) (Fig. 2a). We also found
that protein transcripts with two and three exons
accounted for 10.6 % of all the protein-coding genes,
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which was much lower than the percentage of IncRNA
genes with two and three exons (Fig. 2b).

Identification of differentially expressed IncRNAs

The expression levels of the IncRNA transcripts were
estimated by FPKM (fragments per kilo-base of exon per
million fragments mapped) using Cuffdiff. We identified
577 IncRNA transcripts that were differentially expressed
during muscle development (Fig. 3 and Additional file 4);
the number of down-regulated IncRNAs was higher than
the number of up-regulated IncRNAs during develop-
ment. The expression patterns of differentially expressed
IncRNAs were measured by systematic cluster analysis, to
explore the similarities and to compare the relationships
between the different libraries (Fig. 4a and additional file 5).
The replicates for each developmental stage clustered

together, and E45 and E60 formed one group and E105
and B3 formed another group. To further analyze the
interactions among the differentially expressed IncRNAs,
we constructed a Venn diagram using the 510, 353, 495,
and 435 IncRNAs that were differentially expressed in
E45, E60, E105, and B3, respectively. We did not detect
any stage-specific differentially expressed IncRNAs among
the four developmental stages, but we identified 154
differentially expressed IncRNAs that were detected in
all four developmental stages (Fig. 4b).

Enrichment analysis of nearest neighbor genes of the
IncRNAs

To investigate the possible functions of the IncRNAs, we
predicted the potential targets of IncRNAs in cis-regulatory
relationships. We searched for protein-coding genes 10-kb
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Fig. 4 Analyses of differentially expressed INncRNAs in the RNA-seq libraries. a Hierarchical clustering analysis of INcRNA expression profiles from 11
libraries with 577 differentially expressed IncRNAs. Data are expressed as FPKM. Red: relatively high expression; Green: relatively low expression.
b Venn diagram showing the differentially expressed IncRNAs at the four developmental stages
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upstream and downstream of all the identified IncRNAs.
We found 1153 IncRNAs that were transcribed close to
(<10 kb) 1455 protein-coding neighbors (Additional file 6).
Gene Ontology (GO) [46] analysis of the cis IncRNA tar-
gets was performed to explore their functions. We found
88 GO terms that were significantly enriched (P < 0.05),
and 12 of these terms were associated with regulation of
gene expression. For example, the top 10 enriched terms
included nucleotide binding, regulation of RNA metabolic
process, DNA-dependent regulation of transcription, tran-
scription regulator activity, and transcription factor activity
(Additional file 7). These results suggest that one of the
principal roles of IncRNAs may be transcriptional regula-
tion of gene expression. Interestingly, we also found genes,
including RBP4, PLN, MYLK2, RARA, CACNB4, NR2F2,
CDK5 and PITXI, that were annotated with muscle
development-related GO term, striated muscle tissue de-
velopment (GO:0014706). These results suggest that
muscle development may be regulated by the action of
IncRNAs on these neighboring protein-coding genes. Path-
way analysis [47] showed that the 1547 candidate cis target
genes were enriched in 252 Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways, several of which were re-
lated to muscle development such as insulin signaling
pathway, MAPK signaling pathway, TGF-beta signaling
pathway, and PPAR signaling pathway (Additional file 7).

Enrichment analysis of co-expressed genes of IncRNAs
We also predicted the potential targets of IncRNAs in
trans-regulatory relationships using co-expression analysis.
A total of 288,020 interaction relationships (285,161 posi-
tive and 2859 negative correlations) were detected between
1747 IncRNA transcripts and 19,846 protein-coding tran-
scripts that corresponded to 7718 protein-coding genes in
the goat reference genome (Additional file 8). Functional
analysis showed that the co-expressed genes were enriched
in 446 GO terms (253 under biological process, 91 GO
under cellular component, and 102 under molecular func-
tion) that encompassed a variety of biological processes
(Additional file 9). Importantly, some of the terms were
muscle development-related terms, including muscle cell
development (GO:0055001), striated muscle cell develop-
ment (GO:0055002), muscle contraction (GO:0006936),
and muscle system process (GO:0003012). In addition, the
co-expressed genes were enriched in 285 KEGG pathways,
several of which were related to muscle development, in-
cluding TGF-beta signaling, MAPK signaling, and PPAR
signaling pathways (Additional file 9). These findings indi-
cate that IncRNAs also regulate trans target genes.

Validation of differentially expressed IncRNAs
We randomly selected six differentially expressed
IncRNAs and examined their expression patterns at four
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developmental stages by qPCR. The results confirmed
that the six IncRNAs were expressed at all four develop-
ment stages (Fig. 5) and showed differential expression
at different stages. In addition, the qPCR confirmed that
the expression patterns of the six IncRNAs were consist-
ent with their expression levels calculated from the
RNA-seq data. All our results show that our pipeline
was highly strict in identifying putative IncRNAs, and in-
dicate that most of the identified IncRNAs were truly
expressed in vivo.

Discussion

The identification and characterization of goat IncRNAs,
particularly in fetal skeletal muscle development, have been
very limited compared with IncRNAs in human [2, 48] and
other model organisms [3, 49]. In goat skeletal muscle, the
main focus has been on genes and miRNAs rather than on
IncRNAs [44, 45, 50, 51]. In the present study, we identi-
fied a total of 3981 multiple exon IncRNAs in fetal and
postnatal goat skeletal muscle. To the best of our know-
ledge, this is the first report to systematically identify
IncRNAs from RNA-seq data during goat skeletal muscle
development.
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Non-coding and protein-coding genes are distinguished
by their potential coding capability. In this study, we
developed a highly stringent filtering pipeline (Fig. 1) to
minimize the selection of false positive IncRNAs, which
aimed to remove transcripts with evidence of protein-
coding potential. We identified 3981 putative IncRNAs
with high confidence across four development stages of
goat skeletal muscle. In agreement with similar studies on
different organisms, the identified putative IncRNAs had
fewer exon numbers, shorter transcript lengths, and lower
expression levels than protein-coding genes [11, 48, 49].
The number of putative IncRNAs detected in this study
was more than that reported in previous studies in cattle
and goat [9, 52]. Six randomly selected differentially
expressed IncRNA transcripts were validated using qPCR,
and the results were consistent with the results from the
RNA-seq data. Together, these results confirmed that the
identified IncRNAs were of high quality.

LncRNAs are a group of endogenous RNAs that func-
tion as regulators of gene expression, and are involved in
developmental and physiological processes [23, 53, 54].
We detected 577 putative IncRNAs that were differentially
expressed in pairwise comparisons between goat skeletal
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muscle at the different development stages. These IncRNAs
may have specific biological roles in early muscle develop-
ment in fetal goat. Skeletal muscle development from the
fetal to the adult stage consists of a series of exquisitely reg-
ulated and orchestrated changes in the expression of many
genes [55]. In recent years, the roles of some IncRNAs in
muscle biology have been reported. For example, the long
intergenic ncRNA muscle differentiation linc-MD1 was
the first muscle-specific IncRNA to be identified [24].
Linc-MD1 is required for appropriate muscle differenti-
ation, at least in part because it regulates the levels of
myocyte enhancer factor 2C (MEF2C) and mastermind-
like protein 1 (MAMLI1) by sponging endogenous miR-
133 and miR-135 in the cytoplasm of muscle cells [24].
In addition, the substantial disintegration of linc-MD1
in primary myoblasts of patients with Duchenne mus-
cular dystrophy suggests that it is likely involved in the
pathogenesis of this muscle disorder [24]. Another study
revealed that the IncRNA, IncMyoD, regulates skeletal
muscle differentiation by blocking IMP2-mediated mRNA
translation [56]. Therefore, the differentially expressed
IncRNAs reported here can be considered as important
novel regulators of goat skeletal muscle biology.

Unlike miRNAs or proteins, the functions of ncRNAs
cannot currently be inferred from their sequence or struc-
ture; therefore, in this study, we predicted the potential
function of the detected IncRNAs using cis and trans
methods. The cis nature of a IncRNA refers to its ability to
act on a neighboring gene on the same allele from which
it is transcribed; thus, this type of IncRNA commonly
forms a feedback loop that regulates itself and its neigh-
boring genes.

In the cis prediction, we searched for coding genes 10-kb
upstream and downstream of all the identified IncRNAs.
GO and KEGG analyses of the neighboring protein-coding
genes revealed that major enriched pathways were associ-
ated with transition metal ion binding, nucleotide binding,
zinc ion binding, regulation of RNA metabolic process,
regulation of transcription, and transcription regulator ac-
tivity. These results indicate the possible role of IncRNAs
in transcriptional regulation of gene expression. Interest-
ingly, we found some of the cis target protein-coding genes
were involved in skeletal muscle tissue development (e.g.,
MYLK2, NR2F2, CDKS5 and PITXI) (Additional file 6), im-
plying that the corresponding IncRNAs play regulatory
roles in skeletal muscle development. Several recent stud-
ies also indicated that IncRNAs were involved in cis-regula-
tory activity in muscle development; for example, the
IncRNA Dum (developmental pluripotency-associated 2
(Dppa2) upstream binding muscle IncRNA) was identified
in skeletal myoblast cells [31]. Dum promotes myoblast
differentiation and damage-induced muscle regeneration
by silencing its neighboring gene, Dppa2, in cis through
recruiting Dnmt1, Dnmt3a, and Dnmt3b [31]. Similarly, a
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ChIP-seq study of the Yin Yang 1 (YY1) transcription
factor, an important component of the PcG complex
that negatively regulates myogenesis, identified a number
of IncRNAs regulated by YY1 (YYl-associated muscle
IncRNAs or Yams) [57]. Among the Yams, Yam-1 dis-
played a cis effect on the expression of neighboring genes,
including one that encodes miR-715, which targets and re-
presses Wnt7b in skeletal muscle.

Many IncRNAs can also function in trans mode to
target gene loci distant from where the IncRNAs are
transcribed [58]. In the co-expression analysis, we de-
tected 1747 IncRNA transcripts that were related to
protein-coding genes based on the expression correlation
coefficient (r>0.95 or<-0.95). GO enrichment analysis
found that the enriched GO terms referred mainly to de-
velopment process, transcriptional regulation, and biosyn-
thetic process. Furthermore, a cluster of IncRNAs in the
co-expression analysis often targeted protein-coding genes
that were expressed specifically in muscle and were in-
volved in muscle development (e.g, TNNT1, TNNTS3,
MYHI1, MYH2, MyoG, and MYL3). This is an interesting
observation, which indicates the functional complexity of
IncRNAs and is worth investigating further. Mousavi et al.
[59] found two IncRNAs in two enhancer regions of the
MpyoD gene that they named "P*RNA and “*RNA, where
DRR indicates distal regulatory regions and CE indicates
core enhancer. The study showed that ““RNA facilitated
the occupancy of RNA polymerase II in cis by increasing
chromatin accessibility, stimulating the expression of
MpyoD, while PPRRNA functions in trans to promote the
expression of myogenin, a key member of the myogenic
transcription factor family. More recently, Mueller et al.
[32] identified a IncRNA transcribed upstream of MyoD
named MUNC (MyoD upstream non-coding RNA), and
demonstrated that one of the spliced isoforms of MUNC
was PRRRNA. Consistent with the results of Mousavi et al.
[59], experimentally decreasing MUNC expression blocked
myoblast differentiation, further highlighting the role of
enhancer-associated IncRNAs during myogenesis [32].
These results suggest that IncRNAs exhibit regulatory
function through cis-acting or trans-acting mechanisms
in skeletal muscle biology and diseases.

All the studies mentioned above have demonstrated
that IncRNAs are an integral part of the regulatory
network of muscle biology. The present study provides
evidence for the role of IncRNAs in skeletal muscle de-
velopment in goat, which is a starting point for under-
standing the regulatory mechanisms in which they are
involved. The identification of the IncRNAs has greatly
improved the annotation of the goat reference genome.
Further, we believe that the putative IncRNAs may con-
tribute to a better understanding of the biological basis
of regulatory interactions amongst mRNA, miRNA, and
IncRNA.
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Conclusions

We elucidated skeletal muscle IncRNA profiles of fetal
and postnatal goats by RNA-seq analysis and identified
and characterized caprine IncRNAs that may be involved
in skeletal muscle development in goat. This study pro-
vides a catalog of goat muscle IncRNAs that will help in
understanding their regulatory roles in goat muscle
development. In future studies, we plan to investigate
the functions of some of these IncRNAs to provide basic
information that will add to the understanding of the
regulatory mechanisms associated with goat muscle
development at the molecular level.

Methods

Ethics statement

The methods used in this study were performed in ac-
cordance with the guidelines of Good Experimental
Practices adopted by the Institute of Animal Science
(Sichuan Agricultural University, Chengdu, China). All
surgical procedures involving goats were performed
according to the approved protocols of the Biological
Studies Animal Care and Use Committee, Sichuan
Province, China.

Animal and tissue preparation

Jianzhou big-eared goats were used in this study. Three
pregnant ewes at each developmental stage were sub-
jected to caesarean section to collect the fetuses at 45,
60, 105 days of gestation, and three female lambs were
collected at the third day after birth. Longissimus dorsi
muscle samples were collected at these four developmen-
tal stages: three gestation stages (E45, E60, and E105) and
one postnatal stage (B3). Three biological replicates for
E45, E105, and B3, and two biological replicates for E60
were collected. The eleven samples were immediately
frozen in liquid nitrogen for RNA extraction.

RNA extraction, library construction, and sequencing
Total RNA was isolated from the 11 libraries using TRIzol
reagent (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. RNA degradation and
contamination were monitored on 1 % agarose gels.
RNA purity was checked using a NanoPhotometer®
spectrophotometer (IMPLEN, Los Angeles, CA, USA).
RNA concentration was measured using a Qubit® RNA
Assay Kit in a Qubit® 2.0 Fluorometer (Life Technologies,
Carlsbad, CA, USA). RNA integrity was assessed using a
RNA Nano 6000 Assay Kit in a Bioanalyzer 2100 system
(Agilent Technologies, Santa Clara, CA, USA). Only sam-
ples that had RNA Integrity Number (RIN) scores >8
were used for sequencing. A total of 3 ug RNA per sample
was used as input material for RNA sample preparation.
First, IRNA was removed using an Epicentre Ribo-zero
rRNA Removal Kit (Epicentre, Madison, W1, USA), and
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the rRNA-free residue was obtained by ethanol precipita-
tion. Subsequently, high strand-specificity libraries were
generated using the rRNA-depleted RNA and a NEBNext
Ultra Directional RNA Library Prep Kit for Illumina
(NEB, Ipswich, MA, USA) following the manufacturer’s
recommendations. Briefly, the rRNA-depleted RNA
was fragmented using divalent cations under elevated
temperature in NEBNext. First-strand cDNA was synthe-
sized using random hexamer primers and M-MuLV reverse
transcriptase (RNase H™). Subsequently, second-strand
c¢DNA synthesis was performed using second-strand syn-
thesis reaction buffer, DNA polymerase I, and RNase H.
Remaining overhangs were converted into blunt ends by
exonuclease/polymerase activity. After adenylation of the 3’
ends of the DNA fragments, NEBNext adaptors with hair-
pin loop structures were ligated to the fragments to prepare
them for hybridization. To select cDNA fragments that are
150-200 bp in length, the fragments in each of the library
were purified with an AMPure XP system (Beckman
Coulter, Brea, CA, USA). Then 3 pl USER Enzyme (NEB,
Ipswich, MA, USA) was used with size-selected, adaptor-li-
gated cDNA at 37 °C for 15 min followed by 5 min
at 95 °C before PCR. The qPCRs were performed with
Phusion High-Fidelity DNA polymerase, Universal PCR
primers, and Index (X) Primer. The PCR products were
purified (AMPure XP system) and library quality was
assessed on an Agilent Bioanalyzer 2100 system. Cluster-
ing of the index-coded samples was performed on a cBot
Cluster Generation System using a TruSeq PE Cluster Kit
v3-cBot-HS (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions. After cluster generation,
the libraries were sequenced on an Illumina HiSeq 2500
platform and 125-bp long paired-end reads were generated.

Transcriptome assembly

Clean data were obtained by removing reads containing
adapters, reads containing over 10 % of poly(N), and
low-quality reads (>50 % of the bases had Phred quality
scores < 10) from the raw data. The Phred score (Q20)
and GC content of the clean data were calculated. All
the downstream analyses were based on the high quality
clean data. Goat reference genome and gene model an-
notation files were downloaded from NCBI database
(CHIR_1.0, NCBI) [60]. Index of the reference genome
was built using Bowtie v2.0.6 [61, 62] and paired-end
clean reads were aligned to the reference genome using
TopHat v2.0.14 [63]. The mapped reads from each library
were assembled with Cufflinks v2.2.1 [64]. Cufflinks was
run with ‘min-frags-per-transfrag = 0’ and‘-library-type
fr-firststrand, and other parameters were set as default.

Filtering pipeline to identify multiple exon IncRNAs
We filtered the assembled novel transcripts from the
different libraries to obtain putative IncRNAs following
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the steps in the pipeline (Fig. 1) as follows. (1) Single exon
transcripts and transcripts < 200-bp long were removed.
(2) The remaining transcripts that overlapped (>1 bp) with
goat protein-coding genes were removed. (3) Transcripts
that were likely to be assembly artifacts or PCR run-on
fragments according to the class code annotated by cuff-
compare [65] were removed. Among the cuffcompare
classes, only transcripts annotated as “i’, “u”, and “x”
representing novel intronic, intergenic, and antisense tran-
scripts respectively, were retained. (4) The Coding Poten-
tial Calculator (CPC) [66], Coding-Non-Coding-Index
(CNCI) [67], and phylogenetic codon substitution fre-
quency (PhyloCSF) [68] tools were used to assess the cod-
ing potential of the remaining transcripts, and transcripts
with CPC score>0, CNCI score >0, and PhyloCSF
Max_score > 100 were removed. (5) The remaining
transcripts that contained a known protein-coding domain
were removed. To accomplish this, each transcript se-
quence was translated in all six reading frames, then
HMMER was used to exclude transcripts with a translated
protein sequence that had a significant hit in the Pfam
(PfamA and PfamB) database, release 28.0 [69]. (6) The
remaining transcripts that belonged to known classes of
small RNAs (including snRNA, tRNAs, and miRNAs)
were removed using Rfam release 12.0 [70].

Expression analysis

Cuffdiff 2.1.1 [71] was used to calculate FPKM scores
for the IncRNAs and coding genes in each library.
Differentially expressed IncRNAs between any two libraries
were identified by edgeR (release 3.2) [72]. We used a P-
adjust<0.01 and an absolute value of the |log,(fold
change)| > 2 as the threshold to evaluate statistical signifi-
cance of IncRNA expression differences. We analyzed the
clusters obtained by systematic analysis for all differentially
expressed IncRNAs in eleven libraries using the Heatmaps
software package in R [73].

Target gene prediction and functional enrichment
analysis

Cis-acting IncRNAs target neighboring genes [74, 75].
We searched for coding genes 10-kb upstream and
downstream of all the identified IncRNAs and then pre-
dicted their functional roles as follows. The names of the
neighbor genes were used to form a gene list that was in-
put into DAVID software [46] for GO analysis. A KEGG
enrichment analysis of the predicted target genes was per-
formed with KOBAS software [47] using a hypergeometric
test. GO terms and KEGG pathways with P <0.05 were
considered significantly enriched.

Co-expression analysis
We used the expression levels of the identified IncRNAs
and the known protein-coding genes from the four
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different developmental stages to analyze the co-expression
of IncRNAs and protein-coding genes. We calculated
Pearson’s correlation coefficients between the expression
levels of 1747 IncRNAs and 19,846 protein-coding tran-
scripts with custom scripts (r>0.95 or r< -0.95). Then,
we performed a functional enrichment analysis of the
candidate IncRNA target genes using DAVID and KOBAS
software. Significance was calculated using the Expres-
sion Analysis Systematic Explorer (EASE) test method
(P-value < 0.05 was considered significant).

Validation of differentially expressed IncRNAs by gPCR
Primers for the IncRNAs and internal control genes
(Additional file 10) were designed using Primer-BLAST
(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The ex-
pression levels of the IncRNAs were normalized to ACTB,
YWHAZ, and HPRTI. Total RNA was converted to cDNA
using a PrimeScript™ RT Reagent Kit with gDNA Eraser
(TAKARA, Dalian, China), with oligo(dT) and random
hexamer primers included in the kit. The qPCR was
performed according to the SYBR Premix Ex Taq™ II in-
structions (TAKARA). The reaction volume contained
10 pl SYBR Premix Ex Taq™ II, 0.8 ul of 10 uM forward
and reverse primers, 1.6 pl template cDNA, and dH,O to
a final volume of 20 pl. The reactions were performed on
a CFX96 Real-Time PCR System (Bio-Rad, CA, USA) as
follows: 95 °C for 2 min, followed by 39 cycles of 95 °C for
10 s, and 10 s at the Tm indicated in Additional file 10:
Table S8. Melting curve analysis was performed from
65 to 95 °C with increments of 0.5 °C. Amplifications
were performed in triplicate for each sample. Relative gene
expression levels were calculated using the 2**“* method
[76], and data were expressed as least square mean +
standard error of the mean (SEM).

Statistical analyses

All data were analyzed using one-way analysis of vari-
ance (ANOVA) to test homogeneity of variances via
Levene’s test followed by Student’s z-test analyses in SAS
software version 9.0 (SAS, Cary, North Carolina, USA).
The significance level for the statistical analysis was
P <0.05.
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Additional file 3: Figure S1. Chromosome distribution of IncRNAs
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Additional file 4: Table S3. List of differentially expressed IncRNAs
from four skeletal muscle developmental stages. (XLSX 122 kb)
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