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Inversion symmetry of DNA k-mer counts:
validity and deviations
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Abstract

Background: The generalization of the second Chargaff rule states that counts of any string of nucleotides of
length k on a single chromosomal strand equal the counts of its inverse (reverse-complement) k-mer. This Inversion
Symmetry (IS) holds for many species, both eukaryotes and prokaryotes, for ranges of k which may vary from 7
to 10 as chromosomal lengths vary from 2Mbp to 200 Mbp. The existence of IS has been demonstrated in the
literature, and other pair-wise candidate symmetries (e.g. reverse or complement) have been ruled out.

Results: Studying IS in the human genome, we find that IS holds up to k = 10. It holds for complete chromosomes,
also after applying the low complexity mask. We introduce a numerical IS criterion, and define the k-limit, KL, as
the highest k for which this criterion is valid. We demonstrate that chromosomes of different species, as well as
different human chromosomal sections, follow a universal logarithmic dependence of KL ~ 0.7 ln(L), where L is the
length of the chromosome.
We introduce a statistical IS-Poisson model that allows us to apply confidence measures to our numerical findings.
We find good agreement for large k, where the variance of the Poisson distribution determines the outcome of
the analysis. This model predicts the observed logarithmic increase of KL with length. The model allows us to
conclude that for low k, e.g. k = 1 where IS becomes the 2nd Chargaff rule, IS violation, although extremely small, is
significant. Studying this violation we come up with an unexpected observation for human chromosomes, finding a
meaningful correlation with the excess of genes on particular strands.

Conclusions: Our IS-Poisson model agrees well with genomic data, and accounts for the universal behavior of
k-limits. For low k we point out minute, yet significant, deviations from the model, including excess of counts of
nucleotides T vs A and G vs C on positive strands of human chromosomes. Interestingly, this correlates with a
significant (but small) excess of genes on the same positive strands.
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Background
Erwin Chargaff has made, in 1950, the important obser-
vation that the numbers of nucleotides in DNA satisfy
#A = #T and #G = #C [1, 2]. This statement, made on the
basis of experimental observations with fairly large er-
rors, played a crucial role in realizing that DNA has an
underlying base-pair grouping, as subsequently proposed
by Crick and Watson [3] in their double-helix structure.
The second Chargaff rule [4] states that the same sets

of identities of nucleotide pairs hold for each long
enough single DNA strand. This rule has been tested [5]

for genome assemblies of many species, and found to be
globally valid for eukaryotic chromosomes, as well as for
bacterial and archaeal chromosomes. It fails for mito-
chondria, plasmids, single-stranded DNA viruses and
RNA viruses.
The validity of the second Chargaff rule was unex-

pected. Obviously it should be regarded as a global rule,
i.e. applicable to large sections of chromosomes. None-
theless, not being derived from a compelling principle,
such as the one underlying the first rule, it remains a
mystery. This is even more so, when one studies
extended versions of Chargaff ’s second rule. Indeed, Al-
brecht-Buehler [6] observed that for triplet oligonucleo-
tides, or 3-mers, it remains true that their chromosome-
wide frequencies are almost equal to those of their
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reverse-complement 3-mers. Prabhu [7] has shown that
this symmetry holds up to 5-mers in various species. This
has been reviewed by Baldi and Brunak [8] who have ar-
gued that such symmetry rules have to be incorporated in
Markov models of genomic sequences.
We refer to the symmetry between counts of k-mers

and their reverse complements as
Inversion Symmetry (IS): the counts of a k-mer of nu-

cleotides on a chromosomal strand are almost equal to
those of its inverse (reverse-complement) string.
Note that this implies that the number of times a

string of nucleotides of length k is observed on a strand,
when read from 5’ to 3’, is almost equal to the number of
times it is observed on the other strand when the latter
is read from its 5’ end to 3’ end.
Recent analyses of inversion symmetry include the

following: Qi and Cuttichia [9] who have shown that in-
version symmetry exists while reverse symmetry fails, i.e.
k-mers and their reverses do not appear with equal rates;
Baisnee, Hampson and Baldi [10], who introduced a
measure S1 to analyze inversion symmetry in a system-
atic fashion; Kong et al. [11], who established the validity
of IS on 786 chromosomes of many species and showed
that reverse or complement symmetry do not hold, and
argued that IS may be due to segmental or whole-
genome inverse duplications; Wang et al. [12] who ar-
gued that values of k for which k-mer IS is valid increase
with organismal complexity; and Afreixo et al. [13] who
applied various criteria to demonstrate the statistical
significance of IS up to k = 10. Studies of symmetries re-
lated to IS appear in [14, 15].
We introduce an IS measure which is different from

S1 of [10], albeit the numerical results of both measures
are correlated (see section 4 in Methods). Our measure
is based on the ratio between differences of counts of in-
verse k-mer pairs and their sum. We propose the criter-
ion that if the average of this normalized measure (over
all strings of length k) is less than about 0.1, IS will be
regarded as a valid approximate symmetry. The average
is taken over all Mk ≤ 4k strings of length k which exist
at least once on the chromosome. The value of k, for
which the IS measure is closest to 0.1, is defined as the
k-limit (KL). This turns out to be KL = 10 on long hu-
man chromosomes (see Additional file 1), and KL = 7 or
KL = 8 for bacteria.
Using this measure, one can readily demonstrate the

existence of inversion symmetry, and the absence of ana-
log symmetries between reverse pairs or complement
pairs, as well as compare between different species. We
will show that the k-limit of inversion symmetry, KL, is
logarithmically dependent on the length L of the
chromosome, or of a chromosomal section on which it
is measured. Moreover, this dependence is universal, i.e.
it is valid for most species.

To analyze all these observations on a rigorous stat-
istical basis, we introduce a Poisson model for the
random occurrence of counts, regarding N(S) as a
stochastic variable for any string S of length k. We
define X(S,S*) = |N(S)-N(S*)|/(N(S) +N(S*)), which is a
stochastic variable having positive values 0 ≤ X ≤ 1. In
general S* is some permutation of S over the set of
all strings of length k. When S* ≡ Sinv, i.e. where S* is
the inverse of S, IS implies that X < <1. For strict IS,
X = 0. In practice we may observe small deviations
when checking for its realization on a chromosome.
The important question we address is whether these
deviations mean that the IS rule is not valid, or that
the data are consistent with IS yet the observed
values of X reflect statistical fluctuations.
To answer this question we introduce the stochastic

variable Z(S,S*) = (N(S)-N(S*))/(N(S) +N(S*))½. The sym-
metry assumption means that N(S) =N(S*), i.e. these two
stochastic variables have the same distribution. If we fur-
ther assume that N(S) ~ Poisson then Z should be approxi-
mately distributed as a standard normal (see Methods).
We will demonstrate on genomic data that for inver-

sion symmetry we empirically observe that Z ~ Standard
Normal, but for other pairings of S and S* (e.g. reverse
or complement) it is not. Continuing with the analysis of
IS we show that

� For small k, Ek[X] is extremely small, yet Ek[|Z|] =
Ek[X/σX] > 2, where σX is the (theoretically
estimated) standard deviation of X(S,Sinv). Therefore
we conclude that there exists a systematic small
breaking of IS, observed for k < 4 on human
chromosomes.

� For large k (k > 5 on human chromosomes) Ek[|Z|] =
Ek[X/σX] < 1 hence, due to the large variance, one
may state that the observed X values are consistent
with IS. Moreover, the data are consistent with Z ~
Standard Normal for large k.

� The empirical values of X(S,Sinv) for large k are
of the order of magnitude of (N(S) + N(Sinv))-½.

� The logarithmic variation of the k-limit, KL, as
function of chromosomal length L, is correctly
predicted by our IS-Poisson model.

We use the italicized notation N, X, Z, for the stochas-
tic variables of our model, and employ N, X, Z for their
empirical counts on chromosomes. KL is defined as the
value of k for which Ek[X] is closest to 0.1.

Results
Inversion symmetry (Generalized 2nd Chargaff Rule)
Let S and S* be two strings of nucleotides of same length
k, i.e. two k-mers. Suppose they appear N(S) and N(S*)
times respectively on a particular chromosome. We
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denote by X(S,S*) the normalized difference X(S,S*)
= |N(S)-N(S*)|/(N(S) + N(S*)) where S is one of the Mk

different k-mers over the 4 nucleotides, which are being
counted on the chromosome at least once, i.e. N(S) > 0
and/or N(S*) > 0. If both N(S) = N(S*) = 0, X(S,S*) is de-
fined to be 0. In general 0 ≤X(S,S*) ≤ 1.
We use Ek[X] = ∑S X(S,S*)/Mk, where Mk is the num-

ber of different k-mers encountered empirically, as a
measure to demonstrate and quantify the studied sym-
metry. For low and moderate k, we find that Mk = 4k,
but for large k-values, such as k > 10 in the human gen-
ome, many of the k-mers may not be realized empiric-
ally, leading to lower Mk. In the following we will look at
values of X(S,S*) over various possible choices of string
pairs S and S*, and demonstrate that for inverse pairs
they are distributed differently than for other types of k-
mer pairs.
Let us start by computing Ek[X] for inverse pairs (i.e. S

and S* ≡ Sinv are reverse-complements of each other) for
different k, on various chromosomes of the human genome
assembly HG38. Data were downloaded from the UCSC
genome browser http://genome.uscs.edu. The values of
Ek[X] for several human chromosomes are displayed as
function of k in Fig. 1. Inversion Symmetry (IS) is seen to
hold quite well for k-mers with large k-values for all the dis-
played chromosomes. Chr Y, which is the shortest among
the 24 chromosomes, has the least inversion symmetry. IS
holds also for all other chromosomes (Additional file 1). It
fails for the mitochondrial chromosome, which is a well-
known exception to the 2nd Chargaff rule.
Repetitive structures are well-known to constitute

major fractions of eukaryotic chromosomes, hence one
may wonder to what extent they are responsible for the
observed inversion symmetry. To resolve this issue, we

employed the same operations on the masked output of
the UCSC genome browser, after filtering chromosomes
for interspersed repeats and low complexity sequences.
The results keep displaying the same behavior, with neg-
ligible differences for high values of k. Even chrY, which
is well known for containing numerous repeats, with
only 36 % of it surviving the masking filter, keeps
showing the same qualitative behavior as in Fig. 1. In
Additional file 1 we provide a list of the highest k-values
for which Ek[X] ≈ 0.1, both before and after masking
(which removes repetitive and low-complexity stretches
of the chromosome). We define the k-limit (KL) of IS, as
the value of k for which Ek[X] is closest to 0.1. The ob-
served reduction in KL from 10 to 9 for the largest chro-
mosomes, is due to the fact that masking shortens the
effective chromosome length. The dependence of KL on
length is an issue to which we will return below.
We have performed the same analysis on the older

genome assembly HG18, leading to very similar results
(see Additional file 2). We find similar IS results for
mouse, frog, fly, worm, and yeast. Moreover, we find that
inversion symmetry holds also for bacteria, but it is valid
for a lower range of k-mers, only up to KL = 6 or 7.

Outstanding features of inverse k-mer pairs
In order to demonstrate how Inversion Symmetry, ob-
served for frequencies of inverse pairs, differs from
other natural pairings, we compare different choices
of pairings of k-mers,

a. Inverse pairs (e.g. CGA vs TCG)
b. Random pairs
c. Reverse pairs (e.g. CGA vs AGC)
d. Complement pairs (e.g. CGA vs GCT)

Fig. 1 Averages of normalized differencess between occurrences of k-mers and their inverses (reverse-complements), Ek[X], for different chromosomes
of the HG38 human assembly, plotted vs k
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We have evaluated histograms of X(S,S*) = |N(S)-
N(S*)|/(N(S) + N(S*)) for all pairings, and computed their
averages Ek[X] = 4-k∑S X(S,S*) for different k. Calcula-
tions were performed both for human chromosomes as
well as for many other species.
Figure 2a depicts the distributions of X values for in-

verse pairs on human chr 1 of HG38, evaluated for k = 4
to 10. These distributions are very narrow, leading to
very low Ek[X] values, consistent with the results dis-
played in Fig. 1. As k increases they widen, leading to in-
creasing Ek[X] values, which will be discussed below and
are quoted in Table 1. In Fig. 2b and c we plot the corre-
sponding distributions for the cases of random pairs (b),
where for each S a random choice of S* is being made,
without repetition, and reverse pairs (c) on chr 1. Distri-
butions of complement pairs (d) are identical to those of
reverse pairs and are therefore not displayed as an
additional figure. Note that the distributions in 2b and
2c are completely different from 2a: they possess a
rugged wavy behavior, stretching over the whole range
of 0 < X < 1. Since k-mer distributions on the human
genome are known to be different for strings containg CG
dimers [16], we studied the same problems removing all
such k-mers. It turns out that, for the resulting k-mer
strings, the second peak in (b) and (c) disappears. But,
even then, cases b and c continue to be very different from
case a, displaying long tail distributions. Such characteris-
tic differences occur also for all other species that we have
tested, and also for masked chromosomes in human.
We can further use these distributions to establish that

a symmetry relation holds only for inverse pairs, leading
to very low Ek[X] values, and not for any other pairing.
Table 1 lists the values of μk = Ek[X] for the three cases
a, b and c, making it quite evident that IS holds and
other symmetries do not. We will not dwell on it further,
since Kong et al. [11] have already established the
validity of IS (albeit using different measures) on 786
chromosomes of various species, and showed that re-
verse or complement symmetries do not hold.

Statistical analysis of inversion symmetry
In the Methods section we point out that, for large
enough counts, if the counts N(S) and N(S*) are drawn
from the same distribution, then the variable Y = (N(S) -
N(S*))/(N(S) + N(S*)) should have an approximately
Gaussian distribution with mean 0 and standard devi-
ation σG. Moreover, the distribution of X = |Y| will have
an expectation value Ek[X] = 0.8 σG and standard
deviation σX =0.6 σG. If the counts N(S) are drawn from
a Poisson model, we expect for each pair to find σG =
(N(S) + N(S*))-½. Hence Z = (N(S) - N(S*))/(N(S) + N(S*))½

should follow a standard normal distribution, i.e. a Gauss-
ian with mean = 0 and variance = 1. Hence the IS-Poisson
model predicts Ek(|Z|) = 0.8 and σk(|Z|) = 0.6, when
rounded up to first decimal point.
We have tested this model by evaluating results for in-

verse pairs of k-mers on chr1 of HG38. The results are
displayed in Table 2.
For low k-values, where Ek[|Z|] = Ek[X/σX] ≥ 2, one

may say that a mathematical hypothesis of strict IS is in-
valid, since the peak of the Z-distribution lies outside
the allowed confidence interval. On the other hand,
clearly for all k < 4, Ek[X] < <0.01. Although the violation
of IS is very small numerically, it is still statistically
significant.
For large k > 5 we see that the data tend toward the

prediction of our IS-Poisson model, approaching the
limit of Ek(|Z|) ± σk(|Z|) = 0.8 ± 0.6. This means that,
due to the large variance, arising from relatively small
values of N(S) + N(Sinv), the mathematical IS hypothesis
cannot be refuted. It also means that variance plays a
dominant role leading to the observed values of X(S,Sinv)
which are of the order of magnitude of (N(S) + N(Sinv))-½.
This implies that we should be able to deduce the behav-
ior of the k-limit, which is indeed the case as will be
shown below.
To get a visual confirmation of the Gaussian nature of

the Z-distribution we plot in Fig. 3a the results for k = 8
on human chr 1. The ensemble of Z-values contributed

Fig. 2 HG38 chr1: Histogram (probability distribution in bins of Δx = 0.02) of relative occurrences of k-mer pairs vs x for different values of k (4 to
10). a inverse pairs; plotted range is x < 0.3, above which the histogram values are negligibly small. b random pairs for full x range; c Reverse pairs
for full x range
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by all k-mers makes up the Gaussian distribution
which is displayed here. The variance calculated from
these data is 1.27, quite close to the value 1 expected
from a standard normal distibution. For comparison,
we display in Fig. 3b the analogous distributon of re-
verse pairs, which has variance of 1600. Note the dif-
ferent scales and shapes, which reflect the large
difference between inverse and reverse distributions.
The complement-pair distribution (not shown here) is
essentially identical to the reverse one.
Considering the peak at Z = 0 displayed in Fig. 3b, it is

important to note that there exists a subset of k-mers
which obey S = Srev, i.e. they are palindroms. They will
contribute to the peak at Z = 0, with small variations of
palindroms contributing to the region around this peak.
Nonetheless, their numbers are small compared to all 8-
mers: only 3224 out of 65536 8-mers lie within |Z| <
1.65, which is where 90 % of a standard normal

distribution are expected to reside. Hence the variance
of the reverse-pair Z-ditribution is very large.

Inversion symmetry for chromosomal sections
We next test to what degree IS is valid within various
sections of human chromosomes. In Additional file 3,
we display a characteristic distribution of inverse pairs
drawn from a section of length 10Mbp, and in
Additional file 4 we show an analogous distribution for
length of 1Mbp. The IS quality, as determined by our
convention, deteriorates leading to lower k-limits as the
length of the section decreases, but it remains valid. The
distributions in Additional file 4 are evidently noisier
than their analogs in Additional file 3; however they are
much narrower than those of the reverse and random
pairs (not shown here).
To study systematically different sections of chromo-

somes, we evaluate the Ek[X] values of inverse, random
and reverse pairs, on non-overlapping windows of given
lengths L. In general, inverse-pairs lead to smaller Ek[X]
than the other pairing choices. To determine the k-limit
we impose the condition Ek[X] <0.1 on the average over
all chromosomal sections. The example displayed in
Additional file 5 is of chr1, which is being tested with
windows of length L = 5Kbp for inverse-pairs of k = 2.
Although the average value is 0.07, obeying our criter-
ion for IS validity, it is quite obvious that on many 5 K
windows the values are higher. The value KL = 2 is
chosen as the k-limit of IS validity in this case. Redu-
cing the section length further down to L = 1Kbp, in
Additional file 6, we find that IS fails even at order k = 1,
i.e. the second Chargaff rule does not hold for such
short sectors.
Similar evaluations for different chromosomes, on

both HG18 and HG38 assemblies, lead in a consistent
manner to the k-limits of “human sections” displayed in
Table 3, where they are compared with results obtained
for various other species, both eukaryotes and prokary-
otes. They all follow a logarithmic increase of KL as
function of the length of the chromosomal section, as is
quite evident from their display in Fig. 4.
The logarithmic increase is modelled well by our IS-

Poisson model. To prove it let us define N(S) = f(S) L /4k,
and let us assume that E[|Z|] reaches its asymptotic value
0.8. We may then rewrite

E½X� ¼ 4�k
X

S
jNðSÞ � NðSinvÞjðfðSÞ þ fðSinvÞ

�1=2ð4k=LÞ1=2=ðNðSÞ

þ NðSinvÞ1=2≈
n
4�k

X
S
jNðSÞ �NðSinvÞjðfðSÞÞ

�1=2
=ðNðSÞ

þ NðSinvÞ1=2
o
ð4k=2LÞ1=2

The expression in {} is the expectation value of (f(S))-½

within the |Z|-distribution. Let us denote it by 0.8ck

Table 2 Results of the evaluation of averages and variances
over k-mers of X and Z distributions on human chr 1. Large
k-values approach the results Ek(|Z|) = 0.8 and σk(|Z|) = 0.6
expected from standard normal Z distributions

k Ek[X] Ek[|Z|] = Ek[X/σX] σk[|Z|]

1 .0004 4.56 3.7

2 .0006 3.26 2.4

3 .00075 1.98 1.58

4 .00125 1.34 1.12

5 .002 1.07 .86

6 .004 .93 .75

7 .0085 0.89 .72

8 .018 0.866 .72

9 .038 0.843 .69

10 0.083 0.825 .67

Table 1 comparisons of averages Ek[X] of μka = inverse pairs,
μkb = random pairs, and μkc = reverse pairs, for chr1 of HG38

k μka μkb μkc
1 0.0009 0.083 0

2 0.0008 0.20 0.15

3 0.0031 0.26 0.21

4 0.0055 0.33 0.27

5 0.0090 0.40 0.32

6 0.013 0.44 0.36

7 0.017 0.49 0.40

8 0.025 0.52 0.43

9 0.043 0.55 0.46

10 0.085 0.57 0.49

11 0.18 0.60 0.53

12 0.32 0.67 0.60
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since Ek(|Z|) = 0.8. It follows that Ek[X] < 0.1 means
that 0.8 ck (4k/2L)½ < 0.1. If ck is a slowly varying func-
tion of k then k < lnL/ln4 + const = 0.72lnL + const.
This result is evidently borne out by the experimental

fit k < 0.73 ln(L) + const. in Fig. 4. Furthermore, studying
human chr1 we find that the experimental averages of
(f(S))-½ (without weighting by |Z|) obtain the values
1.24, 1.45, 1.47 for k = 4, 6, 8 respectively. This verifies
that ck is indeed a slowly varying function.
An early observation of inversion symmetry measures

increasing logarithmically with sequence size has been

Fig. 3 a Z-Distrbution for inverse kmer pairs of k = 8 shows high consistency with the expected standard normal distribution. b Z-Distribution of
reverse pairs of k = 8 displays a completely different behavior from inverse pairs, having variance = 1600

Table 3 k-limits for human data as well as other eukaryotes and
prokaryotes

Species Length KL

HG38 chr1 230 M 10

HG18 chr1 225 M 10

Chimpanzee chr1 217 M 10

Mouse chr1 192 M 10

HG18 chrX 151 M 9

Zebrafish chr7 77 M 9

D. melanogaster chr3R 28 M 9

C. elegans chrV 21 M 9

HG18 chrY 26 M 8

Human section 10 M 10 M 8

E. coli K12 4.6 M 8

B. subtilis 4.2 M 8

Human section 5 M 5 M 7

M. avium paratubercolosis 4.8 M 7

P. furyosus 1.91 M 7

T. maritima 1.86 M 7

S. cerevisiae chr IV 1.53 M 7

Human section 1 M 1 M 6

Human section 100 K 100 K 5

Human section 50 K 50 K 4

Human section 10 K 10 K 3

Human section 5 K 5 K 2

Fig. 4 k-limits vs chromosomal length, based on Table 3. The figure
displays a universal logarithmic behavior. Boxes are human data,
stars denote examples of other eukaryotes, and circles represent
examples of prokaryotes. The shown linear regression of this set
of data has a slope of 0.73*ln(length), which agrees with our
theoretical expectation
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made by [10] for various DNA and RNA sequences (see
Fig. 1 in [10]).

Modeling inversion symmetry
If IS holds exactly for some k = k0, it will hold also for all
k < k0, since the latter are substrings of the former and,
therefore, all the frequencies of the k inverse-pair sub-
strings will be matched (since the frequencies of their k0
hosts are being matched). In Methods we show that this
statement is also true when IS is approximately true, i.e.
when Ek [X] < <1. In practice we find it to hold when we
apply our criterion Ek [X] ≤0.1 (see Table 4). One may
wonder to what extent the opposite may hold within,

e.g., low order Markov models: will a Markov model,
constructed such that it satisfies IS for some k induce IS
at the level k + 1? The answer is negative. Even for low
values of k, a Markov model based on a lower statistic
cannot generate the higher statistic [8]. This issue has
been discussed in [10] where the difference between the
two has been termed “residual symmetry”.
The simplest random model is that of a uniform distri-

bution, which is generated on the basis of the second
Chargaff rule (i.e. #A = #T and different from #C = #G).
Such a distribution will trivially account for low Ek [X]
values for inverse pairs at large values of k, limited by
the length of the model chromosome. However it will

Table 4 Evaluation of E[|Z|], E[X], fraction of unrealized inverse pairs, and chromosomal length

k HG38 HG38M HG18 HG18M Mouse MouseM C eleg Cerevisiae Ecoli

E[|Z|] 1 4.154 3.943 4.560 5.406 6.928 11.001 2.814 2.057 1.273

2 2.581 2.316 3.260 3.417 3.695 5.652 1.548 1.682 1.479

3 1.707 1.769 1.983 2.152 2.780 3.904 1.589 1.434 1.318

4 1.446 1.392 1.339 1.492 1.809 2.342 1.397 1.000 1.012

5 1.202 1.186 1.069 1.133 1.262 1.490 1.216 0.867 0.921

6 1.057 1.001 0.930 0.943 0.990 1.070 1.075 0.791 0.852

7 0.984 0.935 0.894 0.884 0.892 0.902 0.980 0.780 0.837

8 0.929 0.883 0.867 0.845 0.843 0.839 0.893 0.787 0.815

9 0.881 0.855 0.843 0.828 0.823 0.819 0.851 0.841 0.811

10 0.844 0.831 0.825 0.816 0.815 0.813 0.824 0.902 0.815

11 0.825 0.821 0.816 0.814 0.813 0.814 0.835 0.940 0.856

12 0.824 0.829 0.821 0.826 0.822 0.828 0.881 0.956 0.916

E[X] 1 0.00038 0.00050 0.00041 0.00067 0.00068 0.00152 0.00099 0.00672 0.00083

2 0.00046 0.00058 0.00058 0.00083 0.00070 0.00150 0.00111 0.01021 0.00196

3 0.00067 0.00095 0.00077 0.00106 0.00121 0.00218 0.00260 0.01752 0.00350

4 0.00134 0.00179 0.00115 0.00170 0.00165 0.00283 0.00474 0.02527 0.00554

5 0.00247 0.00329 0.00206 0.00284 0.00260 0.00397 0.00839 0.04547 0.01067

6 0.00470 0.00593 0.00402 0.00537 0.00461 0.00636 0.01535 0.08576 0.02075

7 0.00942 0.01205 0.00852 0.01123 0.00941 0.01222 0.02905 0.18223 0.04362

8 0.01918 0.02472 0.01809 0.02355 0.01954 0.02505 0.05593 0.38663 0.08975

9 0.03951 0.05169 0.03850 0.04998 0.04226 0.05334 0.11437 0.64905 0.18551

10 0.08380 0.10979 0.08334 0.10736 0.09343 0.11601 0.24551 0.82906 0.36850

11 0.17518 0.22274 0.17538 0.21909 0.19196 0.23044 0.47655 0.91443 0.61571

12 0.31969 0.38249 0.32051 0.37838 0.33829 0.38843 0.68957 0.94564 0.81471

Fraction of null pairs 7 0.00110

8 0.04863 0.00079

9 0.00001 0.00001 0.00002 0.48397 0.00954

10 0.00042 0.00130 0.00042 0.00127 0.00101 0.00217 0.00552 2.39166 0.06538

11 0.01460 0.02590 0.01471 0.02515 0.02289 0.03312 0.14178 9.83436 0.30279

12 0.09259 0.14336 0.09292 0.13934 0.11537 0.15551 0.85693 39.18 0.66052

length 2.3E + 08 1.1E + 08 2.2E + 08 1.2E + 08 1.9E + 08 1.1E + 08 1.5E + 07 230218 4639664

Displayed results are for chr1 of HG38, HG18, mouse, C elegans, and S cerevisiae, and for the full bacterial chromosome of E coli. M refers to masked chromomes.
Centromere regions were removed from the HG 38 data. Highlighted results are the ones determining the k-limit, KL, of the different chromosomes
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also give rise to very low values for reverse pairs at a
similar range of k, because any comparison of k-mers
with one of their permutations will lead to similar Ek[X].
In other words, this random independent (but not IID)
model satisfies additional symmetries that are not ob-
served in genomic data. Therefore it is not a realistic
model of inversion symmetry.
A plausible explanation of the observed IS can be

based on the fact that genomes evolve through re-
arrangement processes. By comparing synteny blocks in
human and mouse, Pevzner and Tesler [17] have argued
that rearrangements occur on many scales in the gen-
ome, and intra-chromosomal rearrangements are more
frequent than inter-chromosomal ones. Rearrangements
may be viewed as inversions of sections between two
breakpoints on the chromosome, and they may even fol-
low one another in a nested fashion. Their study [17]
demonstrated that human and mouse chr X share 281
synteny blocks of size >1 Mb, and at least 245 rearrange-
ments occurred since the divergence of the two species.
Building on this intuition, derived from comparative

genomics, it seems reasonable to assume that a series of
such rearrangements on different scales may lead to IS.
This mechanism has already been suggested by [6], and
has been studied by [18] and by [11]. We have tested it
on a simple model, starting from the human mitochon-
drial chromosome, which does not satisfy the second
Chargaff rule. Since the mitochondrial chromosome is
only 16Kbp long, we first construct out of it an enlarged
model chromosome with length L = 100Mbp, by concat-
enating random selections of subsequences of chr M.
We then apply to it rearrangements at various scales.
We found that 5000 rearrangements at scales of 100 K
have led to good IS effects, but best results were ob-
tained for 50,000 rearrangements, whose breakpoints
were randomly chosen, and their section lengths befit a
uniform random distribution of length < 10 K. These
results exhibit a high degree of IS, as displayed in
Additional file 7.

Inversion symmetry: validation and deviations
Figure 4 provides an experimental validation of our IS-
Poisson model, in so far that it predicts correctly the
behavior of KL as function of ln(L).
To look further into it, we present in Table 4 a com-

parative analysis of chr1 of different species, in both its
unmasked and masked formats, as well as the analysis of
the E coli genome. Shown are E[|Z|] values, E[X] values,
the fraction of unrealized pairs (where both N(S) =
N(Sinv) = 0), and the relevant length of the studied chro-
mosomes. Highlighted are all E[X] values which are clos-
est to 0.1 (defining the relevant KL) for the different
chromosomes. By comparing with the upper part of the
table one realizes that for k = KL, E[|Z|] is indeed close

to 0.8, hence the success of the KL formula. By compar-
ing with the 3rd part of the table, we see that for these
values of k, only for a very small fraction of all possible
k-mers, both S or Sinv are not realized on the studied
chromosomes.
Our criterion for approximate IS, Ek[X] ≤ 0.1, was in-

troduced as an intuitive but somewhat arbitrary decision.
From Table 4 we learn that this is where the Z distribu-
tion approximates very well the data. For larger k we
observe that some of the k-mers do not appear, and their
fraction increases rapidly with k. Hence our criterion se-
lects also the range where almost all k-mer strings are
being realized. This serves as a posterior justification of
our IS criterion.
Table 4 carries also the message that, for small k, a

strict validity of IS cannot be guaranteed. This may be
interpreted by stating that the breaking of IS is small,
but it is statistically significant. In particular, testing the
2nd Chargaff rule, one finds a systematic deviation from
N(T) = N(A) and N(G) = N(C) for all human chromo-
somes, as displayed in Table 5. For most human
chromosomes, we find an excess of T over A and of G
over C on the positive strand. Only chr 8 and chr 22 dis-
play opposite trends. As shown, these results are statisti-
cally significant, when compared with an assumption
that the counts of complement nucleotides are derived
from the same Poisson distribution. Moreover, the same
is true for both bare and masked versions of the chromo-
some. The difference between the bare and masked regions
of the chromosome defined the low-complexity chromo-
somal regions. The asymmetry seems to be quite significant
in all three regions (bare,masked,low complexity) as can be
seen in Additional files 8 and 9.
It is well-known that there exist local violations of the

2ndChargaff rule; in particular, there exists an excess
of #G over #C and #T over #A on the coding strand
within most genes. Green et al. [19] have argued that
mutational asymmetry has acted over long periods of
time to produce such a compositional asymmetry,
and discontinuities of such asymmetries are associated
with loci of replication origin. These questions have
also been studied by Huvet et al. [20]. Could it be
that the asymmetry that we have encountered is
somehow connected to these findings? Since the gene
coding strand may be either the plus (P) or the minus
(M) strand of the conventional genomic notation, this
may seem to be unrelated, assuming there is equal
probability for genes to occur on each strand.
The convention which is being used in the UCSC

genome browser is that the “plus” strand refers to the
linear 5’ to 3’ order of encountering the p-arm before
the centromere, which is followed by the q-arm of the
chromosome. This convention is consistent with NCBI
“top” assignment. Counting protein coding genes and
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RNA genes on human chromosomes as recorded by
GeneCards (http://www.genecards.org) we are led to the
conclusion that they display a clear excess of genes on
the plus (P) strands. The results are displayed in Table 6.
Their relation to preferences of #T > #A and #G > #C on
the P strand looks statistically significant. Clearly genes
occupy only a small fraction of human chromosomes
but they could still be the cause for the very small devi-
ation from the Chargaff rule. It may also be that some
other mechanism leads to a built-in excess on the chro-
mosomes, and the latter affects the preference of gene
allocations within the two strands. A notable exception
to the observed general trend is chr 11.
There are two different issues which are noteworthy in

Table 6. One is the correlation of the preference of
#T > #A and #G > #C with the positive labeling of the

strand. The other is the correlation of #T > #A and
#G > #C with the preference for gene counts. Whereas
the first may be coincidental (although it could be re-
lated to the labelling convention whose sources we were
unable to trace), we believe that the second can be
meaningful.
Next we looked for the violation of the 2nd Chargaff

rule on mouse and yeast, with the purpose of character-
izing the asymmetries and looking for correlations with
gene occurrences. The gene counts were obtained from
MGI (MRK_list2 in ftp://ftp.informatics.jax.org/pub/re-
ports/index.html) for mouse, and from SGD snapshot
(http://www.yeastgenome.org/genomesnapshot) for yeast.
While asymmetries of nucleotide occurrences are evident
and significant in both, gene data are quite smaller than in
human and no conclusive correlations can be deduced.

Table 5 Violations of the 2nd Chargaff rule on HG38. Columns
contain the values of #T/#A, #G/#C on different chromosomes,
as well as their Y and Z values. The latter reflect the significance
of the inequality

T/A G/C Y(T,A) Y(G,C) Z(T,A) Z(G,C)

chr1 1.002593 1.001175 0.001295 0.000587 15 5.76

chr2 1.00274 1.002747 0.001368 0.001372 16.41 13.49

chr3 1.002416 1.002824 0.001207 0.00141 13.19 12.5

chr4 1.001062 1.002595 0.000531 0.001296 5.75 11.04

chr5 1.004679 1.004144 0.002334 0.002068 24.44 17.5

chr6 1.000537 1.001981 0.000268 0.000989 2.72 8.12

chr7 1.003332 1.001884 0.001663 0.000941 16.15 7.57

chr8 0.999241 1.002536 −0.00038 0.001266 −3.53 9.65

chr9 1.001327 1.002823 0.000663 0.001409 5.61 9.99

chr10 1.0039 1.002911 0.001946 0.001454 17.18 10.82

chr11 1.001915 1.002815 0.000956 0.001405 8.48 10.51

chr12 1.003102 1.003317 0.001548 0.001656 13.75 12.2

chr13 1.003831 1.005012 0.001912 0.002499 14.83 15.36

chr14 1.008943 1.007342 0.004451 0.003658 32.58 22.24

chr15 1.001842 1.00411 0.00092 0.002051 6.44 12.23

chr16 1.009601 1.007001 0.004778 0.003488 32.17 21.07

chr17 1.002905 1.006812 0.00145 0.003395 9.77 20.81

chr18 1.005494 1.016917 0.00274 0.008388 19.03 47.34

chr19 1.009276 1.007636 0.004617 0.003803 25.46 20.13

chr20 1.011147 1.012815 0.005542 0.006367 33.22 33.7

chr21 1.003017 1.005026 0.001506 0.002507 7.33 10.15

chr22 0.998893 1.009337 −0.00055 0.004647 −2.52 19.94

chrX 1.003463 1.005699 0.001728 0.002842 16.73 22.23

chrY 1.008873 1.000209 0.004417 0.000105 17.58 0.34

All Z values are very significant, but for Z(G,C) on chrY which corresponds to a
p-value of 0.367. All other have inequality p-values < 0.01. On all chromosomes
we observe #G > #C on the positive strand. Same is true for #T > #A, but for
chr8 and chr22, where #T < #A, which is also a significant observation (|Z| >
2.575 corresponds to an inequality p-value < 0.005)

Table 6 Gene occurrences on the plus (#P) and minus (#M)
strands of HG38 display abundance of the former

chr P M Y(P,M) Z(P,M) p values Z(T,A) Z(G,C) corr

1 4488 4291 0.022 2.103 0.018 15.00 5.76 v

2 4106 3367 0.099 8.549 0 16.41 13.49 v

3 2938 2516 0.077 5.714 5.65E-09 13.19 12.50 v

4 2542 1792 0.173 11.392 0 5.75 11.04 v

5 2777 2186 0.119 8.389 0 24.44 17.50 v

6 4840 3563 0.152 13.931 0 2.72 8.12 v

7 3024 2402 0.115 8.444 0 16.15 7.57 v

8 2135 2032 0.025 1.596 0.055 −3.53 9.65

9 3032 2180 0.163 11.802 0 5.61 9.99 v

10 2532 2156 0.080 5.492 2.01E-08 17.18 10.82 v

11 2879 4047 −0.169 −14.035 0 8.48 10.51 x

12 3003 2771 0.040 3.053 0.0011 13.75 12.20 x

13 1261 1227 0.014 0.682 0.25 14.83 15.36

14 2092 1906 0.047 2.942 0.0016 32.58 22.24 v

15 4226 3547 0.087 7.702 6.77E-15 6.44 12.23 v

16 2529 1875 0.149 9.855 0 32.17 21.07 v

17 3582 2902 0.105 8.445 0 9.77 20.81 v

18 1182 1490 −0.115 −5.958 1.26E-09 19.03 47.34 x

19 3287 3036 0.040 3.157 0.00079 25.46 20.13 v

20 1258 1193 0.027 1.313 0.09500 33.22 33.70

21 670 779 −0.075 −2.863 0.00212 7.33 10.15 x

22 1429 1793 −0.113 −6.413 7.28E-11 −2.52 19.94 ?

X 1927 1572 0.101 6.001 9.87E-10 16.73 22.23 v

Y 491 184 0.455 11.816 0.00E + 00 17.58 0.34

P < M p > 0.05 T < A p > 0.05

Three of the results are insignificant (highlighted p > 0.05, q > 0.044 using FDR
corrections). Four chromosomes have opposite preferences, set in italics for
P < M and T < A. For all significant results we find 16 chromosomes displaying
both P >M, T > A, and G > C. Chr 22 has both P <M and T < A. Last column
indicates significant correlations of T-A and G-C with gene counts (positive by
v and negative by x)
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The analyses are listed in Additional files 10 and 11. Fi-
nally we test the 2nd Chargaff rule on C elegans and E coli
in Additional file 12. While the former shows some signifi-
cant inconsistencies, the latter is completely consistent.
This behavior correlates well with the trends already noted
in the first raw of Table 4, indicating large values of E[|Z|]
for k = 1.

Discussion
Inversion symmetry may be stated as the equality
N(S) = N(Sinv) where N are counts and S is some ar-
bitrary string existing on a chromosome. Convention-
ally one studies such equalities over the space of all S
which are k-mers of some given length k. In addition
to this equality one requires that, if Sinv is replaced
by other permutations over the space of all k-mers,
analog rules will not hold.
After reinvestigating these questions on various gen-

omic data, with special attention devoted to human data,
we turned to a rigorous statistical study. For this pur-
pose we defined the normalized differences Y = (N(S)-
N(Sinv))/(N(S) + N(Sinv)) and X = |Y|. If the equality
N(S) =N(Sinv) holds for stochastic variables N, we expect
the variable Y to have approximately Gaussian behavior. If,
moreover, N is a Poisson distribution, then Z = (N(S)-
N(Sinv))/(N(S) +N(Sinv))½ should have approximately a
standard normal distribution. The stochastic variable Z is
the appropriate one to be used for a z-test, characterizing
the significance of IS values displayed by Y or X, under the
IP-Poisson model.
In order to characterize approximate IS we have

employed Ek[X] ≤ 0.1 as a convenient measure. We saw
in Table 4 that it captures the region for which signifi-
cant results are obtained, and almost all k-mers appear
on the chromosome. Defining the k-limit KL as the k-
value for which Ek[X] turns out to be closest to 0.1, we
uncover a logarithmic increase of KL with chromosomal
length. It turns out that this behavior is accounted for by
our IS-Poisson model.
Our original definition of IS regarded it as an approxi-

mate symmetry. As such it was seen to be valid for all
ranges of k up to KL. With the advent of the IP-Poisson
model, we may investigate to what extent it can serve as
an exact symmetry. It turns out that, for very low k,
Ek[X] though extremely low, is significantly different
from 0. In other words, the confidence intervals derived
from IS-Poisson, exclude a peak at Z = 0. This has lead
us to investigate the violation of the 2nd Chargaff rule,
i.e. deviations from the relations N(T) = N(A) and
N(G) = N(C). We find that deviations are very signifi-
cant in human and in mouse, and quite significant on
chromosomes of other eukaryotes. Moreover, in human
we observe that, for most chromosomes, N(T) > N(A) and
N(G) > N(C), i.e. these excesses are observed to occur on

chromosomal plus (P) strands. Investigating the occur-
rences of genes on both strands, we find a similar excess
with significant slight preference for the P strand. These
results, for nucleotide excess and gene excess, are
displayed in Table 6, and are seen to hold for a large ma-
jority of chromosomes.1 Still, there exist also some
counter-examples. Could it be that the known asymmet-
ries of complement nucleotides on gene coding strands
are related to the observed correlation of the two effects
in the human genome? This remains an interesting ques-
tion for future studies.

Conclusions
Inversion symmetry is valid for almost all chromosomes,
even after filtering out their low-complexity regions. We
have defined an empirical criterion of IS, and a corre-
sponding k-limit (KL), which is the highest k for which
all k-mer distributions abide by the symmetry. Analyzing
the IS behavior using rigorous statistical methods, and
comparing empirical results with our IS-Poisson model,
we account for the universal increase of KL with respect
to the chromosomal length.
For low k we find minute, yet significant, deviations

from strict IS. This includes excess of counts of nucleo-
tides T vs A and G vs C on positive strands of human
chromosomes. We point out that this finding correlates
with a significant (but small) excess of genes on the
same positive strands.

Methods
For a string S of length k, and its symmetry-related S*,
we introduce the stochastic variables N(S) and N(S*),
and through them the following variables X, Y and Z
(using an italicized notation):

X S; S�ð Þ ¼ N Sð Þ−N S�ð Þj j= N Sð Þ þ N S�ð Þð Þ;
Y S; S�ð Þ ¼ N Sð Þ−N S�ð Þð Þ= N Sð Þ þ N S�ð Þð Þ;
and Z S; S�ð Þ ¼ N Sð Þ−N S�ð Þð Þ= N Sð Þ þ N S�ð Þð Þ1=2:

All three variables can be evaluated for each specific
k-mer, hence they carry implicit indices of the space of
4k k-mers. The empirical values of the different variables
will be denoted by N, X, Y and Z. Measures similar to Y
appear in the literature for k = 1 and k = 2 and are
known as skews.
The symmetry-relation means that N(S) and N(S*) are

drawn from the same distribution, N(S) =N(S*). Further-
more, it is reasonable to assume that k-mer appearances
on a long chromosome resemble a Poisson process. This
has been verified by us by investigating counts for all
non-overlapping windows of some size L (e.g. L = 100 K
on human chr 1). If the expectation of the Poisson is
large enough (a typical quoted number is 30), we can
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safely assume by the Central Limit Theorem that the
distribution of the statistic Z we define is well approxi-
mated by a standard normal distribution.

1. The semi-Gaussian distribution of inverse-pair
differences.
Let us consider a pair of k-mers, with counts N(S)
and N(S*) respectively, for which we evaluate the ra-
tios Y = (N(S) - N(S*))/(N(S) + N(S*)) and X = |Y|.
Moreover, we assume that these counts are due to
two random variables drawn from the same distribu-
tion, thus having the same average, E[N(S)-N(S*)] =
0, and follow a Gaussian distribution G = exp(−Y2/2
σG
2 )/ σG(2π)

½. The counts of the distribution of
X = |Y| will then follow a semi-Gaussian distribution
P = 2 exp(−X2/2 σG

2 )/ σG(2π)
½, defined for positive X

only. The mean and variance of this semi-Gaussian
are E[X] = σG (2/π) ½ ≈ 0.798σG and V[X] = σG

2 (1-2/
π). Hence σX = 0.603σG = 0.755EX.
Empirical verification of inverse pair distributions
can be carried out by choosing counts for all non-
overlapping windows of some size L (e.g. L = 100 K
on human chr 1). Testing the X and Y distributions
for inverse pairs of k = 8 we find the above descrip-
tion to be valid.

2. Poisson distributions of counts.
Let us now assume that the counts N(S) observed
on a chromosome, are realizations of stochastic
variables which follow Poisson distributions, each
with its own mean = variance. In the IS limit the
distribution of the inverse N(Sinv) coincides with
that of N(S). Their difference should have a mean of
0, and variance which is the sum of the variances.
Thus, for each inverse pair of k-mers, we expect
Y = (N(S) - N(Sinv))/(N(S) + N(Sinv)) to become ap-
proximately Gaussian with mean 0 and standard-
deviation σG =1/(N(S) + N(Sinv))½. Alternatively we
can state that Z = (N(S) - N(Sinv))/(N(S) + N(Sinv))½

should approximately follow a standard normal dis-
tribution with mean = 0 and variance = 1. It follows
then, from the previous paragraph, that in this re-
gime we should obtain, after averaging over all k-
mers, the results Ek(|Z|) = 0.8 and σk(|Z|) = 0.6.
Note that Ek(|Z|) may also be viewed as Ek(X/σX),
where σX = 1/(N(S) + N(Sinv))½ for every particular
k-mer under consideration. Tables 2 and 4 demon-
strate that the experimental results for large k are
close to the predicted theoretical expectation.

3. Monotonic increase of Ek[X] as function of k in
the IS limit.
For perfect IS it is trivial to prove that Ek[X] = 0
implies that this equality holds for lower k, i.e.
Ek-1[X] = 0. Here we study the case of approximate
inversion symmetry, with the purpose of proving

that small Ek[X] < <1 implies even smaller Ek-1[X].
For simplicity we assume that all 4k k-mers are being
realized on the chromosomal strings.
Let {Sj, j = 1…4k} be the set of all k-mers, and {S’i,
i = 1…4k-1}be the set of all (k-1)-mers. Each (k-1)-
mer can be extended to the right by one nucleotide,
resulting in four k-mers. Let us refer to this exten-
sion of S’i as the set SjϵI. Corresponding relations will
hold for their inverse partners, extended by nucleo-
tides to their left. It follows then that the counts of
these sets can be related N(S’i) = ∑jϵI N(Sj). Hence

Xk‐1 ið Þ ¼ N S’ið Þ – N S’i
inv� ��� ��= N S’ið Þ þ N S’i

inv� �� �

¼
X

j∈I
N Sj
� �

‐
X

j∈I
N Sj

inv
� �� ����

��� =
�X

j∈I
N Sj
� �

þ
X

j∈I
N Sj

inv
� �Þ:

Using the notation N(Sj) – N(Sj
inv) = ΔN(Sj), we note

that the numerator on the right obeys |∑jϵI

ΔN(Sj)| ≤ ∑jϵI |ΔN(Sj)|. Because of varying signs this
inequality may imply a strong decrease.
We may now compare the expressions of Ek-1[X] =
4-k+1∑iXk-1(i) and Ek[X] = 4-k∑jXk-1(j). Using the
results of the previous paragraph we conclude that
the numerators of Xk-1(i) in Ek-1[X] are smaller (or
equal) than the numerators of Xk(j), where jϵI, in
Ek[X]. Note however that the denominators of
Xk-1(i) and Xk(j), where jϵI, are different. To the
extent that all N(SjϵI) have similar values within the
group jϵI when we approach the IS limit, this leads
to Xk-1(i) ≤ ∑jϵI Xk(j)/4, which implies that

Ek‐1 X½ � ≤Ek X½ �:
In practice, for large k, we find in Tables 2 and 4
that Ek-1 [X] ≈ Ek[X]/2.
It should be emphasized that the monotonic
increase holds in the IS limit, i.e. when Ek[X] < <1,
but it is not a general property of k-mers on any
chromosomal section. Synthetic counter examples
can be constructed.

4. Comparison of Ek[X] with the S1 measure.

Table 7 Comparison of two measures of inversion symmetry
on chr1 of HG18 and HG38

HG18 chr1 HG38 chr1

k 1-S1 Ek[X] 1-S1 Ek[X]

5 0.0016 0.0021 0.0072 0.009

6 0.0026 0.0040 0.010 0.013

7 0.0048 0.0085 0.014 0.017

8 0.0091 0.018 0.018 0.025

9 0.017 0.038 0.027 0.043

10 0.033 0.083 0.043 0.085
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The measure S1, introduced by Baisnee Hampson
and Baldi [10], comparing counts of all kmers with
their inverses, is defined by

S1 ¼ 1�
X

i
jNðSiÞ�NðSiinvÞj=

X
i
ðNðSiÞ þNðSiinvÞÞ:

The denominator in this expression equals twice the
length of the chromosome. The numerator may be
regarded as an L1 distance between two sets of
sequences.
Note the difference from our measure Ek[X], which
may be written as

Ek½X� ¼ Mk
�1
X

i
jNðSiÞ�NðSiinvÞj=ðNðSiÞ þNðSiinvÞÞ:

Ek[X] averages the relative difference of all k-mers
on equal footing, whereas S1 sums all absolute
differences.
A comparison of the two different measures on
human chr1 is presented in Table 7. We find that
Ek[X] is roughly twice (1-S1)k, and the latter is
approximately equal to Ek-1[X].

Endnotes
1Skew analyses, i.e. non-vanishing Y(A,T) and Y(C,G),

have been carried out before. One example is table 2 in
[21]. The correlation with gene numbers on human
chromosomes observed in Table 6 is new, to the best of
our knowledge. Forsdyke et al. [22] have investigated the
correlation of conventional positive (or “top”) strands
with the difference of #A-#T in chromosomes of C ele-
gans and D melanogaster. These organisms, which have
low numbers of chromosomes, do not exhibit a clear
preference for excess of either #A or #T.

Additional files

Additional file 1: The variation of k-limits (defined by largest k for which
Ek[X] ≈ 0.1) as function of chromosome length in HG38 both before and
after masking has been applied. (DOCX 17 kb)

Additional file 2: The variation of k-limits (defined by largest k for which
Ek[X] ≈ 0.1) as function of chromosome length in HG18 both before and
after masking has been applied. (DOCX 17 kb)

Additional file 3: Distribution of inverse pairs in a chromosomal section
of length 10Mbp, drawn from chr1. Range of X < 0.1. (DOCX 100 kb)

Additional file 4: Distribution of inverse pairs in a chromosomal section
of length 1Mbp drawn from chr 1. Range of X < 0.3. Smoother distributions
are obtained when k-mers containing CG dimers are excluded (not shown).
(DOCX 165 kb)

Additional file 5: Values of E2[X] for inverse pairs of k = 2, evaluated over
non-overlapping windows (the ordinate specifies the serial number of the
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