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Abstract

Background: DNA rearrangement events have been widely studied in comparative genomic for many years. The
importance of these events resides not only in the study about relatedness among different species, but also to
determine the mechanisms behind evolution. Although there are many methods to identify genome-rearrangements
(GR), the refinement of their borders has become a huge challenge. Until now no accepted method exists to achieve
accurate fine-tuning: i.e. the notion of breakpoint (BP) is still an open issue, and despite repeated regions are vital to
understand evolution they are not taken into account in most of the GR detection and refinement methods.

Methods and results: We propose a method to refine the borders of GR including repeated regions. Instead of
removing these repetitions to facilitate computation, we take advantage of them using a consensus alignment
sequence of the repeated region in between two blocks. Using the concept of identity vectors for Synteny Blocks (SB)
and repetitions, a Finite State Machine is designed to detect transition points in the difference between such vectors.
The method does not force the BP to be a region or a point but depends on the alignment transitions within the SBs
and repetitions.

Conclusion: The accurate definition of the borders of SB and repeated genomic regions and consequently the
detection of BP might help to understand the evolutionary model of species. In this manuscript we present a new
proposal for such a refinement. Features of the SBs borders and BPs are different and fit with what is expected. SBs
with more diversity in annotations and BPs short and richer in DNA replication and stress response, which are strongly
linked with rearrangements.
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Background
Large scale genomic rearrangements (LSGR) have been
widely studied due to their implication in the evolution
of the species. The study of rearrangements is strongly
linked with Synteny Blocks (SB) defined as conserved
regions between sequences [1]. The regions between SB
are called breakpoints (BP), and their study might reveal
clues towards evolutionary mechanisms [2, 3]. Both, SB
and BP, have been used for phylogeny distance calculation
[4], ancestral genome reconstruction [5], and others.
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Although there are many methods to identify SBs, they
usually do not refine their borders [3, 6, 7]. Thosemethods
that refine SBs -and therefore BP- they usually focus on
extending the borders of the SB, aiming tomaximize a spe-
cific target function based on the alignment. Additionally,
the lack of a well-accepted definition of SB [8] might be
among the reasons that current tools yield widely different
results. Furthermore, the presence of repeated regions or
small blocks between the SBs increases the complexity of
the detection, one of the main reasons why most methods
do not take into account such repetitions. However, these
repetitions -mostly associated with mobile elements- have
been driving the evolution in many ways [9].
One of the main problems to identify BPs is the unclear

definition. For example, Lemaitre et al. [10] reasoned that

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3069-4-x&domain=pdf
mailto: arjona@uma.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) BMCGenomics 2016, 17(Suppl 8):804 Page 434 of 462

a BP is not a single “point” but a region between two
SB; while others, for example Chu et al. [11] describe
a method to determine the exact location of a BP at
nucleotide level for inversions and block interchange
events.
A second problem appears when trying to refine the SB

by extending its borders. Current methods try to maxi-
mize the alignment in the region between two SBs, but
boundaries are less conserved. Most of them [12–14],
remove the small blocks or repetitions to simplify the
SB detection. Clearly the resulting BPs might be con-
taminated by small subsequences which actually have a
homologous region in the other sequence. Any analysis
based on these contaminated sequences will be biased by
these small subsequences.
In a recent work [15] we addressed the detection of

blocks of large rearrangements, called Computational
Synteny Blocks, taking into account repetitions. In this
manuscript, we propose a method to refine these detected
CSBs and detect also BPs taking into account small blocks
and any kind of repetitions. Indeed, we use the repeti-
tions alignment to improve the accuracy of the refinement
process. In our model, we contemplate inversions, dupli-
cations and translocations.
Our results show a higher accuracy in terms of percent-

age of identity in refined SBs. Our results also indicate
biological differences between refined SBs and detected
BPs sequences. Sequences in the SBs borders are richer in
DNA damage whereas sequences in the detected BPs are
richer in DNA replication and stress response, strongly
linked to evolution [16].

Methods
Our method starts with the collection of Computational
Synteny Blocks (CSB) - similar to SB associated with cod-
ing regions, and CSB also covering non-coding regions.
The CSBs are calculated using GECKO-CSB [15] (sec-
ond step in Fig. 1). Applying linearity and collinearity
functions (described in [15]) over the CSB provided by
GECKO-CSBwe identify LSGR (so far duplications, inver-
sions and translocations). The next step — which is
reported in this document- is the precise refinement of the
borders of CSBs involved in every detected LSGR (third
step in Fig. 1). This refinement is applied to the sequences
involved in calculation (namely sequences X and Y ) in
two independent and separable processes. After that we
combine the results to get the final refinement. Figure 1
describes the workflow step by step.
Once an LSGR is detected, we take the two CSBs

involved. The repetitions in between them, if any, are also
take into account. Then we define a region of interest
(ROI) running from the tail of one CSB to the head of the
other (step 4 in Fig. 1). This ROI includes an arbitrary off-
set to force the overlapping between CSBs and repetitions

Fig. 1Workflow from fasta sequences to refined blocks and BP
detection

(see Figs. 2 and 12). A virtual CSB (CSBV ) and virtual
repetitions are created by extending the borders in order
to cover the ROI. Afterwards, these CSBV and virtual
repetitions are aligned using a fast customized imple-
mentation of the Needleman and Wunsch [17] global
alignment method. The main idea of this process is to
force overlapped regions to study the alignments within
the ROI.
At this point an identity vector for every aligned CSBV

and all repetitions is computed (step 5 in Fig. 1. See
Additional file 1 for more details). Then, a “difference
vector” (Vdiff ) is calculated (step 7). If we are working with
only two CSBV , the Vdiff contains the normalized abso-
lute difference between the two identity vectors. If besides
that we are working with repetitions, we compute theVdiff
taking into account a consensus identity vector from the
repetitions (step 6).
The rationale behind the method is the following: The

Vdiff vector contains high values when identity vectors
are different. In those regions where values are similar in
both identity vectors, the values contained in Vdiff will be
low. At some point we will observe a transition between
high and low values along the Vdiff vector. These transi-
tions will define the BP. A finite-state machine (FSM) was
designed to detect these transitions (step 8). At the end
of the process, CSB borders are refined based on the BPs
detected by the FSM. Themethod does not force the BP to
be a region or a point. This will depend on the transition’s
features.
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Fig. 2 Illustrative representation of the Region of Interest (ROI). a ROI region in an inversion event (CSB B). Coordinates are calculated following the
Eqs. 1 (b) Virtual CSBs and repetitions. Virtual CSBs are calculated using the Eqs. 2 (c) Same representation but including identity vectors and vector
difference graphs

Detection of CSBs repetitions and large-scale genomic
rearrangements
CSBs and repetitions are detected using Gecko-CSB [15],
an extension of Gecko [18] . This software has demon-
strated its capacity to yield HSPs of high-quality beating
reference software. In [15] we presented a set of for-
mal definitions describing different levels of linearity and
collinearity between CSBs. Using these definitions, a set
of rules was defined to identify LSGR in single chromo-
some species, such a inversions, translocations, reverted
translocations and duplications. Once a LSGR is detected,
we perform our refiningmethod over those CSBs involved
in the LSGR.
After the detection of a LSGR two CSBs (namely A and

B) are selected. Optionally, if collinearity between CSB A
and CSB B is interrupted by a set of repeats, the repeats
will be included in the selection as well. Repeats can be
separated in two groups. Those repeats whose coordinates
in the sequence X overlap with CSBs A and B are grouped
in a collection named repeats-X. In the collection repeats-
Y are the equivalents regarding sequence Y.

Refining CSBs
At this point the method splits in two branches. The
refinement in the sequence X and Y are complementary
and independent. In this document we will describe the
refinement for the sequence X branch. The sequence Y
branch is the same, but interchanging X by Y.

Calculating the region of interest
The CSBs and repeats define a ROI (see Eq. 5, Figs. 2
and 12). Since our method is focused on finding transi-
tions between CSBs and repetitions, we introduce an offset

parameter, which ensures overlapping between the end
of CSBs and the beginning of virtual CSBs and the vir-
tual repetitions, guaranteeing that transitions are present.
In the worst case, the method will have offset number of
nucleotides in both CSBs that share similarity and there-
fore, they can be aligned with a high value of identity. In
other words, the offset parameter stabilises the beginning
and the end of the signal (More details in “FSM thresholds
selection” in the Additional file 1). The ROI is defined as
follows:

ROIxStart = min(AxEnd,BxStart ,RepeatsxStart) − offset
ROIxEnd = max(AxEnd,BxStart ,RepeatsxEnd) + offset
ROIyStart = min(AyEnd,ByStart ,Repeats.yStart) − offset
ROIyEnd = max(AyEnd,ByEnd,RepeatsyEnd) + offset

(1)

After calculating the ROI, new CSBs named virtual
CSBs (CSBV ) are created using the ROI XStart and XEnd
coordinates. This means that all CSBV s will start and end
at the same point. In this step we are extending or trim-
ming the old CSBs concerning ROI start and end points.
New CSBV s’ Y coordinates will be calculated depending
on how much we have trimmed or extended the coor-
dinates in X regarding the old CSB. The equations that
describe this process are the following:

CSBVxStart = ROIxStart
CSBVxEnd = ROIxEnd

αL = CSBxStart − CSBVxStart

αR = CSBVxEnd − CSBVxEnd

CSBVyStart = CSByStart − αL

CSBVyEnd = CSByEnd + αR

(2)
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Fig. 3 Finite State Machine to detect transitions. This FSM has six states. The first three states (1–3) are to calculate the BP’s start coordinate, and the
last three states (4–6) to calculate the BP’s end coordinate. Changes from one state to another will depend on vector difference values (x in the
figure) and thresholds U1 and U2

Notice that α takes negative values when trimming and
positive when extending. New CSBV s are aligned using a
Needledman and Wunsch implementation.

Calculating identity vectors
After the alignment of CSBV s, identity vectors (IV ) are
created for every CSBV . All IV s have the same length
and they represent the percentage of identity that a cer-
tain region of length W has in the alignment. We take
a window of length W to calculate that percentage of
identity.
First we create a binary vector (VB) which represents

matches in the alignment. VB has the length of the
alignment. Since VB takes into account gaps, its length

can be different from one CSBV to another. By using
a window of length W, we can compute the percent-
age of identity at any point in VB. As long as we are
going to compare IV from different CSBV s, identity val-
ues from those points in the alignment that represent a
gap in sequence X are not stored. This way, all identity
vectors from different CSBV s will have the same length,
ROIlength.
Low values in parameter W produce a noisy iden-

tity vector corresponding with high frequency changes
of identity. On the contrary, high values in parameter W
smooth the noise and produce a low frequency signal. The
selection of a proper W value is not possible as it might
change depending on the CSBV involved. We could also

Fig. 4 a Full comparison of HUB-1 against SK76. Main diagonal represents that both subspecies are quite similar. Small points represent repetitions,
with a notorious one (an inversion) present upper zone of the image (circle) (b) Zoomed display of the marked region in 4a. Three CSBs are going to
be extended in this example. Repetitions are represented in a different colour
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Table 1 CSB Coordinates before and after the refinement process

XStart YStart XEnd YEnd Str Length % �X % �Y % ident

CSB1

Before 711,591 710,528 747,965 746,902 f 36,379 99.69 %

After 711,591 710,528 748,001 746,940 f 36,413 0.1 % 0.1 % 99.72 %

CSB2

Before 749,573 761,860 762,895 748,534 r 13,348 99.37 %

After 749,564 761,853 762,933 748,505 r 13,349 0.35 % 0.17 % 99.59 %

CSB3

Before 764,581 763,521 780,474 779,414 f 15,895 99.70 %

After 764,494 763,439 780.474 779.414 f 15,976 0.55 % 0.52 % 99.69 %

be interested on changes that happen at different frequen-
cies. Therefore, instead of choosing a fixedW value, which
would mean changes at only one frequency, we build a
vector containing all frequencies as follows:

IV (x) =
N∑

i=0
AiIi(x) (3)

where Ai is the weight of the identity vector at a certain
frequency

N∑

i=0
Ai = 1 (4)

And the Identity vector at a certain frequency is calculated
as follows:

Ii(x) = 1
2N + 1

x+N∑

j=x−N
VB(j) (5)

In this model, N defines the maximum window to
compute the percentage of identity and also defines
the start and end positions where the values of the
vector can be used. From 0 to 2N + 1 and from
2N + 1 − ROIlength to ROIlength the IV is uncompleted.
Therefore, N cannot be as long as we want. It should
be at least lesser than OFFSET. In practice we have
observed that a value of 50 is enough to get good
results.

Finally, since identity vectors are going to be compared,
they must to be normalized.

Calculating consensus identity vector
In the case that a group of repetitions are detected, we
use the information of the consensus sequence to improve
accuracy of the refinement method.
After repeats have been aligned and the VBs have

been computed, a Sum Match Vector (VSM) is calculated
by adding all VBs vectors. This vector has a length of
ROIlength, so only positions which are not representing
a gap are taken into account -as we did in the previous
section. Then, we calculate the percentage of repeats that
cover one specific position in the VSM. To calculate the
Consensus Identity Vector (VCI ), only positions that com-
ply with a given threshold are set to 1, and 0 otherwise. In
this implementation the threshold was set to 25 %. This
new vector is named Consensus Binary Vector. After this
process, we calculate the VCI by processing the Consensus
Binary Vector as we already described in the previous
section.

Vector difference
In order to detect transitions which delimitate the BP,
we compute the absolute difference between the CSBV s
identity vector. CSBV s are extracted from CSBs accord-
ing to the ROI, using the OFFSET to ensure that similar
regions are represented in CSBV s. As a result, the iden-
tity vectors for the CSBV -A have a high value at the

Table 2 Repeated region coordinates

ID Sequence Start End Length Description Enzyme

1.x hyorhinis HUB-1 748,012 749,513 1,501 tnp Transposase

2.x hyorhinis HUB-1 762,953 764,494 1,541 insK Integrase core domain
protein

1.y hyorhinis SK76 746,988 748,493 1,505 tra Transposase for insertion
sequence element IS6290

2.y hyorhinis SK76 761,936 763,425 1,489 insK Mobile element protein
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Table 3 Breakpoint coordinates

ID Sequence Ref seq Start End Length

1.1a M. hyorhinis HUB-1 NC-014448.1 748,001 748,012 11

1.2a M. hyorhinis HUB-1 NC-014448.1 749,513 749,564 51

2.1a M. hyorhinis SK76 NC-019552.1 746,940 746,988 48

2.2a M. hyorhinis SK76 NC-019552.1 748,493 748,505 12

3.1a M. hyorhinis HUB-1 NC-014448.1 762,933 762,953 20

3.2a M. hyorhinis HUB-1 NC-014448.1 764,494 764,539 45

4.1a M. hyorhinis SK76 NC-019552.1 761,853 761,936 83

4.2a M. hyorhinis SK76 NC-019552.1 763,425 763,439 14

beginning and low value at the end. On the contrary,
the identity vectors for the CSBV -B have a low value at
the beginning and high value at the end. This is the rea-
son why the vector difference will start and end with
high values. If repetitions are detected, then the dif-
ference vector will have high values in the middle as
well.
Anyways, transitions will be found in between these

high values (see Fig. 2).

Detecting transition points
To detect transitions a Finite-State Machine (FSM) was
designed. Figure 3 shows the design. Basically, the FSM
detects the coordinates where the vector difference value
was the last time at a certain threshold (U1) before
reaching the second threshold (U2). As a result, the
selected region defined by the coordinates is the tran-
sition between high and low values along the vector
difference.
We associate these transitions as a candidate for a BP.

After this process, the refined SB can be trimmed or
extended. The threshold selection is discussed in the next
section.

Results
Simple case
We will use a simple case to illustrate the algorithm
behaviour in the SB borders-refinement method using M.
hyorhinis HUB-1 (Accession code NC-014448.1) and M.

hyorhinis SK76 (Accession code NC-019552.1) genome
sequences with a length of 839,615 bp and 836,897 bp,
respectively.
Figure 4a shows the full comparison of HUB-1 against

SK76. Figure 4b shows a particular area where a LSGR (an
inversion) is presented, before the refinement.
Table 1 shows the coordinates of the CSBs involved

in the inversion before and after the refinement pro-
cess, where X represents M. hyorhinis HUB-1 and Y
correspond to M. hyorhinis SK76. Str. column represents
the strand of the Y sequence, forward or reverse. The
percentage of extension in X and Y sequence is shown in
�X and �Y columns.
The percentage of identities has increased a bit due to

the extension (the refined CSBs are a bit longer). Notice
that in CSB2 the refine process has extend the YStart coor-
dinate making the CSBs 7 nucleotides shorter. On the
other hand, in the opposite border (yEnd) it has extended
29 nucleotides.
Four regions have been detected as repeated sequences.

A database search (Uniprot bacteria at ftp://ftp.ebi.ac.uk)
using SMA3s [19] was carried out. Results and sequence
features are shown in Table 2.
And the BPs are shown in the Table 3.
In this case the method has found 8 BPs. Due to rep-

etitions that the method detects between two CSBs, two
BPs are detected in each sequence. For each BP found,
we have performed a database search using Uniprot and
NCBI non-redundant with no results. No annotation was
found.

Comparing with CASSIS software
We have processed the CSBs detected by GECKO-CSB
using CASSIS [12] in order to refine them. Since CASSIS
cannot handle repetitions and following the recommenda-
tions from its article, we have masked all the repetitions in
both sequences using RepeatMasker [20] (search Engine
was abblast) and we did not include the repetitions in
the input file. Data set and results can be found in the
Additional file 1.
Results from CASSIS are widely different than those

obtained by our method because, among other reasons,
they do not take into account repetitions. Our method

Table 4 CASSIS software breakpoint coordinates

ID Sequence Start End length Descript. Enzyme

1b M. hyorhinis HUB-1 747,965 749,573 1,608 tnp Integrase core
domain protein

2b 762,895 764,581 1,686 insK Integrase core
domain protein

3b M. hyorhinis SK76 710,797 797,477 86,680 polC DNA polymerase III
PolC-type

4b 712,895 797,477 84,582 nanE ManNAc-6-P
epimerase

ftp://ftp.ebi.ac.uk
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Fig. 5 Progressive distribution of Breakpoint length (bps)

detects 2 short BPs where CASSIS detects a big one.
Indeed, BP 3b and 4b (SK76 sequence) cover the region
contained by CSBs 1, 2 and 3. This result is incomprehen-
sible because it implies that the SBs desapear, creating a
huge BP of size around 85 Kbps, instead of these 3 SBs.
BP 1b has a length of 1,608 bps. We have performed

a BLAST [21] search using the sequence of BP 1b with
default parameters. The sequence has been found sev-
eral times in different sub species of hyorhinis with
high values of identity and coverage, which point-out
that this sequence is a part of a conserved repetition
(see BLAST Report-BreakPoint-1b in Additional file 1).

An additionally BLAST search was carried out using
sequences from BP 2a with similar results.
We have performed a database search using SMA3s over

the BP detected by CASSIS. Results are shown in Table 4
(description and enzyme columns).

Testing the method with a 68mycoplasmas dataset
For the next test, a collection of 68 Mycoplasmas was
used. This test was performed with the aim to avoid
bias in the analysis that a selection of two particular
genomes could introduce. The genome collection and
their gene bank annotations are available at http://bitlab-

Fig. 6 Frequency distribution of Breakpoint length

http://bitlab-es.com/gecko/
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Fig. 7 Results of blast search, mapping and annotation process with blast2GO for BP and PRASB sequences

es.com/gecko/. For the biological analysis we have per-
formed SMA3s [19] over the sequences to find annota-
tions using the Uniprot bacteria database (ftp://ftp.ebi.
ac.uk). Additionally blast2GO [22] was used to carry
out a second annotation process using blastx and the
non-redundant protein database filtered by Bacteria
taxa.
We run first GECKO [18] over the resulting 2,278 com-

parisons following by GECKO-CSB [15]. After that, the
refinement process was carried out giving the refined
collection of CSBs as a result.
Our method refined 2,213 CSBs, 829 were trimmed

after the refining process and 1,384 were extended.
Around 70 % of the BPs detected are sized below 100 bps,
95 % below 300 bps (see Fig. 5). The BP detection was
limited in the implementation at a size of 5000 bps to avoid
spurious long BPs. As it can be observed in Fig. 6, the
frequency of the length tends to zero at length of around
400 bps.

To analyse the results from a biological point of view,
BPs sequences were extracted. The sequences of the pro-
portional region of the adjacent Synteny Block (PRASB) of
each BP were also extracted according with the BP length
(the length of the PRASB sequence has the same length of
the BP sequence, see Fig. 12). The purpose was to find bio-
logical differences by comparing results from annotations
in BP and PRASB sequences. The sequences were com-
pared against the NCBI non-redundant protein database,
filtered by Bacteria taxa. After that, the sequences were
mapped and annotated using blast2GO [22].
The number of sequences with annotation was higher

in BPs (32 %) than in PRASBs (26 %). For more details,
see Fig. 7. We also analysed the percentage of annota-
tions by level of coverage that cover the CSBs in the
comparison from which the BPs were detected. We found
that at a lower level of coverage (meaning non related
species), more sequences were annotated, especially in
BPs sequences (27 % vs 17 %, see Fig. 8).

Fig. 8 Percentage of annotated sequences in BP and PRASB by percentage of coverage in the comparisons in which the sequences were extracted
from

http://bitlab-es.com/gecko/
ftp://ftp.ebi.ac.uk
ftp://ftp.ebi.ac.uk
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Fig. 9 Results from Blast2GO for biological process in annotations of BP and PRASB sequences. Percentages are over the total amount of annotations

Regarding the content of the annotation, we found sev-
eral differences in the biological process and molecular
function categories. Figure 9 shows a summary of the
biological process category with the most significant dif-
ferences between BPs sequences and PRASBs sequences.
SOS response, DNA integration or metabolic process
were more present in PRASB sequences. Proteolysis,
response to heat, protein folding, DNA topological change
and DNA replication were found in more proportion in
BP sequences. Full reports are available as Additional
file.
We also performed another database search, which was

carried out using SMA3s [19] against the UNIPROT
database. The results showed strong differences between
annotations in BPs and PRASBs sequences. Figure 10
shows the UNIPROT keyword categories for Biological

process. Stress response and DNA replication are more
present in BP sequences. On the other hand, Glycolysis,
Calvin cycle and DNA damage are significantly more
present in the PRASB than in BP sequences.
Figure 11 shows the UNIPROT pathways. Carbohydrate

degradation is by far more represented in PRASB
sequences and Purine metabolism is more present in BP
sequences. Full reports are available as Additional file.
The method we present in this manuscript detects two

BPs when refining SBs, one at each border (tail or head) of
the SB, instead of considering the whole region between
these SBs as one large BP. Therefore, after the refining
process we have two BPs and one region in between
(gap), as it can be observed in the Fig. 12. The sequences
corresponding with this region in between the BPs were
extracted to be analysed.

Fig. 10 Results of Uniprot keyword categories for biological process in annotations of BP and PRASB sequences. Percentages are over the total
amount of annotations
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Fig. 11 Results of Uniprot pathways in annotations of BP and PRASB sequences. Percentages are over the total amount of annotations

Around 30 % of the gap regions in between two break-
points are shorter than 100 bps of length, 88 % below
1,000 bps.
In order to analyse biological differences between BPs

and the gap between two BPs once SBs borders have been
refined, we have extracted the sequences corresponding
with the gap regions between BPs.
A SMA3s search was carried out over BPs sequences

and the gap sequences using the Uniprot database. The
main difference according with these results is at the bio-
logical process (Fig. 13). DNA replication, Stress response
and Purine salvage were found more often in the gap
whereas transport, DNA damage and DNA excision were
more present in the BP sequences.

Discussion
The break point definition
A SB is defined as a relation between two conserved
regions in the sequence of two different species, in terms

of homology or similarity. A BP is usually known as the
region in between two SBs that have suffered a rearrange-
ment due to a LSGR. Many studies support that LSGR
do not happen randomly but follow an unknown model.
Some regions of the sequence seem to be more fragile or
predispose to suffer a large-scale LSGR [2]. Indeed these
BPs can be reused [3, 23] and the BP reuse rate is strongly
linked with the resolution in which SB are detected [24].
Therefore, if a BP depends on the “fragility” of

the specific regions in the sequence then it should
not be defined as a relation between two specific
regions of two sequences (as SB is defined). Although
so far a comparison method is needed to detect
them.
Currentmethods based on sequence comparison, detect

SBs by joining or chaining High Score Segment Pairs,
and when they refine their borders, they try to expand
the SB borders by maximizing a target score function.
This means that the BP region will be a region without

Fig. 12 CSBs before and after the refinement. At the end of the refinement process, we detect BPs. We also extract PRASB and GAP sequences to
analyse accuracy of the method. PRASB and BP have the same length
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Fig. 13 Results of UniProt keyword categories for biological process in annotations of BP and gap sequences. Percentages are over the total amount
of annotations

similarity. However, following the previous reasoning
about BP definition, it implies that BPs regions do not
have to be necessarily regions with almost no similarity.
Two species could share the same BP and therefore, the
sequences would have some level of similarity. We think
that when refining SBs, they can be trimmed as well as
expanded after the refinement process.

Threshold selection in the finite state machine
Our method bases the BP detection on transition points
in the differences of the percentage of identities. We
have analysed the behaviour of the identity vector along
SBs. We have found that coding regions and non-
coding regions have different levels of identity, which can
be explained because of different evolutionary level of
pressure. But we also have found that in many cases there

is a perceptible transition that could be detectable using a
FSM (see Fig. 14). We think that something similar might
happen between SBs and BPs, a detectable transition that
could determine the BP region.
To identify these transitions we have designed a FSM

which uses two thresholds. In the current version of the
implementation of the method, which we have described
in this document, thresholds are set to 80 and 20
respectively. The selection of the parameter values was
made empirically. (see “FSM thresholds selection” in the
Additional file 1 for more details).
We analysed the identity percentage of SBs and BPs

at different length and have found a strong correlation
between SB and BP levels of identity percentage (see
Fig. 15). In general BPs have less identity percentage
than SB.

Fig. 14 Real case of SB identity vector. In dotted lines codding regions for sequence X. SB extracted from NC-014751.1 (sequence X) vs NC-015431.1
(Sequence Y) comparison. XStart : 92,877, YStart : 115,660, XEnd : 98,983, YEnd : 121,755
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Fig. 15 Percentages of identities in SB (axis x) and BP (axis y) regions. a all pairs of SBs and BPs. b only BPs with length between 0 and 100. c length
between 100 and 500. d length between 500 and 1,000

Conclusions
We have developed a method to refine the borders of
CSBs taking into account repetitions and using them to
improve the accuracy of the refinement. The method is
not based on maximizing any target function, but studies
the alignments to refine and uses a finite-state machine to
find transition points in the alignment. These transition
points set an accurate refinement of the involved blocks.
Due to the method’s features, BPs are detected as regions
or as points, depending on the specific case. It also takes
into account the repeated regions, so between two CSBs
it can give 4 breakpoints, 2 for each sequence, demarcat-
ing start/end of one block and end/start of the region in
between.
Several analysis were carried out in order to find bio-

logical differences between BPs, SBs borders and gap
regions.
The results showed that there are biological differ-

ences between BPs sequences and the PRASB sequences.
BPs sequences are biologically richer than PRASB. Both

searches using Uniprot and NCBI databases gave more
results in BPs sequences than the PRASB sequences.
However, PRASB showed more diversity in annotations
than those obtained for BPs.
Our experiments show that there may to be a correla-

tion between the number of sequences annotated in BPs
and PRASB and the relatedness of the species from which
those sequences were extracted.
We have also found that there are differences between

what we consider as BPs and the region in between
the BPs, whereas other methods just consider the whole
region as BP.
Our method needs two thresholds to detect the

transition points in the difference vector in which
the BP is defined. Thresholds pick up the abrupt
changes in the signal. These thresholds are fixed in
this version of the method, however, we will work
on a dynamic configuration of the threshold based
on SB similarity that might produce more accurate
results.
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