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Abstract

Background: Given a new biological sequence, detecting membership in a known family is a basic step in many
bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon
identification and abundance profiling, among others. Yet family identification of sequences that are distantly related
to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in
bioinformatics.

Results: We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models
for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given
protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An
evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER,
and pipelines based on HHsearch, andmaintains good accuracy even for fragmentary query sequences and for protein
families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy.

Conclusion: HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our
results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models
can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve
downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices
for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/
smirarab/sepp.
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Background
The assignment of newly obtained molecular sequences
to gene families or protein families and superfamilies
is a fundamental step in many bioinformatics analyses.
For example, newly discovered protein sequences are
assigned to protein families or superfamilies to enable
functional annotation [1, 2]. Similarly, sequences obtained
in shotgun sequencing analyses of environmental samples
are often assigned to gene families in order to perform
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marker-based taxonomic identification [3–7]. This assign-
ment is very difficult when the query sequence is very
short (a typical problem for transcriptomic and metage-
nomic datasets), or when the query sequence shares little
sequence similarity to any of the sequences in published
databases [8]. Therefore, improving the precision and
recall of methods that classify sequences into existing
families is an area of active research.
Techniques for protein family classification and gene

binning operate in two basic steps: first, the query
sequence is compared to each family in a published
database and the probability of membership in the family
is assessed; then, the family with the highest probability is
returned for that query sequence, provided the probability
is above a required minimum threshold. The first step of
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this process thus uses tools for homology detection. One
of the simplest methods for homology detection is BLAST
[9], including variations designed specifically for proteins,
such as blastp and PSI-BLAST [10]. While these sequence
similarity-based approaches have good accuracy in many
conditions, they can have poor accuracy when classifying
query sequences that have low sequence similarity to all
the sequences in the reference database [11].
A different approach is to represent each family as a sin-

gle profile hidden Markov model (HMM) and assign the
query sequence to the family whose profile HMM returns
the highest bit score for the query sequence [12]. For
example, this approach is used to assign query sequences
to Pfam [13] protein families and superfamilies, where the
HMMER [14, 15] software suite is used to build HMMs
and assign query sequences to the best fitting Pfam family.
Additionally, it has been used in several other applica-
tions, including the identification of viral families from
metagenomic samples [16].
A related approach is the HHsearch pipeline [11],

which is packaged with HHblits [17] in the publicly
available HHpred server [18]. This pipeline takes the
query sequence and finds a set of homologous sequences
from a reference protein database. It then builds an
HMM on a multiple sequence alignment of the query
sequence and its homologous sequences, aligns the HMM
against the individual HMMs built on each of the pro-
tein families, and finally assigns the query sequence to
the family with the best score. The HHsearch pipeline
has been shown to perform well on remote homology
detection [19].
Some methods use a collection of profile HMMs (which

we call ensembles of HMMs) to represent a protein fam-
ily, including [3, 20]. Qian and Goldstein [20] expand on
the use of tree-HMMs (described originally in [21, 22])
to represent an alignment. These tree-HMMs have a pro-
file HMM on every node in the tree, and are called
T-HMMs. Brown et al. [3] describe a two-step process
in which the first step uses SCI-PHY to identify subfam-
ilies using an alignment and a tree for a protein family,
and then the second step builds subfamily HMMs for the
identified subfamilies. Several studies have shown that
using an ensemble of HMMs to represent a protein family
has resulted in improved protein family identification for
remote homologs, improved subfamily identification, and
improved orthology detection [3, 20, 23–25].
We have developed similar methods for representing a

multiple sequence alignment with an ensemble of HMMs.
These methods include SEPP [26], TIPP [6], and UPP
[27] (collectively referred to as the ∗PP methods). One of
the key difference between the ∗PP methods and previ-
ous ensemble approaches (i.e., [3, 20]) is that the profile
HMMs generated by the ∗PP methods are based upon a
recursive subdivision of an input tree into approximately

equally-sized subtrees (referred to as a “centroid decom-
position”), resulting in fewer profile HMMs, without
requiring the profile HMMs to be based upon clades.
Nguyen et al. [27] found that a clade-based decomposi-
tion created a more computationally intensive process but
did not improve accuracy. The ensembles of HMMs gen-
erated by the ∗PP methods have been shown to improve
the accuracy of phylogenetic placement, taxon identifica-
tion of short metagenomic reads, and multiple sequence
alignment estimation.
In this paper, we present a new method, HIPPI

(HIerarchical Profile HMMs for Protein family
Identification; see Fig. 1 for an overview of the algorithm),
that classifies query amino acid sequences into protein
families and superfamilies. HIPPI modifies the previous
∗PP methods to address the problem of family selection.
As in the ∗PP methods, HIPPI builds an ensemble of
profile HMMs to represent each protein family, but it
improves on earlier techniques for building ensembles of
profile HMMs by changing the dataset decomposition
strategy to take pairwise sequence identity into account.
Given a query sequence q, HIPPI scores q against every
profile HMM in every ensemble of profile HMMs built
from the protein families. Finally, HIPPI assigns q to
the protein family whose ensemble of HMMs has the
profile HMM that reports the best bit score for the query
sequence. This is a general approach that can be applied
to any collection of protein families.
In our study, we present a comparison between HIPPI,

HMMER, blastp, and the HHblits+HHsearch pipeline
(referred to herein as “HHsearch”) for the problem of pro-
tein family identification using the Pfam-A database of
protein families [13]. As we will show, HIPPI provides
greater precision and recall than the other methods. Fur-
thermore, HIPPI has substantially better precision and
recall than the other methods under the most chal-
lenging conditions where the protein family has low
average sequence identity and the query sequence is
fragmentary.

HIPPI
The input to the HIPPI algorithm is a database D =
{F1,F2, . . . ,Fk} of protein families and a query sequence
q. Every family Fi in the database includes a known
(curated) seed alignment. The key feature of HIPPI is
in the preprocessing step described below, where the
method builds an ensemble of HMMs for each family,
based on an estimated maximum likelihood (ML) phy-
logeny for the family.

Preprocessing
In the preprocessing step (Box 1 in Fig. 1), we construct
an ensembleHi of HMMs for each protein familyFi in the
databaseD. Here we show how we compute Hi, given Fi.
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Fig. 1 Overview of the HIPPI algorithm. The input is a collection of seed alignments. Box 1 shows the preprocessing phase of building the ensemble
of HMMs database from the seed alignments. Box 2 shows the classification phase of using the ensemble of HMMs database to classify the query
sequences. See Fig. 2 for details of how the ensemble of HMMs is constructed

1. Step 1:We estimate a maximum likelihood tree Ti
for the seed alignment for Fi, using FastTree-2 [28].

2. Step 2:We build the collection of profile HMMs
from the seed alignment and ML tree as follows
(Fig. 2). Initially, our ensemble of HMMs is empty.
Starting with the initial seed alignment, we build a
profile HMM on the entire alignment and add the
profile to our ensemble of HMMs. Next, if the seed
alignment has more than ten sequences, the ML tree
is partitioned into two subtrees by removing the
centroid edge (i.e., an edge that splits the tree into two
subtrees of approximately equal size). For each of the
subtrees, we build a profile HMM on the alignment
induced by the sequences in the leaf set of the subtree
and we add the HMM to the ensemble of HMMs.
This decomposition process is applied recursively on
those subtrees that have at least ten sequences, until
the stopping criterion based upon two parameters, X
and Y, is met: the number of sequences in the subtree
is at most X% of the initial seed alignment size
(referred to as the “maximum decomposition size”)
and the average pairwise sequence identity is at least
Y% (referred to as the “minimum average identity
threshold”). Therefore, if the initial seed alignment
has ten or fewer sequences, the ensemble will only
contain the HMM on the initial seed alignment.
This decomposition process produces a collection of
nested profile HMMs, with one profile HMM based

upon the entire seed alignment and (potentially)
other profile HMMs based on induced alignments
with fewer sequences.

This gives us a set of ensembles {Hi}ki=1, where each
ensembleHi is a set of pi profile HMMs, {hij, j = 1, . . . , pi}.

Classification
In the homology detection step (Box 2 in Fig. 1), we are
given a query sequence q and we assign q to the family
that contains the profile HMM with the highest bit score,
provided the bit score is above the chosen threshold for
that family. Therefore, if no family produces a bit score
for q that is above the family’s threshold, then Family(q) is
undefined, and q is not assigned to any family.
Formally, the assignment is performed as follows. First,

we denote the bit score for sequence q given profile HMM
h by BS(q,h). We let Family(q) denote the family to which
we assign q, and we set

Family(q) = argmax
i=1,...,k

[
max

j=1,...,pi

{
BS(q, hij) : BS(q, hij) > gi

}]

where gi is a chosen threshold for family Fi (see below for
further discussion on thresholds). If the innermost set in
this formula is empty, meaning no family has a bit score
above its threshold, then no family is returned.
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Fig. 2 Algorithm for generating the ensemble of HMMs. The input is a seed alignment and a maximum likelihood (ML) tree that has been estimated
for the seed alignment. The algorithm begins by adding the HMM built on the seed alignment to the ensemble. If the seed alignment has more
than 10 sequences, the ML tree is decomposed into two subtrees by deleting the centroid edge (i.e., the edge that produces a maximally balanced
split of the taxon set into two sets). The subtrees are used to generate induced alignments. HMMs are built for each induced alignment and added
to the ensemble. The process iterates on those subtrees that meet the criterion for decomposition (subset size more than max(10, n/10), where n is
the number of sequences in the seed alignment, and mean pairwise sequence identity less than 40 %)
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Comments
The inclusion of the minimum average identity thresh-
old Y differentiates HIPPI from previous ∗PP methods,
which only considered the size of the subsets in building
the ensemble of HMMs. For example, previous ∗PP meth-
ods either decomposed until each subset was less than
10 % of the full data [26] (roughly producing 20 HMMs
in total), or used a fixed decomposition size [27], decom-
posing until the subsets have at most 10 sequences (typ-
ically producing hundreds of HMMs on an alignment
with 1,000 sequences). HIPPI, on the other hand, dynam-
ically determines whether additional decompositions are
needed based upon the heterogeneity of the subsets.
Finally, we report results using HMMER to build pro-

file HMMs and align sequences to the profiles. However,
HIPPI is a general approach for representing an MSA
using profile HMMs, and thus can be used with any
HMM-based software.

Performance study
Data
The Pfam-A database version 28.0 was retrieved and all
families were restricted to their curated seed sequences
and corresponding alignment. Since the sequences are
manually curated with respect to their family assignment,
we consider these assignments as de facto ground truth,
which enables the cross-validation scheme described
below. The set of over 16,000 families was further
restricted to those with at least 10 sequences in the seed
alignment. This gave us 11,156 families containing a total
of 1,238,077 sequences and a diverse distribution of indi-
vidual family sizes.
Additionally, for each sequence in the test set above,

two fragmentary sequences were generated whose lengths
were 1/4 and 1/2 of the full-length sequence. The frag-
ments were generated by randomly selecting a contiguous
subsequence (i.e., substring) of the desired length from
somewhere in the full-length sequence. A link to the
data used in this study is provided in HIPPI’s README
at [29].

Cross-validation testing
We conducted a four-fold cross validation test on the
Pfam-A dataset as follows. For the seed sequences in each
family, 75 % of the seed sequences were retained and
used to represent that family (i.e., the training set). The
remaining 25 % of the seed sequences were used as query
sequences (i.e., the test set). The goal of this experimental
design is to examine the accuracy of assigning the query
sequences back to its original family using the reduced set
of seed alignments to represent each Pfam family. We par-
titioned the Pfam-A dataset using this scheme four times
(i.e., four pairs of test sets and training sets), with each pair
of the test and training set corresponding to one cross-fold

of the four-fold cross validation. This partitioning scheme
used ensures that each seed sequence appears exactly
once in each of the cross-folds, with three appearances
in the training sets and one appearance in the test set.
For very small families, the removal of even one or two
sequences can substantially reduce the diversity of the
sequences within the family, and thus a minimum fam-
ily size of 10 was imposed to prevent spurious results on
small families. This cutoff was chosen in advance and was
not based upon the empirical properties of the Pfam-A
dataset.
In each case, every sequence in the test set and each

of its two corresponding fragmentary sequences were
treated as de novo query sequences, and the remaining
75 % was treated as the database of known families for
which each query sequence could be determined to be
homologous.
The computational requirements for HHsearch (see

Running time in “Results and discussion” Section) meant
that we could only evaluate HHsearch on one of the four
cross-fold subsets. However, we tested HIPPI, HMMER,
and blastp on all four cross-fold subsets; the combined
results of the all cross-folds are shown in Additional file 1:
Figure A2. The performance of these three methods
across the different cross-folds is very close - no individual
precision or recall for a fold was different from any other
by more than 0.2 %. Our main analysis, shown in Figs. 3
and 4, contains the results of all methods tested on just
one cross-fold.

Methods
The implementation of each method on this data is
described below. Note that when a method assigns a
sequence to a family, it is accompanied by a method-
specific score; as a result, the assignment can be rejected
if the score is below an inclusion threshold (see below for
more details) for that combination of method and dataset.
The commands used to replicate the results are given in
Additional file 1.

HMMER
The HMMER pipeline was implemented using HMMER
v3.1b2 [14, 15]. An HMM was built on the curated Pfam
alignment for the seed sequences of each family in the
training data using the HMMER hmmbuild command
using the default mode. For a given query sequence, the
sequence is aligned to the HMM for each family using the
HMMER hmmsearch command and the family with the
highest bit score that is above the inclusion threshold is
returned.

HIPPI
The preprocessing step for HIPPI was run on the train-
ing set to build ensembles of HMMs for each family (see
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Fig. 3 Precision-recall curves for the five methods, evaluated on one cross-fold subset of the data. We vary the length of the query sequence from
unchanged (i.e., full) to half-length and quarter-length. The curves are estimated by varying an inclusion threshold parameter for the particular
method and producing five to seven distinct points, with intermediate values interpolated linearly. Note that the scales for both axes vary between
panels due to the significant impact of sequence fragmentation

Box 1 in Fig. 1), and the classification step was run on
every query sequence in the test set (see Box 2 in Fig. 1).
We report the family with the highest bit score that is
above the inclusion threshold for each query sequence.
HIPPI’s performance is impacted by the choices of max-
imum decomposition size X (expressed as a percentage
of the full set of sequences) and minimum average iden-
tity threshold Y (also expressed as a percentage) used in
the stopping criterion. A preliminary analysis on a subset
of the data (see Table 1 and discussion in HIPPI param-
eter selection) suggested a default setting of X = 10 and
Y = 40 (decompose until each subset contains at most
10 % of the initial seed sequences and has an average
pairwise sequence identity that is at least 40 %, or the sub-
set contains 10 or fewer sequences). We call this default
HIPPI, and results presented for HIPPI in comparison to
HMMER, blastp, and HHsearch are under this parameter
setting. Note that HIPPI run using a single HMM in the
ensemble is equivalent to running HMMER, as described
in the preceding paragraph.

HHsearch
This pipeline was designed to emulate the HHpred server
and uses the HH-suite software tools version 3.0.0. For
each family in the training set, HHmake was used to gen-
erate an HMM on the seed alignment in the training
dataset. HHblits was used with the pre-filtered version
of the Uniprot20 [30] database, which is the database
recommended by the software developers. For every
query sequence, an HHblits search was conducted against
the Uniprot20 data to generate a multiple sequence
alignment. The multiple sequence alignment was scored
against the HMMs built on the families in the training set
using HHsearch.

The default setting for HHsearch is to use a local align-
ment and two iterations of HHblits to gather homologs.
In order to ensure that the optimal parameters for
this pipeline were used, we explored variants where we
replaced local alignment by global alignment and used
one iteration of HHblits instead of two. We tested these
alternative settings on 30,000 sequences from the holdout
data to understand their impact, particularly on fragmen-
tary sequences. 10,000 of the sequences were randomly
selected from the full-length set; we then included the
half-length and quarter-length versions of the selected
full-length sequences, for a total of 30,000 sequences. We
label the default setting by “HHsearch: 2 Iterations”. We
began by comparing HHsearch: 2 Iterations using global
alignment to the default setting; this comparison showed
that for all sequence lengths studied, the local alignment
strategy produced better results. We then compared the
use of one iteration to two iterations of HHblits, followed
by local alignment. The results of these initial tests are
provided in Additional file 1: Figure A1. No single way of
running HHsearch provided the best accuracy across all
the conditions explored, but the two best methods both
use local alignment. Hence, we show the two top perform-
ing settings, HHsearch: 1 Iteration and HHsearch: 2 Iter-
ations, on the holdout data; see “Results and discussion”
Section.

blastp
For each of the four training sets, the data were first pre-
processed by constructing a blastp database on all the
sequences in the training set fold. For each query sequence
in the test set, blastp performed a search against the
database for the appropriate training set, and returns a
list of the sequences that are most similar to the query
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Fig. 4 Precision-recall curves for the five methods across different model conditions, evaluated on one cross-fold subset of the data. The columns
represent the mean sequence identity of the family, the rows are first grouped by sequence length, and are further subdivided by family size. The
curves are estimated by varying an inclusion threshold parameter for the particular method and producing five to seven distinct points, with
intermediate values interpolated linearly. Note that the scales for both axes vary between panels due to the significant impacts of segment
fragmentation, family size, and sequence identity
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Table 1 Average precision/recall scores on the 143 Pfam families from the parameter selection dataset across all four-folds for the
three different fragment lengths

Method

Fragment Size

Quarter-length Half-length Full-length

Prec. Rec. Prec. Rec. Prec. Rec.

HIPPI-c (5 %, 0 %) 92.6 % 33.8 % 86.4 % 47.7 % 85.6 % 79.2 %

HIPPI-c (10 %, 0 %) 93.1% 34.3% 86.6% 45.1 % 85.1 % 78.0 %

HIPPI-c (10 %, 40 %) 92.2 % 33.4 % 86.6% 48.8% 85.8% 79.5%

HIPPI-a (5 %, 0 %) 82.6 % 39.9 % 78.6 % 67.4 % 84.1 % 83.3 %

HIPPI-a (10 %, 0 %) 82.8% 37.8 % 78.1 % 65.2 % 83.6 % 82.7 %

HIPPI-a (10 %, 40 %) 82.5 % 40.6% 79.3% 68.8% 84.6% 83.8%

The methods are labeled as HIPPI-x (X%,Y%), where “-x” is either “-c” (the conservative setting that uses the default gathering cutoff threshold for the inclusion threshold) or
“-a” (the aggressive setting that uses no inclusion threshold), X% denotes the maximum decomposition size, expressed as a percentage of the number of sequences in the
full dataset, and Y% denotes the minimum average pairwise sequence identity within each subset, expressed as a percentage. The best average precision and recall for the
conservative and aggressive versions are bolded

sequence. We assign the query sequence to the family of
the sequence with the best bit score.

Inclusion thresholds
We trace out multiple points on the precision-recall curve
by varying the inclusion threshold of the classification. If
the query sequence’s best hit failed to meet the inclusion
threshold for a given method, the query sequence was left
as unclassified (i.e., it was not assigned to any family).
Note that all methods have heuristics that might prevent
a sequence from being scored against another family if
the method can determine in advance that the match will
likely be poor. Thus even if the inclusion threshold is not
used, some sequences might be unclassified.
In the cases of HMMER and HIPPI, we explored the

use of the Pfam curated sequence gathering cutoff thresh-
olds for each family. However, since the Pfam threshold is
chosen based on full-length sequences rather than frag-
mentary sequences, we also examined settings for the
inclusion threshold by scaling the gathering cutoff thresh-
old by 0 % (i.e., no minimum threshold) to 100 % (i.e., the
default threshold). As the HHsearch pipeline returns the
probability of membership, we examined thresholds for
inclusion from 25 % (i.e., accept the most probable fam-
ily that has at least 25 % support) to 99 % (i.e., only accept
the family if it has 99 % support for membership). As
blastp returns a BLAST bit score for the best hit (note that
the BLAST bit score is not comparable to the HMMER
bit score), we examine fixed BLAST bit scores thresholds
from a bit score of 0 (i.e., accept the best hit regardless of
the bit score) to a bit score of 45 (i.e., where the drop in
recall was most noticeable).

Evaluation criteria
For each method, we examine precision and recall for the
best hit. Previous research has shown that using a single

HMM on a large and evolutionarily divergent data set can
lead to poor downstream analyses, and by using an ensem-
ble of HMMs (as in the SEPP [26], TIPP [6], and UPP
[27] studies) the accuracy of the analyses can be improved.
These two dimensions (the number of sequences in the
seed alignment and the average pairwise sequence identity
of the seed alignment) are therefore of particular inter-
est to examine the performance of our methods at the
subgroup level.

HIPPI parameter selection
In order to determine the optimal parameter settings for
the maximum decomposition size X and minimum aver-
age identity threshold Y, we tested different settings for
these parameters on a very small subset of the Pfam
database (called the “parameter selection set”), chosen as
follows.
Our goal was to find families that were very similar to

each other such that the different HIPPI variants might
have problems assigning the query sequences to the cor-
rect family. We created a graph where each vertex repre-
sents a single Pfam family and the edges represented suffi-
cient similarity between the families. Ten sequences from
each family were chosen at random and scored against the
single profile HMM for every other family. If the average
bit score of the ten sequences scored against another fam-
ily’s HMM is greater than 25, an edge is drawn between
the two Pfam families to represent that the families were
sufficiently similar. All families with degree at least five
(i.e., that are adjacent to at least five other families) are
considered well-connected and are included in the param-
eter selection set; all the families they are adjacent to are
also included. This produced a set of 142 Pfam families
that were highly connected whose sequences would allow
us to test precision at each parameter value since their
sequences were mutually confusable (sequences from one
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family would score highly to HMMs built on the other
connected families).
We consider stopping rules based on a maximum

decomposition size X of 5 or 10 (expressed as a per-
centage of the full dataset) and on a minimum average
identity threshold Y of 0 or 40 (expressed as a percent-
age). For each stopping rule, we consider two versions of
HIPPI: a conservative version (indicated using “-c") that
uses the gathering cutoff threshold gi for each family Fi,
and an aggressive version (indicated using “-a") that drops
this gathering cutoff threshold requirement. Methods are
labeled as HIPPI-x (X%,Y%), where “-x” is either “-c”
(conservative) or “-a” (aggressive). Note that a minimum
required average sequence identity threshold of 0 % would
result in the same collection of profile HMMs as in UPP.

Results and discussion
HIPPI parameter selection
The results on the parameter selection dataset show that
while methods had similar results under most conditions,
the best overall results for both the aggressive and conser-
vative versions of HIPPI used a maximum decomposition
size of 10 % and a minimum average identity threshold
of 40 % (i.e., HIPPI (10 %, 40 %); see Table 1). Thus, we
selected 10 % as the default decomposition size and 40 %
as the minimum average identity threshold; we refer to
this setting as default HIPPI. When we fix the decom-
position size to be 10 % and compare the impact of
using a minimum average identity threshold versus not
using a threshold (i.e., 40 % identity versus 0 % identity),
the results show that using a minimum average identity
threshold resulted in comparable or better precision (2 out
of 6 cases with precision improvement of 1 % or greater,
remaining four cases with precision within 1 % of each
other) and better recall (5 out of 6 with recall improve-
ment of 1 % or greater; remaining one case with recall
within 1 % of each other). Prior uses of the *PP methods
did not consider sequence identity as a determination for
decomposition; these results show that taking the evolu-
tionary diameter of the alignment into account results in
improved accuracy.

Running time
All HHsearch variants took at least 10 seconds per query
sequence on a node with 32 cores. Actual times were often
longer, but I/O issues may have contributed in some cases
so an accurate benchmark was not possible. Nonethe-
less, this meant that a single cross-fold set of test data
required over 2,500 node hours, whereas all other meth-
ods ran in less than 24 node hours. On a node with 32
cores, blastp required 13 h and 34 min to analyze a single
cross-fold set, HMMER completed in 57 min and HIPPI
finished in 11 h and 54 min. The running time differ-
ence between HMMER and HIPPI is not too surprising;

HIPPI had 14 times more HMMs than HMMER (159,602
HMMs versus 11,156 HMMs). In terms of preprocessing
time, blastp required less than aminute to build its BLAST
database, HMMER required 2 min to build its profile
HMMs, and HIPPI required 53 min to build its ensem-
bles of profile HMMs, with more than 55 % of HIPPI’s
time spent on building the ML trees used to generate the
decompositions.

Precision and recall
We were only able to run HHsearch on a single cross-
fold due to HHsearch’s high computational costs. Thus,
the data shown here for all methods are restricted to
results on a single cross-fold set, which includes 312,841
query sequences of each fragment length (full-length,
half-length, and quarter-length; 938,523 sequences total).
For all other methods the precision and recall results
were virtually identical across all four cross-fold sets (see
Additional file 1: Figure A2).
Figure 3 contains precision-recall curves for each of the

five different methods under consideration. The curves
are estimated by varying an inclusion threshold parame-
ter for the particular method and producing five to seven
distinct points, with intermediate values interpolated lin-
early. Figure 4 contains additional precision-recall curves
that are similar to Fig. 3, but where families are grouped
according to the size of the seed alignment and its average
pairwise sequence identity. The grouping by size has only
two levels: families with 0 to 100 seed sequences and those
with more than 100 sequences. The grouping by average
pairwise sequence identity has three levels: 0–20 %, 20–
30 %, andmore than 30 %, which represent about 5 %, 28 %
and 67 % of the 11,156 families, respectively.
Figure 3 shows that for all query sequence lengths,

HIPPI dominates all other methods at every one of its
computed points on the curve. Figure 4 shows that HIPPI’s
improvement over the other methods is not localized
to one part of the data space; the HIPPI precision-
recall curve is the most outward from the origin in
nearly every case, though the degree of improvement
that HIPPI has over the other methods depends on the
query sequence length, average pairwise sequence iden-
tity within the seed alignment, and the number of seed
sequences.
For example, under the easiest conditions (full-length

conditions with high sequence identity), all methods do
very well, but HIPPI and HMMER are very close in per-
formance, with the other methods having lower precision
and recall. On the most fragmentary query sequences
(quarter-length sequences), all methods degrade in recall
(and, to a lesser extent, in precision), but HIPPI remains
the most accurate with respect to both precision and
recall and blastp becomes the next most accurate. Fur-
thermore, on the most fragmentary sequences, the degree
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of improvement of HIPPI over the other methods is the
largest.
Similarly, the query sequence length also impacts the

choice of how to run the HHsearch pipeline (Fig. 3):
one iteration of HHblits clearly dominates two iterations
on the full-length sequences, has slightly better perfor-
mance on the half-length sequences, and has slightly
worse performance on the quarter-length sequences. For
full-length sequences, we conjecture that the first itera-
tion returns a sufficient number of homologs for build-
ing an HMM and that the second iteration therefore
includes too many remote homologs, which in turn neg-
atively impacts the resulting HMM. However, for shorter
sequences the reverse is true: the first iteration returns
fewer homologs than necessary, and a successive iteration
improves results.
The differences between HIPPI and the other meth-

ods are significant. For example, the comparison between
HIPPI and HMMER on the full-length sequences shows
that HIPPI provides an increase in recall for the same
precision of roughly 0.5 %, which is statistically signifi-
cant with p < 0.001 using a binomial test. The degree
of improvement increases on the fragmentary sequences,
where HIPPI provides a substantial increase in recall com-
pared to HMMER, BLAST, and the HHsearch variants.
For example, at 99.2 % precision, on half-length sequences
HIPPI’s recall was 6 % greater than HMMER, 16 % greater
than BLAST, and 26 % greater than the HHsearch vari-
ants, and on quarter-length sequences it is 17 % greater
than HMMER, 10 % greater than BLAST, and 34 % greater
than the HHsearch variants.

Conclusion and future work
HIPPI is a newmethod for assigningmembership of query
sequences to protein families and superfamilies. When
used with the Pfam database, HIPPI provides higher pre-
cision and recall in comparison to the use of a single
HMM, blastp, and HHsearch. Furthermore, the improve-
ment in precision and recall is very substantial for those
protein families that have seed sequence alignments with
low average pairwise sequence identity, or when the query
sequence is fragmentary. Thus, HIPPI enables highly
accurate family identification of amino acid sequences,
even for very challenging conditions.
The key advance in HIPPI over previous ∗PP methods

(SEPP, TIPP, and UPP) is the method used to construct
the ensemble of HMMs used to represent a seed align-
ment. While the previous ∗PP methods differed in various
respects in how they built their ensemble of HMMs, their
decompositions used stopping rules that only considered
either the number of sequences in each subset or the total
number of subsets created. The dataset decomposition
technique that HIPPI uses, however, also considers the
average pairwise sequence identity within the subsets to

determine whether to continue the decomposition. This
new technique for building an ensemble of HMMs enables
HIPPI to select the “best” decomposition for protein fam-
ilies that can have very different properties in terms of
the number of sequences and in the evolutionary diame-
ter of the family (i.e., sequence heterogeneity), and leads to
improved accuracy for protein family classification com-
pared to the ∗PP decomposition strategies.
The simplicity of the HIPPI approach shows that dra-

matic improvements in accuracy - in terms of both
precision and recall - are obtainable through divide-
and-conquer strategies. Thus, although we tested HIPPI
only in conjunction with profile HMMs computed using
HMMER, comparable improvements might be achievable
for other techniques (such as the profile HMMs used
within the HHsearch pipeline, position-specific profiles,
support vector machines, and Markov random fields) that
are used to represent protein families, subfamilies, or
superfamilies.
This study also showed that the accuracy of the

HHsearch pipeline with respect to protein family identi-
fication on Pfam is substantially impacted by the choice
of algorithmic parameter setting (local vs. global, and the
number of HHblits iterations). However, every variant of
this pipeline we studied was less accurate (for both pre-
cision and recall) than HIPPI, and typically less accurate
than the use of a single profile HMM (results that are con-
sistent with [31]). Yet, since the ensemble of HMM tech-
niques used in HIPPI is designed to improve accuracy of
bioinformatics tasks that use HMMs, we conjecture that
integrating the ensemble of HMM technique inHIPPI into
the HHsearch pipeline could lead to even better protein
family classification than HIPPI currently achieves.
The current implementation of HIPPI uses the centroid

edge in the tree to partition the subsets. However, another
approach that might provide improved accuracy is parti-
tioning the tree on the longest edge in order to increase
the separation between the subsets, until all the subsets
are sufficiently small and homogeneous. The study eval-
uating variants of the UPP multiple sequence alignment
method [27] showed that dividing on the longest edge
resulted in no improvements in alignment accuracy, but
had an increased cost of running time due to more sub-
sets being generated. It may be the case, however, that the
longest edge decomposition has better performance for
protein family identification; we are currently exploring
this idea.
Currently, HIPPI assigns the query sequence to the pro-

tein family that resulted in the best bit score. However,
the HIPPI algorithm also returns the bit score of the
query sequence scored against all the profile HMMs. It is
possible to convert the bit scores into confidence scores
(i.e., the probability of a protein family for generating the
query sequence) using the alignment support calculation
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equations provided in [6]. We plan to include confidence
scores in future versions of HIPPI.
Given the improvement obtained using the new dataset

decomposition strategy, we conjecture that modifications
to the dataset decomposition strategies used in the pre-
vious ∗PP methods could lead to improvements for their
respective tasks. For example, one of the key tasks in
TIPP [6] is the assignment of metagenomic shotgun data
to marker genes. HIPPI’s superior accuracy on fragmen-
tary sequences may lead to improved abundance profiles
by enabling more accurate assignments of the fragmen-
tary reads to protein families or gene families, and could
result in improvements to other marker-based profil-
ing methods such as mOTU [32], MetaPhyler [4], and
MetaPhlAn [5].
However, other design strategies may provide even bet-

ter advantages. Indeed, the overall observation in this
study, as well as in [3, 6, 20, 23, 24, 26, 27], is that repre-
sentations of multiple sequence alignments by ensembles
of HMMs (however constructed) provide improved accu-
racy for many bioinformatics tasks compared to the use
of a single HMM, and are often better than the leading
alternative methods. Thus, perhaps the design strategies
used by [3, 20] will provide even better accuracy. Further
research is needed to find the best ways of construct-
ing and using ensembles of HMMs, while also providing
highly efficient and easy to use implementations.

Additional file

Additional file 1: HIPPI Supplement. Additional file 1 contains the
commands used to generate the results presented in the paper, Fig. A1
showing the results of different variants of the HHsearch pipelines, and Fig.
A2 showing the results of HIPPI, HMMER, and BLAST evaluated on all four
cross-folds subsets of the data. (PDF 139 KB)
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