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Abstract

Background: Secondary structures form the scaffold of multiple sequence alignment of non-coding RNA (ncRNA)
families. An accurate reconstruction of ancestral ncRNAs must use this structural signal. However, the inference of
ancestors of a single ncRNA family with a single consensus structure may bias the results towards sequences with
high affinity to this structure, which are far from the true ancestors.

Methods: In this paper, we introduce achARNement, a maximum parsimony approach that, given two alignments
of homologous ncRNA families with consensus secondary structures and a phylogenetic tree, simultaneously

calculates ancestral RNA sequences for these two families.

Results: We test our methodology on simulated data sets, and show that achARNement outperforms classical
maximum parsimony approaches in terms of accuracy, but also reduces by several orders of magnitude the number
of candidate sequences. To conclude this study, we apply our algorithms on the GIm clan and the FinP-traJ clan from

the Rfam database.

Conclusions: Our results show that our methods reconstruct small sets of high-quality candidate ancestors with
better agreement to the two target structures than with classical approaches. Our program is freely available at:

http://csb.cs.mcgill.ca/acharnement.

Keywords: RNA, Secondary structure, Ancestor reconstruction, Evolution, Phylogeny, Algorithm

Background

With the development of sequencing technologies
emerged the need to elucidate the relationship between
sequences from various organisms. The reconstruction
of ancestral sequences, which aims to reveal the chain
of events that led to the diversity of sequences observed
today, became naturally one of the core challenges in this
field of research. Since the first attempts to rigorously
solve this problem [1], the methods and quality of the
data have considerably improved, to the point where the
reconstruction of ancient genomes is now feasible [2—4].
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For a long time, most of the attention has been
given to the reconstruction of ancient protein and DNA
sequences, while RNA molecules remained relatively
overlooked. Nonetheless, in the last 20 years, the dis-
covery of the breadth of catalytic and regulatory func-
tions carried by RNA molecules revived our interest for
the RNA world hypothesis [5], and resulted in increas-
ing efforts toward a better understanding of the intricate
nature of mutational patterns in RNAs [6-11].

The reconstruction of non-coding RNA (ncRNA)
sequences is particularly challenging. Indeed, ncRNA
functions are typically carried out by specific molecu-
lar structures, and consequently sequences are generally
less conserved than structures [12]. This implies that ded-
icated frameworks must be developed to capture this
structural information.
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RNA folding is hierarchical. Secondary structures form
rapidly and act as a scaffold for the slower formation
of tertiary structures [13]. It follows that the stability
of secondary structures provides us a relatively accurate
signature of the molecular function [14], and thus can
be used to guide the reconstruction of ancestral ncRNA
sequences.

To date, the most promising approach to infer ncRNA
ancestors has been proposed in 2009 by D. Bradley and 1.
Holmes, who introduced an algorithm to calculate ances-
tral RNA secondary structures from an alignment [15],
and use these structures to infer ancestral sequences using
a maximum-likelihood approach on stochastic grammars
[16]. Still, the time complexity of inferring ancestral struc-
tures can be prohibitive, and the specificity of the func-
tional structure may not accommodate sufficiently large
variations of this (secondary) structure to take advantage
of this model.

Covariation models are powerful frameworks to model
families of structured RNA sequences [17-19], allowing
us to capture dependencies between distant sites. Nev-
ertheless, we argue that the reconstruction of ancestral
RNA sequences of a single ncRNA family with a sin-
gle secondary structure using a covariation model can be
hazardous. Indeed, current sequences are most likely uni-
formly distributed on the entire neutral network of the
functional structure [20] (i.e. regions of the sequence land-
scape with a good affinity to the functional structure), and
a strategy aiming to accommodate constraints within a
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single family will have a tendency to produce ancestors
near the core of this network. This bias may result in
ancestral sequences potentially far from the first ances-
tor who acquired the function (i.e. the structure). In
other words, this first ancestor is likely to be a worse
fit to the functional structure than sequences at the core
of the neutral network. By contrast, in this paper we
adopt a radically different approach. We propose here to
solve this problem simultaneously for two ncRNA families
that share a common ancestor (See Fig. 1). This strategy
enables us to make a better estimation of the location of
the duplication event at the origin of the two families in
the sequence landscape, hence to make a more accurate
inference of the ancestors of each family.

Our approach is as follows. Given two alignments of
homologous ncRNA families with consensus secondary
structures and a phylogenetic tree, we design a max-
imum parsimony algorithm to simultaneously compute
ancestral RNA sequences for both families. We test this
methodology on simulated data sets, and compare the
results to classical (structure-free) maximum parsimony
approaches [21, 22], as well as to a customized maxi-
mum parsimony algorithm integrating the constraints of
a single structure. Finally, we apply our techniques to the
reconstruction of ancestral sequences of two Clans (Glm
[23] and FinP-traJ [24]) from the Rfam database [25].
Clans are RNA families that “share a common ancestor but
are too divergent to be reasonably aligned” [26], and thus
illustrate well the signal we aim to capture.

G=50%

Fig. 1 Our approach. Left: The red and blue areas represent regions of the sequence landscape of sequences with “good” affinity (i.e. sufficient to
carry the associated function) to the target structures S (red) and S’ (blue). Here, o« and o’ are paralogous sequences, as well as 8 and 8/, ¥ and y’
and § and &’. Using classical reconstruction approaches, A would be the inferred ancestor of the orthologous sequences «, 8, y and §, and A’
would be the inferred ancestor of the orthologous sequences «’, 8/, ' and §’. Shaded trees represent the classical ancestral reconstructions
performed separately, while the main tree rooted at LAA’ represents the simultaneous ancestral reconstruction approach introduced in this

Duplication

contribution. The rationale of this work is that ancestors inferred from a single family and structure may have a tendency to be located in the core of
the affinity regions, and might end up with ancestral sequences that would be hard to reconcile. By contrast, a simultaneous reconstruction of
orthologous families ensures the coherency of the process and a better inference of the ancestors (which are not necessarily located in the core of
the affinity regions). Right: An example of a species tree T (dashed lines) of four species A, B, T and A corresponding to the neutral networks shown
on the left. A duplication event is shown at the root, creating the two ncRNA families (represented by colored lines). Each node of the species tree
contains a copy of each ncRNA family (one red, one blue). At the leaves of the species tree T, we find the two extant ncRNAs for which we have the
sequence and the structure information. The linear gradient G is also shown: it represents the weight that is given to each structure when
calculating the costs (G for one structure and 100 %-G for the other)
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Our results on simulated data sets show that our strat-
egy improves the accuracy of the reconstruction. On real
data sets, our approach compares favorably to PAMIL, a
state-of-the-art maximum likelihood method that consid-
ers one structure at a time, and customized versions of the
Fitch and Sankoff algorithms. In particular, our data shows
that our solutions have a better agreement to the two tar-
get structures than the sequences inferred with previous
methods. Importantly, we achieve all these results with
a significantly smaller set of candidate ancestors, which
improves the interpretability of our data.

Our algorithms have been implemented in a software
named achARNement and are freely available at http://
csb.cs.mcgill.ca/acharnement.

Methods

Input data

For the algorithms presented in this paper, we assume
that we have two non-coding RNA families that have been
identified as a clan [26]. For each of the two ncRNA fam-
ilies, we have the consensus 2D structure it folds into.
We also have a set of species that each possess one copy
of both ncRNAs (one of each family), and a species tree
T that represents the speciation history of the organisms
considered. We have the sequences of the two ncRNAs for
each of the studied species. Figure 1 illustrates an example
of a species tree.

Problem statement

Given the input data described in the previous subsec-
tion, the problem is to infer a most parsimonious set of
ancestral sequences for each of the two ncRNAs at each
ancestral node of the input species tree. Although this
is a very classical problem in comparative genomics, our
goal is to achieve that using a new evolutionary model
that simultaneously considers sequence and 2D structure
information, as described previously.

Evolutionary model
Our evolutionary model assumes that the two ncRNA
families are the result of an ancient duplication of an
ancestral ncRNA that was able to fold into two different
structures. Following the duplication, a subfunctionaliza-
tion process took place: a series of neutral mutations
occurred and gave rise to both extant families that can
only fold into one specific structure (see Fig. 1). Here,
we assume that the ancestor of all studied species already
possessed both ncRNAs, but that the duplication event
occurred not too long before that (near the root of the
species tree T representing the studied organisms). Only
point mutations are allowed in our evolutionary model
(no indels).

As mentioned earlier, ncRNA sequences are more
constrained by their structure than their sequence during
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evolution. Since we have only access to the 2D struc-
ture of the two extant families (and not the ancestral
2D structure), our model considers both of these struc-
tures during the inference process. Near the root of the
species tree, our model suggests that the sequences were
still likely to be able to fold into both structures. However,
as time passes, each ncRNA starts to specialize into only
one structure and loses affinity to the other. We represent
that gradual transition into our model using a gradient G
which varies from 50 % (near the root) to 100 % (near
the leaves). This gradient is going to be used in our algo-
rithm to calculate the “weight” that each of the structures
must have in the global score of the inferred ancestral
sequences.

We developed two novel algorithms, implemented in
a package called achARNement and freely available at
http://csb.cs.mcgill.ca/acharnement.

Algorithms

We propose a new tool, achARNement, composed of two
exact algorithms (CalculateScores-1lstruct and
CalculateScores-2structs) based on the Fitch
[21] and Sankoff [22] parsimony methods for the infer-
ence of ancestral sequences in a phylogeny (note that we
are focusing on the inference of ancestral sequences, and
not only on the calculation of parsimony scores). Our
algorithms use a three-step approach (see Fig. 2): (i) a
bottom-up step in which minimal costs for every possible
nucleotide at every site are calculated, (ii) a middle step
where we link the minimal cost matrices for both families
at the root of the phylogeny, and (iii) a top-down step that
enumerates all the optimal sequences based on the calcu-
lated costs. Our algorithms have the same running-time
complexity than the Sankoff algorithm (O(Nk), where N
is the number of nodes and k is the sequence length);
the only difference being a constant number of additional
calculations that depends on the basepairs in the two
structures.

For the substitutions, we use a cost matrix that has a
different weight for transitions and transversions, since
transversions normally occur less frequently than transi-
tions (see Table 1). In addition to the substitution cost,
we also consider a basepair cost, as shown in Table 2.
The basepair cost is 0 for the G-C basepairs and 0.001
for the A-U basepairs, that are not as strong as G-C
basepairs. Compared to an A-U basepair, a G-U pair
costs twice as much, while all the others are penalized
three times as much. We have also experimented with
a more complex scoring system for the basepairs, one
that reflects the geometry and isostericity of the base-
pairs. We performed tests using the IsoDiscrepancy Index
(IDI) table, as described in [27]. However, since this
table represents a transition from the initial basepair to a
mutated basepair, more calculations were required by our
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In addition to the substitution cost,
we consider the basepair cost in the
current family and the basepair cost
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construct the optimal sequences
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Fig. 2 Graphical representation of the algorithm CalculateScores-2structs. In this example, we have four species (4, B, C and D) and for
each species, we have two extant RNAs (for family 1, in red, and family 2, in blue). The three major steps of the algorithm are presented. 1) The
bottom-up step, where minimum scores are calculated at every node of the tree for each family. The scores take into account the substitutions, but
also the basepair cost for the current family, and for the other family. 2) The middle step. Here we link the minimum score matrices for families 1 and
2 by doing a simple Fitch on the two matrices. This allows us to reconstruct the original ancestral sequences (before the duplication), taking into
account both families. 3) The top-down step, where we start from the root and select the nucleotides of minimum cost at every position and

Find which nts in the
child node can yield the
parent nt with min cost:

Enumerate all optimal

/ \\ sequences for the child: ccu,

d, d

C D

CalculateScores-2structs algorithm. The results
obtained with the IDI table and our simpler table (Table 2)
were very similar (results not shown), but at the cost of
a 4-fold increase in computation time. Consequently, we
decided to use the simpler table.

The difference between the two algorithms we propose
(CalculateScores-lstruct and Calculate-
Scores-2structs) resides in the first step (bottom-
up), where we calculate the minimal costs for every
possible nucleotide at every site. Let f be one of the
two families and f be the other one. When calculating
the costs for family f at the internal node a, algorithm
CalculateScores-1lstruct considers only the
structure associated with family £ On the other hand,
algorithm CalculateScores-2structs considers
both structures, but with a weight G that varies along
the depth of the tree. For example, at the level of the
leaves, for the family f; we consider 100 % of the structure
f and 0 % of the structure f. At the level of the root, we

Table 1 Nucleotide substitution matrix

consider 50 % of the structure of family f and 50 % of the
structure of family f. We use a linear gradient to set the
values of G on the different depths of the tree (from 50 to
100 %).

For space reasons, the full description of the algorithms
was placed in the Additional file 1. In the following para-
graphs, an overview of the algorithms will be presented.

Bottom-up step
The first step of the algorithms consists of doing a
post-order traversal of the species tree (as shown in
Algorithm 1, Additional file 1), to calculate the most
parsimonious costs for each possible nucleotide at every site.
In the following paragraphs, we explain the dif-
ferences between CalculateScores-lstruct and
CalculateScores-2structs in the calculation of
those costs.

CalculateScores-lstruct: Let a; be the
nucleotide at position i in the parent (ancestral) node,

Table 2 Basepair cost matrix

A @ G U A @ G U
A 0 2 1 2 A 0.003 0.003 0.003 0.001
@ 2 0 2 1 C 0.003 0.003 0 0.003
G 1 2 0 2 G 0.003 0 0.003 0.002
U 2 1 2 0 U 0.001 0.003 0.002 0.003

Each cell Gj; represents the cost of mutating the nucleotide i into j

Each cell Gj; represents the cost of having the basepair i-j
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a; be the nucleotide that is paired with 4; in the current
structure, [; (resp. r;) be the nucleotide at position i in the
left (resp. right) child, and I (resp. 7;) be the nucleotide
that is paired with /; (resp. 7;) in the left (resp. right) child
in the current structure.

In the case that the position i is part of a basepair
in the current structure, the cost of having a specific
dinucleotide a;, g; is equal to:

min  {c()+ s, ai) +cly) +s(l, @) +bpe(ai, ai))
liandl;€{A,C,G,U}

+ min

. {c(ri)+s(ri, a;) +c(r) +s(7i, a;) +bpc(a;, d;)}
riandr;€{A,C,G,U}

1)

where c¢(x) is the previously calculated optimal cost of
having the nucleotide x, s(x,y) is the cost of substituting
nucleotide x for y and bpc(x,y) is the cost of having the
basepair (x,y). In the other case where i is not part of a
basepair, we simply calculate the substitution costs.

CalculateScores-2structs: As mentioned ear-
lier, CalculateScores-2structs takes into account
both structures, using a weight G. Calculating the costs on
the left and right branches is a little bit different depending
on if we are dealing with a paired position or an unpaired
one. The general idea is that for each position i, we are
going to measure the cost of the basepair formed with
position i (if it exists) in the structure of the current fam-
ily, and we are also going to consider the positions paired
with both i and i in the other structure. Note that each
position can be paired to two different positions in the
two structures; we will focus on that case here, because if
the basepairs are the same in both structures, then we do
not need the gradient G and simply consider 100 % of the
basepair cost. Figure 3 shows three examples.

The simpler case is when the position i is unpaired.
Then, only the position paired with i in the other struc-
ture needs to be considered, if it is paired (see Fig. 3a).
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Since that position (e.g. position #6 in Fig. 3a) is not nec-
essarily fixed, we consider an average basepair cost over
all possible nucleotides at that position.

The more complex case is when position i is paired.

In this case, we also have to check for the position paired
with i in the other structure (see Fig. 3b and c).

More precisely, using the same definitions as above for
CalculateScores-1struct, and considering that
position i is paired in both structures (and position i too),
the cost of having a specific dinucleotide a;, 4; is equal to:

Eq.(1) [weighting bpc(a;, a;) by G| +(1—G)

L P>

nce{A,C,G,U}

bpc(a;, ne) /4 + Z bpc(a;, ne) /4

nce{A,C,G,U}

2)

Note that it is possible to get cycles of “interdependent”
positions when considering both structures. As you can
observe in Fig. 3¢, positions 4 and 6 are paired together in
fam1. In fam2, position 4 is paired with 3, which is paired
with position 7 in fam1. Finally, position 6 is paired with
position 8 in fam?2. Thus all of those positions are “interde-
pendent”. To simplify the algorithm, instead of considering
the complete cycles, we chose to stop at one “level’, that is
looking only at one paired position in the other structure
for each position in the first structure.

Once the costs are calculated for every site at every node
of the species tree, we can simply do the middle and top-
down steps.

Middle and top-down steps

The top-down step is the part where we start from the root
of the tree, we select the nucleotides of minimum cost at
every position and construct the optimal sequences. Once
all the optimal sequences are enumerated at an internal
node of the tree, we go down in the tree and enumer-
ate the optimal sequences that gave rise to them in the
child nodes and so on. Algorithm 6 (Additional file 1)

@ pos: 01234 51(678
faml: ( Yo (. ))
fam2: . . ( () ) (. D

Fig. 3 Three examples of the positions that need to be considered when using information from both structures. Note that in those examples, we
consider that we are working on the sequence of family 1, and fam1 and fam2 represent the 2D structures of family 1 and 2 respectively. a The
easier case when the position (8 here) is not paired in fam1, and we only have to consider the position paired with it in fam2. b The case where only
one of the two paired positions of fam1 is paired in fam2. € The case where both paired positions of fam1 are paired in fam2

b pos: [0}12/3 4567 8
faml ( ) ( ( ) ).
fam2: {.f . i) D L)

<
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describes this process. Note that before starting to select
the nucleotides at the root, we do a simple Fitch (algo-
rithm not shown here) on both cost matrices of family
1 and 2. This middle step is necessary to make the link
between the two families, i.e reconnect both matrices
of optimal scores, and reconstruct the original ancestral
sequences (before the duplication).

Generalizing to more than two families

This problem can easily be generalized to F > 2 struc-
ture families, as long as we maintain the same assumption
that all ancestors represented in the tree possess one copy
of each F number of ncRNAs. The only part of the algo-
rithm that would change is the bottom-up step: it would
be similar to CalculateScores-2structs, except
that we would be considering the basepairs in all the F
structures instead of just two. The gradient G would also
be different: it would range from % % (near the root,
where the same weight is given to all structures) to 100 %
(near the leaves).

Results and Discussion

Simulated data generation

To evaluate our method, we generated in silico twenty
different phylogenetic trees for three different pairs of
secondary structures as follows. First, three secondary
structures of size 100 were randomly designed such that
the two first have a similar shape, and the last, a different
one. Those structures are the following

The base pair distances evaluated with RNAdistance
[28] between the structures 0 and 1, 0 and 2, and 1 and 2
are respectively 40, 96 and 86.

For every pair of secondary structures, a set of twenty
bi-stable sequences was generated with Frnakenstein
[29], such that the best scoring sequence of each run
was kept. For each pair of structures (s1,s2), and each
sequence z designed on these structures, a complete
binary tree T of depth 6 was populated. The root r of T is
initialized with (+, 7*) = (z,z). Each internal node n of T
is composed of a pair of sequences, (n!, n?), such that the
sequence #' is associated with the structure s; and n? with
the structure s;.
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The sequences for each internal node are generated in a
top-down fashion. Given a node w, its sequences (w!, w?),
its two child nodes ¢!, ¢?, a mutation probability o, and a
substitution matrix 8. From (w!,s;) (resp (w?,s3)), a set
W of a thousand mutants of w! is generated as follows.

Each sequence w; in W is created by applying a prob-
ability of mutation « to each position in the original
sequence w'.

Each nucleotide x can be substituted to {A,C, G, U} \
{x} following the distribution B(x). We used for fS:
PA<~ G = P(C<« U = 50%, all others are set
to 25 %. We used those probabilities for the mutational
events based on the observation [30] that transitions are
more frequent than transversions.

We define a free energy E(w;,s) as the base pair dis-
tance between the minimal free energy structure of w; and
s, i.e. AMMFE(w;),s). The MFE and base pair distance are
computed with RNAfold and RNAdistance [28].

A Boltzmann distribution is induced such that the
weight of any sequence w; is

—E(w;,s)
B(wi,s) = e &t

where R is the Boltzmann constant and T the temperature
in Kelvin. The partition function Z3, is obtained by sum-
ming the weights of all sequences w; € W and we defined
the Boltzmann probability of each sequence P, (w;)
such that

Zy =Y Bwys)

wieW

PSW(WI) _ B(Wl" S) )

and Zs

We sample two sequences from this distribution to pop-
ulate c% and c% (resp. c% and c%). We re-apply recursively.
The generator was implemented in python and is bundled
with our achARNement package.

Evaluation on simulated data

We first evaluated achARNement using simulated data,
as described in Sec. Simulated data generation. The muta-
tional rates of bacterias (bacterial genomes are studied
in Sec. Evaluation on biological data) are known to vary
greatly between species and it is difficult to find indis-
putable reference points to evaluate them [31]. We thus
approximate many generations in each step (i.e level of
the tree) by using as the mutation rate o three values:
{1 %, 5%, 10 %}. This enables us to obtain diverse enough
sequences at the leaves of a complete binary tree of
depth 6.

For every pair of structures and mutation rate, twenty
trees were generated. In Fig. 4, we show the average error
percentage over all optimal sequences inferred for both
families in all nodes of the trees. We divided the results
by structural features; the first row is the average error
percentage for positions involved in an interaction, while
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Region = Struct | ss = 01
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o N B [e)] [oe]

Region = Uns | ss = 01

Percentage Error
o N B » oo

0.01 0.05 0.10 0.01

Mutation rate
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Fig. 4 The average error percentage of all optimal sequences for both families in a tree. Each column represents a pair of secondary structures. The
first row is for positions in structured regions, and the second row for unstructured regions. For three mutation rates: 1%, 5% and 10 %

Region = Struct | ss =02 Region = Struct | ss =12

-

Region = Uns | ss = 02

Il Fitch
Il Sankoff
Il One struct
Il Two struct

Region = Uns | ss =12

0.05
Mutation rate

the second row is for unstructured positions. Each col-
umn represents a different pair of secondary structures,
annotated 01, 02 and 12 following the notation defined
in Sec. Simulated data generation. For each sequence of
a family fam, we consider a position to be in a struc-
tured region, if the structure of fam has a base pair at that
position.

A first observation is that CalculateScores-
2structs always performs the best, followed by
CalculateScores-1lstruct, and the Fitch and
Sankoff algorithms whose performances are equivalent. In
all cases, achARNement methods always perform better,
even in unstructured regions.

For CalculateScores-1lstruct, although the
other structure is ignored during the parallel ancestral
reconstructions, some constraints from the other struc-
ture are implicitly taken into account during the middle

step when solutions from both families are merged.
The higher quality in unstructured regions when using
CalculateScores-2structs was expected because
we always consider structures from both families, and one
unstructured position in one family can be structured in
the other. Finally, although the two structures 0 and 1 are
much closer to each other than to 2, the basepair distance
does not seem to affect the quality of the results.

We then examine the number of optimal solutions,
for each pair of secondary structures and mutation
rate «. As can be observed in Figs. 5 and 6, the aver-
age number of optimal sequences inferred both in
the whole tree and for the root only is always smaller
for algorithms CalculateScores-1lstruct and
CalculateScores-2structs, compared to Fitch
and Sankoff. In the case of the pair of structures 01,
the average number of optimal sequences is even

ss =01
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=
x

N N
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N w
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Fig. 5 Average number of optimal sequences in the tree, y-axis logscale. Each column represents a different pair of secondary structures. For three
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0.01 0.05 0.10
Mutation rate
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Fig. 6 Average number of optimal sequences in the root, y-axis logscale. Each column represents a different pair of secondary structures. For three
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several orders of magnitude lower for our two algo-
rithms. An important observation is that, in every
case, all sequences at the root reconstructed by
CalculateScores-2structs are a subset of the
optimal sequences obtained with the classical Sankoff
algorithm (i.e. CalculateScores-Sankoff). This
shows that the additional structural constraints defined
in our method help to reduce the initial solution space
produced by traditional approaches.

Running times for the four methods are shown in
Additional file 1 Sec. Running times.

Evaluation on biological data

We analyzed the Glm and FinP-tra] clans from the Rfam
database. A clan contains two RNA families, that are
homologous but functionally and structurally distinct
[26]. These clans, with their two functional families with
distinct consensus structures, constitute good candidates
to test our algorithms.

GIm clan
The Glm clan contains two bacterial small non-coding
RNAs, GImY and GlmZ, that are homologous but func-
tionally distinct. They act in a hierarchical manner to
activate the translation of the glmS mRNA [23]. We
selected 74 bacterial genomes for which Rfam align-
ments were available for both families (see the com-
plete list in Additional file 1 Sec. Biological Data).
The phylogeny of the 74 studied bacterial strains was
taken from the Pathosystems Ressource Integration Cen-
ter (PATRIC) [32], and Rfam seed alignements of both
families were aligned together with CARNA [33]. The
sequences in the full Rfam alignments were then re-
aligned to the alignment obtained with CARNA simply by
mapping their corresponding positions. The sequences
and structures were subsequently trimmed to remove
the gapped columns, and if only one side of an inter-
action was removed the other position was marked as
unstructured.

We used the basic Fitch and Sankoff methods,
and our algorithms CalculateScores-lstruct

and CalculateScores-2structs to infer the
ancestral sequences at the root of the species tree.
Both Fitch and Sankoff inferred the same set of
786432 sequences at the root of the species tree,
whereas  CalculateScores-1lstruct  inferred
393216 and CalculateScores-2structs 196608.
The ancestral sequences reconstructed by our meth-
ods are subsets of the ones produced by Fitch and
Sankoff: CalculateScores-lstruct cut the
solution space in half and CalculateScores-
2structs by another half. Running times were of
19 seconds for both Fitch and Sankoff, and 14 sec-
onds for both CalculateScores-lstruct and
CalculateScores-2structs. The lower running
times for achARNement methods could be explained by
the smaller numbers of ancestral sequences inferred.

We look at two different measures to evaluate the qual-
ity of the ancestral sequences. First, we simply look at
the percentage of all structured positions, for each family,
that can actually form canonical basepairs in the ances-
tral sequences. The goal is to see if the reconstructed
sequences can form the required basepairs in both struc-
tures. Second, we compute the harmonic mean (H-mean)
between the frequencies in the ensemble of structures for
each structure family (representing GImY and GImZ). In a
statistical physics framework, an RNA sequence can adopt
all structures and its frequency represents the fraction of
time that the sequence adopts a particular structure. The
harmonic mean is defined as

FreqS1 x FreqS2
FreqS1 + FreqS2

and is maximized when both frequencies are at 0.5, given
that the structures are different. Thus the H-mean will
be equal to 0.5 if the two structures are different and
share the complete structure space. Another important
feature is the energy of a sequence in a particular config-
uration. Although that sequence could have other more
favorable structures, it gives another idea of the stability
of a particular configuration.
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In order to calculate this mean for a sequence, we com-
pute the free energy of the sequence when folded in the 2
different structures and their frequencies using RNAfold,
and the non-canonical base pairs are ignored for these
computations.

To compare the different ensembles of solu-
tions, we sampled 200000 distinct sequences from
each of them. We present in the first 6 lines of
Table 3 the maximum and average values of the
percentage of canonical basepairs and H-mean for:
sequences inferred by Sankoff (or Fitch) only, those
inferred by CalculateScores-1lstruct but not
CalculateScores-2structs, and those inferred by
CalculateScores-2structs only. We also present
the values of energy and frequencies in regards to the sec-
ondary structure of each family. The standard deviations
are shown in the Additional file 1: Tab. 7.

We observe that, on average, the percentages of
canonical basepairs are all the same on the GlmZ struc-
ture (99.1 %), but it is 1.5 % higher for the solutions
of CalculateScores-2structs on the GlmY
structure. Although this is not a huge difference, the
fact that we get more canonical basepairs on average
by inferring a lot less ancestral sequences is interest-
ing. As for the maximums, in all subsets of solutions
we get sequences that have 100 % of the canoni-
cal basepairs for both structures. The average (resp.
max) H-means for the distinct sets of ancestors pro-
duced by Sankoff, CalculateScores-1lstruct
and CalculateScores-2structs are roughly
similar, indicating that by cutting the solution
space  with CalculateScores-lstruct and
CalculateScores-2structs, we do not lose
sequences that have significantly better folding properties
in regards to both structures.

We then proceeded to do a comparison of our method
with the state-of-the-art maximum likelihood ancestral

Table 3 Maximum and average results for the GIm Clan
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reconstruction program PAML [34]. For clarity, we remind
the reader that PAML considers only one family at a time,
and returns one ancestor per node. We generated the
ancestors using both families separately, GImZ and GlmY,
and compared the two predicted ancestors percentage of
canonical basepairs and H-mean with those obtained with
the other methods, as shown in Table 3. The two ances-
tral sequences produced by PAML have percentages of
canonical basepairs (and H-mean of PAML GImY) that are
significantly lower than the best and average values of all
the other methods.

FinP-traJ clan

We also ran the experiment on the FinP-traJ clan. FinP
is an antisense ncRNA that can bind to the 5 UTR
region of the tra] mRNA. The binding of those two
RNAs represses the the translation of traJ, which in turn
represses F-plasmid transfer [35]. Similarly to the GIm
clan, we selected bacterial genomes for which the Rfam
alignments were available for both families (54 genomes;
see the complete list in Additional file 1 Sec. Biological
Data) and we did the same preprocessing to prepare the
alignments. The phylogeny for the 54 bacterial strains was
also taken from PATRIC [32].

Noticeably, both families in this clan are sequentially
and structurally more different than with the Glm clan.
The Fitch, Sankoff, and CalculateScores-1struct
methods inferred the same ensemble of 12582912
sequences at the root. In contrast, CalculateScores-
2structs inferred a strict subset (4x smaller)
of 3145728 sequences. Running times were of 17
seconds for both Fitch and Sankoff, and 19 sec-
onds for both CalculateScores-lstruct and
CalculateScores-2structs.

As with Glm, we sampled 200000 distinct sequences
to compare the two sets. We present in the first two
rows of Table 4 the maximum and average results for

%Z %Y H-mean EnSZ FreqSZ EnSY FreqSY
Sankoff 100 100 140e-03 -18.7 1.40e-03 -18.7 1.40e-03
average 99.1 93.0 6.60e-06 -15.5 4.09e-06 -17.8 1.55e-04
lstruct 100 100 8.76e-03 -193 8.76e-03 -193 8.76e-03
average 99.1 93.0 9.02e-05 -16.1 5.54e-05 -174 5.68e-04
2struct 100 100 2.45e-03 -193 1.27e-03 =213 3.26e-02
average 99.1 94.5 7.45e-06 -16.1 3.78e-06 -194 9.27e-04
PAML GImZ 929 90.6 1.53e-05 -18.1 7.66e-06 -226 1.14e-02
PAML GImY 929 90.6 1.98e-07 -17.5 9.90e-08 -225 3.30e-04

The %Z (resp. %Y) column shows the percentage of all structured positions in the GImZ (resp. GImY) family for which the ancestral sequences can form canonical basepairs.
The H-mean column represents the harmonic mean. The EnSZ column (resp. EnSY) shows the energy of the sequence when folded in the secondary structure of the family
GImZ (resp. GImY). The FreqSZ column (resp. FreqSY) shows the frequency in the ensemble of the secondary structure of GImZ (resp. GImY). The first six rows show maximum
and average results for Sankof £, CalculateScores-1struct and CalculateScores-2structs algorithms. The last two rows represent values obtained for
the PAML root ancestral sequence reconstructed on the GImZ family and on the GImY family
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Table 4 Maximum and average results for the FinP-traJ Clan
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%F %t H-mean EnSF FreqSF EnSt FregSt
Others 94.7° 100° 6.25e-01 -23.7 6.25e-01 -23.7 6.25e-01
average 86.8 88.2 3.17e-03 -27.5 1.97e-02 -244 3.65e-03
2struct 94.72 100° 5.58e-01 -23.7 5.58e-01 -23.7 5.58e-01
average 855 91.2 3.86e-03 -27.0 9.62e-03 -253 1.3%e-02
PAML FinP 100 824 7.13e-08 -283 2.59-03 -214 3.56e-08
PAML traJ 789 100 2.61e-07 -26.3 2.84e-07 -26.2 2.42e-07

The %F (resp. %t) column shows the percentage of all structured positions in the FinP (resp. tra)) family for which the ancestral sequences can form canonical basepairs. The
H-mean column represents the harmonic mean. The EnSF column (resp. EnSt) shows the energy of the sequence when folded in the secondary structure of the family FinP
(resp. tral). The FreqSF column (resp. FreqSt) shows the frequency in the ensemble of the secondary structure of FinP (resp. traJ). The first four rows show maximum and
average results for the first three algorithms (Others) and CalculateScores-2structs. The last two rows represent values obtained for the PAML root ancestral

sequence reconstructed on the FinP family and on the traJ family.

@The maximum values showed are the ones maximizing the basepairs in traJ; the ones maximizing FinP are 100 and 94.1 for %F and %t respectively

the sampled sequences in Others, the set inferred by
Fitch, Sankoff, and CalculateScores-1struct but
not by CalculateScores-2structs. The following
two rows present those sampled in the subset inferred by
CalculateScores-2structs.

We show the results with their standard deviation in
Additional file 1: Tab. 8.

We observe that on average, the solutions from the
“others” group can form 86.8 % of the basepairs of
the FinP structure and 88.2 % of the ones of traJ. On
the other hand, the subset of ancestors produced by
CalculateScores-2structs can form on average
85.5 % (1.3 % less) of the basepairs of the FinP structure
and 91.2 % (3 % more) of the ones of traJ, which, over-
all, seems to be a better compromise. Note that this was
achieved by inferring 4 times fewer ancestors.

Regarding the H-mean, the samples taken from the
smaller subset of ancestral sequences reconstructed by
CalculateScores-2structs show similar results
for the maximum and slightly better for the average H-
mean than the bigger sets inferred by the other algo-
rithms, which tends to show that our method is not
discarding sequences with better folding properties.

We also compared our results with PAML, for each fam-
ily separately. We observe a stark contrast with our results
when comparing the percentage of canonical basepairs
for both families. While PAML can get 100 % on the
considered structure, it gets only about 80 % of the base-
pairs of the other structure. When looking at the stability
of the functional structures of the two families on the
reconstructed ancestral sequences, we observe that our
solutions offer a better trade-off (i.e. the average harmonic
mean is several degrees of magnitude better that the ones
obtained by PAML).

These results suggest that our methods are indeed capa-
ble to retrieve ancestral sequences with better fitness
to both functional structures of the homologous RNA
families. Since RNA families are known to favour the

conservation of structures over sequences, we argue that
achARNement solutions are better ancestral candidates.

Conclusions

In this paper, we presented two novel maximum par-
simony algorithms, implemented in achARNement, to
solve the simultaneous ancestral reconstruction of two
ncRNA families sharing a common ancestor. We first eval-
uated our methods on simulated data, as described in
Sec. Simulated data generation, then on two Rfam clans,
the Glm and FinP-tra]J clan (Sec. Evaluation on biological
data).

We first showed that on simulated data, achARNement
produces smaller sets of ancestral sequences with fewer
errors on average than the classical Fitch and Sankoff algo-
rithms. Since all the ancestral sequences reconstructed
at the root by achARNement are included in those
produced by the Sankoff algorithm, it indicates that
considering the secondary structures does not gener-
ate superfluous mutations. Most importantly, considering
both structures in CalculateScores-2structs pro-
duces orders of magnitudes fewer sequences while always
improving on the other algorithms in terms of the average
percentage of errors.

The biological data cannot be validated directly, yet
some interesting observations can be made. To the best
of our knowledge, achARNement has the first imple-
mentations of complete parsimonious models able to
reconstruct ancestral sequences of large alignments with
multiple structures. On both the Glm and FinP-traj
clans, CalculateScores-2structs has been shown
to infer smaller sets of ancestral sequences than Fitch and
Sankoff, while offering a better compromise in terms of
the percentage of canonical basepairs for both structures
(without penalizing the folding properties, as shown with
the similar values of H-mean). Also, the comparison with
PAML highlights the benefits of our approach, especially
on the FinP-tra] clan, where it is clear that we are able to
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infer sequences that have better folding properties in both
considered structures.

The evolutionary model and algorithms presented here
constitute a first attempt at tackling this specific prob-
lem. Although the results are encouraging, a lot more
work needs to be done in the future to improve our
approach: analyzing more in depth the different param-
eters of our method, reducing even more the number of
ancestral sequences inferred and testing on more Rfam
clans are just a few examples. The frequency in the ensem-
ble also raises important questions in regards to how
we view neutral networks. Given a ncRNA and its func-
tional conformation, what is the minimal frequency in the
structures ensemble needed in order for it to be able to
fulfill its function? Equally for the RNA design problem,
most methods are based on local searches, from a random
search as in RNAinverse [28] or with an ant algorithm
as in antaRNA-ant [36]. The observed diversity in the
quality of sequences at a minimal distance from each other
demonstrates the need of more global tools, like the one
of IncaRNAtion [37] for example.

Through the annotation of Rf am families, manual cura-
tion is needed to distinguish between families of sim-
ilar sequences with known distinct function or struc-
ture, which are joined into clans [26]. In practice,
achARNement could be used for the classification of
sequences to the correct clan member. achARNement
could also be customized to detect families of sequences
folding into multiple structures, as those exhibited
in [38, 39].

Additional file

Additional file 1: The file contains the algorithms of
CalculateScores-1lstruct and CalculateScores-
2structs. Itis followed by the running times of Fitch, Sankoff,
CalculateScores-1lstruct and CalculateScores-
2structs on the simulated data sets. It also contains the list of bacterial
strains used in the biological analysis. We also present additional results on
the GIm and FinP-traJ clans reconstructions. (425 KB PDF)
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