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Abstract

Background: Polymorphisms underlying complex traits often explain a small part (less than 1 %) of the phenotypic
variance (op). This makes identification of mutations underling complex traits difficult and usually only a subset of
large-effect loci are identified. One approach to identify more loci is to increase sample size of experiments but here
we propose an alternative. The aim of this paper is to use secondary phenotypes for genetically simple traits during
the QTL discovery phase for complex traits. We demonstrate this approach in a dairy cattle data set where the complex
traits were milk production phenotypes (fat, milk and protein yield; fat and protein percentage in milk) measured on
thousands of individuals while secondary (potentially genetically simpler) traits are detailed milk composition traits
(measurements of individual protein abundance, mineral and sugar concentrations; and gene expression).

Results: Quantitative trait loci (QTL) were identified using 11,527 Holstein cattle with milk production records and

up to 444 cows with milk composition traits. There were eight regions that contained QTL for both milk production
and a composition trait, including four novel regions. One region on BTAU1 affected both milk yield and phosphorous
concentration in milk. The QTL interval included the gene SLC37A1, a phosphorous antiporter. The most significant
imputed sequence variants in this region explained 0.001 op for milk yield, and 0.11 @ for phosphorus concentration.
Since the polymorphisms were non-coding, association mapping for SLC37A1 gene expression was performed using
high depth mammary RNAseq data from a separate group of 371 lactating cows. This confirmed a strong eQTL for
SLC37A1, with peak association at the same imputed sequence variants that were most significant for phosphorus
concentration. Fitting any of these variants as covariables in the association analysis removed the QTL signal for milk
production traits. Plausible causative mutations in the casein complex region were also identified using a similar
strategy.

Conclusions: Milk production traits in dairy cows are typical complex traits where polymorphisms explain only a small
portion of the phenotypic variance. However, here we show that these mutations can have larger effects on secondary
traits, such as concentrations of minerals, proteins and sugars in the milk, and expression levels of genes in mammary
tissue. These larger effects were used to successfully map variants for milk production traits. Genetically simple traits
also provide a direct biological link between possible causal mutations and the effect of these mutations on milk
production.
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Background

Genetic variation in complex traits is typically due to
thousands of polymorphisms each of which explains a
small part (less than 1 %) of the phenotypic variance
(o). This makes it very difficult to identify causal vari-
ants [1]. Even with sample sizes > 100,000, genome wide
significant associations usually explain <25 % of pheno-
typic variance [2]. Bovine milk is an important source of
human nutrition and milk production traits (such as
milk yield, or fat and protein content) are typical com-
plex traits where many loci and environmental effects
influence phenotypes. Although some mutations with
relatively large effects on milk production traits have
been identified (e.g. DGAT1 [3]), the majority of the
genetic determinants that cause variation in milk pro-
duction traits remain unknown. This is because the
remaining genetic determinants explain only a small per-
centage of phenotypic variance for these traits and stud-
ies typically lack statistical power to confidently identify
these loci. The challenge is to identify the causative mu-
tations that underpin these QTL of small effect on a
genome wide scale.

With the aim of achieving this, we describe a new ap-
proach using secondary, potentially genetically simpler,
traits, where effects of mutations might be expected to
be larger than for the complex trait, to map causal vari-
ants for milk production traits. Although other studies
have used related phenotypes or gene expression to ver-
ify QTL for complex traits, few studies use these data
during the QTL discovery for small-effect (<1 % o3) loci
or when the phenotypic correlation between the traits is
low [4]. We used a dataset of 11,527 genotyped cows
with phenotypes including milk production, and also
secondary phenotypes for a subset of 400 of these cows
including 16 detailed milk composition phenotypes (in-
dividual proteins, mineral concentrations), and gene ex-
pression on a separate sample of 371 cows. The aim was
to use these secondary phenotypes to assist in identifica-
tion and precise mapping of loci with small effects (<1 %
o) on milk production. The power of the method is
demonstrated by the identification of a QTL that af-
fected both milk yield and phosphorous concentration in
milk, centred on the gene SLC37A1, a phosphorous
antiporter. The most significant imputed sequence vari-
ants in this region explained 0.001 o3 for milk yield, and
0.11 o} for phosphorus concentration.

Results and discussion

For both milk production traits and secondary traits
(composition traits including proteins and minerals,
Table 1 and Additional file 1: Table S1), we estimated
haplotype effects for sliding windows of 250 kb across
the genome. Haplotypes were derived from SNP geno-
types (632,003 genome wide SNP in 11,527 cows) and
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Table 1 Genomic regions with overlapping QTL between milk
production and composition traits

BTAU6  Region (Mb)  Milk production traits  Milk composition traits
1 144.2-14465 MY, F%, P% phosphorus

3 7.7-8.15 P% [e]€]

6 374-37.95 F%, P% lactose%

6 87.15-87.65 MY, PY, P% K-casein

11 103.1-103.55  FY, MY, PY, F% B-lactoglobulin

14 1.60-2.25 FY, MY, PY, F%, P% Ca, S, P, kCN

17 56.35-56.6 FY, PY calcium

20 33.35-33.75 P% lacto-peroxidase

Milk production traits are FY = fat yield (kg/lactation), MY = milk yield (L/lactation),
PY = protein yield (kg/lactation), F% = fat percentage in milk, P% = protein
percentage in milk. Milk composition traits include phosphorus (P, mg/kg), IgG
(mg/g), k-casein (KCN, mg/g), B-lactoglobulin (mg/g), calcium (Ca, mg/kg), sulphur
(S, mg/kg) and lacto-peroxidase (mg/g) concentration in milk

the effects of these haplotypes on the traits were esti-
mated with BayesR [5, 6]. We identified regions that
show high variance in estimated haplotype effects for
both milk production traits and secondary phenotypes.
There were 8 regions that contained a QTL for a milk
production and composition trait (chi-squared test P <
0.05 Bonferroni-corrected, Table 1). As a negative con-
trol we analysed a trait with no direct relationship to
milk composition (stature, see methods) and found no
significant overlap between regions with QTL for stature
and milk composition traits.

The 8 regions include several already identified as im-
portant for milk production, including ABCG2 (BTAUES,
38 Mb) [7], the casein complex (BTAU6, 87 Mb), PAEP
(formally known as B-lactoglobulin, LGB; BTAU11), and
DGATI (BTAU14) [3]. These 4 regions can be viewed as
positive controls, and in at least 3 of the 4, the component
trait would help identify the correct gene. For instance, on
chromosome 11, mutations near -lactoglobulin affect the
expression of the gene and hence the concentration of the
B-lactoglobulin protein in milk [8]. For the 4 novel re-
gions, there are promising candidate genes with direct
links to the composition traits, including several IgG re-
ceptors (e.g. FCGR2) on chromosome 3 and a calcium
transporter (ATP2A2) on chromosome 17.

We investigated two regions in detail. The first is a
novel region on chromosome 1, where Fig. 1a shows the
alignment of the variance in estimated genetic merit for
milk yield and phosphorus concentration centred on
(approx.) 144.4 Mbp. Figure 1b shows that the haplotype
effects for the 444 cows measured for the milk compos-
ition traits clearly separate into two groups, supporting
the hypothesis that these haplotypes represent two al-
leles affecting both traits. To identify possible causal var-
iants, we imputed genome sequence from the 1000 bull
genomes project [9] into the region and used EMMAX
[10] to conduct association studies. Due to the small-
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Fig. 1 a The overlapping QTL region in milk yield (MY), predicted from 11,527 animals, and milk phosphorus concentration (P), predicted from
444 animals, on chromosome 1 at approx. 144.4 Mbp. b The estimated haplotype effects for genetic merit of phosphorus concentration (mg/kg)
and milk yield (L/lactation) for haplotypes spanning 144.25-144.5 Mbp on chromosome 1. Cows measured for milk composition traits had a
strong family structure and were from one of 8 sire families. Figure 1b shows the (non-identical) maternal haplotypes in pink, while paternal
haplotypes were randomly assigned to either haplotype A or B from each sire. Note that although all animals were from 8 half-sib families, sires
that carried identical haplotypes effects were assigned to the first sire where this haplotype was observed
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effect of the locus on milk production traits, the analysis
of production data used a multi-trait meta-analysis [11]
strategy while a standard association test was conducted
for milk phosphorus concentration.

Peak significance for phosphorus concentration was
observed for two variants mapping to intron 2 of the
SLC37A1 gene (rs109254133 and rs208161466; P <1 x
10719, both of which were also highly significant in the
multi-trait meta-analysis (P <1 x 107'%) and in complete
LD in the sequenced animals (Additional file 1: Table
S2). When either of these variants was fitted as a co-
variable in subsequent association analyses, there were
no remaining highly significant (P <5 x 10°%) sequence
variants in the region for either phosphorus concentra-
tion or in the multi-trait analysis (Fig. 2). The
rs109254133 variant explained 0.001 o3 for milk yield,
and 0.11 op for phosphorus concentration. The effect on
milk yield was confirmed using a sample of a different
breed of cows (Jersey) (P =0.003), where rs109254133
explained 0.002 o3 in milk yield.

Since rs109254133, rs208161466 and all other less sig-
nificantly associated polymorphisms (P < 1 x 10~ for phos-
phorus concentration) were non-coding, we performed
association mapping for SLC37A1 gene expression with
PLINK [12] (http://pngu.mgh.harvard.edu/purcell/plink/).

Using high depth mammary RNAseq data from a separate
group of 371 lactating cows, we confirmed a strong eQTL
for SLC37A1, with peak association demonstrated for the
same two SNP highlighted from analyses of the milk traits
(rs109254133 & rs208161466, P=3.6x 10™'%; Additional
file 1: Figure S1 and Table S2). These data strongly support
SLC37A1 as the causative gene for the observed variation
in these phenotypes. SLC37A1 functions as a phosphorus:-
glucose-6-phosphate antiporter [13]. That is, it transports
glucose-6-phosphate in one direction and phosphorus in
the other. Glucose is needed for lactose synthesis in mam-
mary cells and lactose controls milk volume because it is
the major osmotic component of milk [14]. In support of
an antiporter hypothesis the allele that increases SLC37A1
expression (the derived ‘T’ allele [15] for rs109254133) in-
creases milk yield (+37.6 L/lactation) and decreases phos-
phorus concentration (-41.8 mg/kg). Although neither
rs109254133 nor rs208161466 appear evolutionarily con-
served, their uniform association across phenotypes (and
independent datasets) highlights these variants for future
functional investigation. This region shows a clear link
between gene function, two related phenotypes with mod-
erate effect QTL (milk phosphorus concentration and gene
expression) and a complex trait with a QTL for explaining
as little as 0.001 o2.


http://pngu.mgh.harvard.edu/purcell/plink/

Kemper et al. BMC Genomics (2016) 17:858

Page 4 of 9

NN

145 146

144
BTA1 : position, Mbp

Fig. 2 Phosphorus (top) and the multi-trait (bottom) association analysis between sequence variants and milk production traits near SLC37A1 (grey
region), without fitting covariables (a) and fitting rs109254133 as a covariable (b). The legend indicates the LD (") between the fitted variant and
all other variants
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The second region investigated was located near the
casein complex on chromosome 6, where there are four
casein-encoding genes (as;-, 0sp-, B- and K-casein) in a
300 kb region. The casein proteins constitute about
80 % of the protein content in bovine milk. Although
protein polymorphisms have been described in these
gene products for many years, their association with
milk production traits including milk protein yield re-
mains uncertain [10]. We imputed genome sequence
into the region to conduct association and eQTL studies
as for the analysis of chromosome 1. The highest associ-
ation in component traits was for k-casein concentra-
tion, where 134 variants were in strong LD (ie. within
one —log;o unit of the top variant, P < 7.7 x 107'Y). The
K-casein eQTL analysis revealed a strong association for
6 variants (P < 3.3 x 10"%; Additional file 1: Figure S2),
three of which were also genotyped in the 1000 bull
genomes dataset [11] and were highly significant for k-
casein concentration. The variant most highly associated
with the expression of k-casein (rs209251505) also in-
creased concentration of the protein in milk. This vari-
ant is located 13.859 Kb downstream of the gene
encoding k-casein (CSN3).

The rs209251505 variant did not remove the entire
QTL signal in the casein complex region. To deter-
mine if we could use the protein concentration phe-
notypes to distinguish between candidate genes in
close proximity, we fitted rs209251505 as a co-
variable in all analyses of milk production and

composition traits. The most significant trait was ag;-
casein concentration, where 18 variants were signifi-
cant (P<2.0 x 10°; Additional file 1: Figure S3). Nei-
ther these nor any other variants significantly affected
the expression of the gene encoding ag;-casein
(CSN1S1; P>1x107% Additional file 1: Figure S2).
However we identified a SNP from the list of 18 can-
didates that was the most significant variant in the
Holstein multi-trait analysis of milk production traits
(rs109193501; P = 1.0 x 10~°% Additional file 1: Table S3).
This SNP is located within an intron of CSN1S1 and its
effects validated for P% in the Jersey cow population (P =
1.1x107'8, after fitting rs209251505 as a co-variable).
Thus, the QTL appears to affect ag;-casein production
but its precise mechanism is unclear as the variant is not
associated with a change in gene expression. When both
the k- and ag;-casein variants were fitted as co-variables
(rs209251505 & rs109193501), only weak associations for
the multi-trait analyses remained (P> 1 x 10719 Fig. 3).
Thus the casein region appears to have at least two in-
dependent QTL, represented by rs209251505 and
rs109193501, which contribute to variation in milk pro-
duction traits. The first, rs209251505, was estimated to ex-
plain 0003 o for P% and 0.08 o for «-casein
concentration (after fitting rs109193501; Additional file 1:
Table S4). The results suggest that one allele of this
polymorphism, or one of those in high LD with it,
increases expression of CSN3 causing increased syn-
thesis of the k-casein protein, and thus an increase in
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Fig. 3 Multi-trait association analysis between sequence variants and milk production traits near the casein complex, without fitting covariates
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K-casein and total protein concentration in milk. The
second variant, rs109193501, was estimated to explain
0.01 o3 for P% and 0.04 o3 for ag-casein concentration
(after fitting rs209251505; Additional file 1: Table S3),
although the precise mechanism by which it may
modulate abundance is unclear. Our study indicates
little effect of the previously reported coding poly-
morphisms [9], suggesting that the previous inconsist-
encies in reports were due to variation in LD
between studies.

Conclusions

These analyses demonstrate the use of information from
genetically simple traits (secondary traits) to identify QTL
explaining as little as 0.001 op in milk production traits.
By leveraging the larger effect of the loci in the genetically
simple traits, we were able to use records on approxi-
mately 400 individuals to confidently identify these loci.
We attempted to identify the causative mutations under-
lying these QTL using imputed sequence data but there
were many potential candidates in high LD and no known
functional roles in the genome. We conclude that using
secondary, and genetically simple, traits is a viable
alternative to increasing sample size for the identification
of small-effect QTL, particularly where it may take several
years to accumulate sufficient additional data to attain the
required increases in statistical power. Our results also
show that phenotypes with direct biological links to gene
function are useful to distinguish between candidate genes
in close proximity.

Methods

Overview of data and analyses

This paper uses eight datasets to (1) conduct QTL map-
ping with BovineHD (high density) SNP in milk produc-
tion and component traits, (2) conduct association
studies with imputed sequence variants in target regions
for milk production and component traits, and (3) con-
duct an eQTL analysis with sequence variants in target
regions to identify likely causal variants. Many of the
datasets represent exact data or expanded datasets from
previously described analyses and Additional file 1: Table
S5 shows the number of animal records used in this ana-
lysis for each data type and their references (where rele-
vant). New data includes the 16 milk component traits
and its collection was approved by the Department of
Primary Industries Ethics Committee. This is the first
analysis to consider the two completely independent
data sources of sequence variants from a global initiative
(i.e. the 1000 bull genomes dataset) and from a dataset
generated in New Zealand by the Livestock Improve-
ment Corporation. Further details on data and the ana-
lysis are given below.

Data collection for milk component traits

There were 728 cows whose combined morning and
afternoon milk samples were measured for lactose, min-
eral (calcium, potassium, magnesium, sodium, phos-
phorus, sulphur, zinc) and protein (lactoperoxidase,
lactoferrin, immunoglobulinG, alpha-lactalbum, beta-
lactoglobulin, kappa-casein, alpha-S1-casein, beta-casein)
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concentrations. Traits were measured 1 or 2 times with
a 6 week interval between samplings. Details for the
number of records, trait means and measurement units
are given in Additional file 1: Table S1. Minerals were
assayed by microwave acid digestion of homogenised
milk samples in a mixture of nitric acid and hydrogen
peroxide and measuring the digestant using Inductively
Coupled Plasma Emission Spectroscopy (all minerals ex-
cept zinc) and atomic absorption spectrophotometry
(zinc only). Major milk proteins (alpha-lactalbum, beta-
lactoglobulin, the 3 casein types) were measured using
capillary zone electrophoresis [16] with minor proteins
(lactoperoxidase, lactoferrin, immunoglobulinG) quanti-
fied by HPLC.

Phenotype and genotype preparation for milk
component traits

The model fitted to the data aimed to correct pheno-
types for non-genetic effects. ASReml [17] was used to
fit the following model to each trait: trait=mean +
breed; + age* + dim* + HYS; + PE; + anim; + ej;; where i=
breed code (8 levels, accounting for degrees of Holstein,
Jersey and unknown ancestry); age* and dim®* = covari-
ates of cow age (age) and days-in-milk (dim) fitted as
4th order polynomials; PE;, anim; and HYS;=random
effects for permanent environment [PE ~ N(0,03¢)], addi-
tive genetic [anim ~ N(0,0%)] and herd-year-season
(HYS;, HYS ~ N(0,0%ys)] for cow j and ejy is the residual
for measurement k from cow j. Thus a phenotype for
animal j was ¥,(PE; + anim; + e;,)/n, where n is the num-
ber of records for cow j. Only cows with 2 records were
used in the final analysis (i.e. up to 444 animals).
Animals had real and imputed Illumina BovineHD Bead-
Chip genotypes for 632,003 SNP. Quality control proce-
dures and imputation were carried out as part of the
larger population of genotyped bulls and cows (see
below) following [5]. Quality checks included pruning of
SNP on the basis of their GenTrain score (Gen-Call >
0.6) and removal of SNP with less than 10 copies of the
rare allele in the larger population. Imputation used
Beagle v3 [18]. The cows included in this dataset had a
strong family structure and most were from one of 8 sire
families (Additional file 1: Figure S4).

Data for milk production traits

The milk production data is the Holstein reference of
8,478 cows and 3,049 bulls as described by Kemper et al.
[6]. Briefly, these are animals evaluated under Australian
conditions for 5 milk production traits; milk yield (L/lac-
tation), fat yield (kg/lactation), protein yield (kg/lacta-
tion), fat percentage in milk (%) and protein percentage
in milk (%). Traits were obtained from the Australian
Dairy Herd Improvement Scheme as either trait-
deviations (for cows) or daughter-yield deviations (for
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bulls) which are phenotypes pre-corrected for non-
genetic effects. Some of these records are highly accurate
as they are the culmination of up to 6 lactations or, in
the case of bulls, many 1000s of daughter records,
potentially with multiple lactations contributing to each
daughter record. The Jersey cow population used for val-
idation of the variants in the latter stages of the associ-
ation study is the reference dataset of 3,917 cows from
Kemper et al. [6] where the phenotypes are trait-
deviations for the traits as described above for the
Holstein animals. All animals had real and imputed Illu-
mina BovineHD BeadChip genotypes for 632,003 SNP
which had passed quality control procedures [5].

Identification of QTL regions with HD SNP genotypes
QTL were identified in milk production and component
traits using regions showing high variance in local gen-
omic estimated breeding values (GEBV, ie. genetic
merit) [19]. Variance in local GEBV were obtained for
milk production traits from Kemper et al. [6] using the
Holstein-only reference population of 11,527 bulls and
cows analysed with the weighted BayesR procedure. This
analysis weighted bull and cow records to account for
heterogeneous error variance of the data and was found
to have moderate-to-high predictive value for overall
genetic merit (accuracy = 0.58-0.88) [6]. Thus high vari-
ance in local GEBV aimed to identify genomic regions
underlying variation in the predicted genetic merit. From
Kemper et al. [6], variance in local GEBV are calculated
as the variance in Wv, were W is a matrix of SNP geno-
types for the reference population in a 250 kb region
and v is the SNP effect estimated by BayesR. The local
variance in GEBV has the advantage of accounting for
the haplotype structure of the data and analysis of small
regions (sliding windows of 250 kb) overcomes, in part,
problems associated with simultaneous fitting of all vari-
ants (e.g. splitting of QTL effects between adjacent SNP
in strong LD [20]). Windows of 250 kb were chosen to
represent haplotypes segregating in the population prior
to breed formation [21]. QTL were defined in milk pro-
duction traits as the 2 % of the genome with the highest
variance in local GEBV. The highest 2 % of windows
represent about 90 % of the total cumulative window
variance in each trait.

QTL mapping for component traits was also con-
ducted using BayesR [5, 6] and variance in local GEBV.
As the heritability of these traits was unknown (and
could not be estimated accurately due to the strong half-
sib structure in the data), we assumed SNP effects came
from a mixture of normal distribution with variance
equal to 0, 0.00005, 0.0005 and 0.005 of the phenotypic
variance (03). Local GEBV were calculated as described
above from the estimated SNP effects [6]. Milk compos-
ition traits showed a range of genetic architectures, with
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the largest QTL (defined as the 0.1 % of windows
explaining the highest variance) explaining > 95 % of the
cumulative variance for some simple traits (Grp I traits;
Additional file 1: Figure S5) but<25 % of the total in
more complex traits (Grp II traits; Additional file 1:
Figure S5). Only the largest QTL for each trait were ex-
plored further, where these QTL were investigated for
co-location with QTL from milk production traits.
Although more formal approaches for declaring QTL
under Bayesian frameworks are available, e.g. the cal-
culation of Bayes factors [22], the approach taken
here could be applied directly to available data and
formal testing used a chi-squared test for independ-
ence (see below).

We tested the hypothesis that QTL for milk produc-
tion traits are independent of QTL for milk composition
traits. Thus the expectation was that there should be no
overlap between these two sets of QTL. That is, if we se-
lect 2 % of the genome with milk production QTL,
0.1 % of the genome with QTL for component traits and
there are 10,015 independent windows, then we expect
<1 window overlapping between the two sets (0.02 x
0.001 x 10,015 windows <1 window). Since the QTL
analysis used sliding windows of 250 kb with 50 kb
between adjacent windows, we performed the test on
the average number of overlapping QTL from each set
of non-overlapping windows. The chi-squared test with
Bonferroni corrected P-value [0.05/(16 component traits
x 5 milk production traits)] tested if the number of
significant overlapping QTL regions was more than
expected by chance (P <0.05). As a negative control, we
also tested the overlap between milk component QTL
and a trait with good prediction accuracy but no known
relationship to milk component traits. The trait selected
was stature (accuracy = 0.54) [6] and, as expected, there
was no significant overlap between stature QTL and the
largest QTL identified for the 16 milk component traits.
Chi-squared tests for all trait pairs with co-locating QTL
are given in Additional file 2.

Imputation of sequence variants and association study in

targeted regions

The two regions were chosen for association studies with
imputed to full sequence variants. These regions were the
most promising novel finding (BTA1:144.4Mbp) and an ex-
ample of a region near the casein complex (BTA6:87.5Mbp)
which has several genes encoding for the major milk pro-
teins. Imputation used phased Holstein variant calls (n =
260) from run4 of the 1000 bull genomes project [9] and
Minimac2 [23], where SNP used for imputation were qual-
ity checked for concordance with 800 K genotypes [24]. Im-
puted regions included a minimum of 4 Mb surrounding
each QTL and focus on either 28,474 (Chr1:143-146Mbp)
or 4,527 (Chr6:87-87.5Mbp) variants in the target regions.
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Sequence variants from the 1000 bull genomes includes bi-
allelic SNP and and small bi-allelic indels. Variants with
minor allele frequency >0.001 were tested for association
with the milk production and composition traits (from
Table 1) using genotype probabilities in EMMAX [11]
and an identity-by-state matrix constructed with
800 K genotypes. Association tests for milk produc-
tion traits in Holstein bull and cow datasets were
conducted separately (to minimise the effect of the
heterogeneous error variance of these two data types),
and then combined assuming a n degree-of-freedom
for a chi-squared test statistic where the test statistic
for each variant was given by Y.t*> (where n is the
number of t-statistics included in the test [11]). The
multi-trait analysis only used the milk production traits
identified as containing QTL (i.e. those identified Table 1,
for each region). Analyses fitting SNP covariates used the
same procedure as above and the covariate option in
EMMAX. Validation of sequence variants using Jersey cat-
tle used Jersey cow genotypes and phenotypes (n =3917)
as described by Kemper et al. [6] and consisted of SNP ge-
notypes for 632,003 SNP. Sequence imputation used
Minimac2 [22], as above, and phased Jersey animals (n =
61) from the 1000 bull genomes [9] as the imputation
reference.

eQTL data collection and analysis

Expression QTL analysis was conducted using im-
puted genomic sequence in conjunction with a mam-
mary RNA sequence dataset representing 406
lactating cows. These data comprised an expanded
dataset to that described previously [25]. Briefly, sam-
ples were derived by mammary tissue biopsy and total
RNA libraries prepared for 100 bp paired end sequen-
cing on the Illumina HiSeq 2000 instrument. Library
preparation and sequencing was performed by NZ
Genomics Limited (NZGL; Auckland, New Zealand)
or the Australian Genome Research Facility (AGREF;
Melbourne, Australia). Sequence reads were mapped
to the UMD3.1 genome using Tophat2 (version
2.0.12) [26], yielding an average of 88.9 million
mapped read-pairs per sample. Expression phenotypes
representing SLC37A1, CSNIS1, and CSN3 were
quantified using v1.14.0 of DESeq [27], representing
variance stabilised read counts corresponding to gene
structures from Ensembl gene set release 77.

RNAseq animals were genotyped using the Illumina
BovineHD BeadChip (N =377), or Illumina SNP50k
BeadChip (N =29), with the latter cohort imputed to
the BovineHD BeadChip prior to sequence imputation
using v4 of Beagle [18]. These data were then merged
with an additional variant set called directly from the
RNAseq alignments, representing a high confidence,
quality-filtered consensus set called using GATK
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HaplotypeCaller (v3.1) and Samtools (v1.2) [28, 29].
Whole-genome sequence imputation was performed
using a sequence reference population of 556 animals
described elsewhere [25]. Briefly, genome sequence
variants were identified using GATK HaplotypeCaller
(v3.1) and phased using Beagle (v4) [18, 28]. Variants
with initial allelic R* values>0.95 in the reference
population were retained and imputed into the target
population using Beagle (v4) [18]. Any variants in the
target population with imputation R* values < 0.70,
and minor allele frequency<0.001 and Hardy-
Weinberg thresholds of P<1x107'° were removed
from further analysis. Plink (v1.90) [12] was used to
test the association between sequence variants in the
QTL regions and the normalised expression pheno-
types described above. BovineHD BeadChip genotypes
in conjunction with the identity by state and multidi-
mensional scaling procedure implemented in Plink
(v1.90) [12] to calculate population structure covari-
ates for inclusion in the SNP association models. Ten
covariates were fitted in these models, representing a
practicable number of covariates which together ex-
plained > 50 % of the genotypic variation. Models also
included a single fixed effect to account for differ-
ences in cohorts/sequencing facilities. The sequence
intervals comprised 22,263 variants for analysis of
SLC37A1 (Chrl:143-146Mbp), and 3,169 variants for
analysis of CSN3 and CSNIS1 (Chr6:87—-87.5Mbp).
The eQTL results presented correspond to the 371
animals that passed all quality-filtering criteria, con-
sisting of removal of genome-wide expression outliers
based on principal component analysis [30], nominal
genotype call rate (<0.95), and other quality metrics.
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