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Abstract

Background: Genome sequencing and subsequent gene annotation of genomes has led to the elucidation of
many genes, but in vertebrates the actual number of protein coding genes are very consistent across species
(~20,000). Seven years after sequencing the cattle genome, there are still genes that have limited annotation and
the function of many genes are still not understood, or partly understood at best. Based on the assumption that
genes with similar patterns of expression across a vast array of tissues and experimental conditions are likely to
encode proteins with related functions or participate within a given pathway, we constructed a genome-wide
Cattle Gene Co-expression Network (CGCN) using 72 microarray datasets that contained a total of 1470 Affymetrix
Genechip Bovine Genome Arrays that were retrieved from either NCBI GEO or EBI ArrayExpress.

Results: The total of 16,607 probe sets, which represented 11,397 genes, with unique Entrez ID were consolidated
into 32 co-expression modules that contained between 29 and 2569 probe sets. All of the identified modules
showed strong functional enrichment for gene ontology (GO) terms and Reactome pathways. For example,
modules with important biological functions such as response to virus, response to bacteria, energy metabolism,
cell signaling and cell cycle have been identified. Moreover, gene co-expression networks using “guilt-by-
association” principle have been used to predict the potential function of 132 genes with no functional annotation.
Four unknown Hub genes were identified in modules highly enriched for GO terms related to leukocyte activation
(LOC509513), RNA processing (LOC100848208), nucleic acid metabolic process (LOC100850157) and organic-acid
metabolic process (MGC137211). Such highly connected genes should be investigated more closely as they likely to

have key regulatory roles.

Conclusions: We have demonstrated that the CGCN and its corresponding regulons provides rich information for
experimental biologists to design experiments, interpret experimental results, and develop novel hypothesis on
gene function in this poorly annotated genome. The network is publicly accessible at http://www.animalgenome.

org/cgi-bin/host/reecylab/d.

Background

The completion of a draft genome assembly simply
marks the “end of the beginning” of genome exploration
in that species [1]. After a genome is sequenced, the
next critical step is gene annotation. This includes
marking the genomic position and structure of genes,
naming genes (nomenclature) and functional annotation
ie. identifying their biological function. Since the
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sequencing of the cattle genome in 2009 [2], there have
been efforts to identify functional elements in the gen-
ome [3-7]. Functional genomics focuses on understand-
ing the function and regulation of genes and gene
products on a genome-wide or global scale [1]. Initial
annotation of the cattle genome identified 22,000+
genes, with a core set of 14,345 orthologs shared among
seven mammalian species [2]. Despite these efforts, the
function of some genes is still not understood, or partly
understood at best [6].

The large amount of biological data deposited in pub-
lic databases provides an opportunity to computationally
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annotate functional and regulatory connections among
genes. A challenge in this post-genomic era is to prop-
erly integrate available information so as to reconstruct,
as accurately as possible, valuable information from large
volumes of data [8]. It is widely accepted that to under-
stand gene function, genes must be studied in the con-
text of networks [9]. Gene co-expression analysis (GCA)
has emerged as a powerful systems biology approach for
multigene analysis of large-scale data sets with func-
tional annotation (the assigning GO term to an identi-
fied gene) [9-12]. This technique has been widely used to
functionally annotate gene from different species [12—-16].
An output of GCA is the ability to annotate gene function
based on ‘guilt-by-association’ (GBA). In short, groups of
genes that maintain a consistent expression relationship
(i.e. co-expression modules) may share a common bio-
logical role [11]. The evolutionary conservation of co-
expression patterns lends further evidence to support the
biological importance of this phenomenon [17].

In this study, a condition independent gene co-
expression network was generated to provide additional
functional annotation information for genes in the cattle
genome. We have annotated genes with possible putative
functions and possible regulatory mechanisms. This effort
will accelerate discovery of genes and lead to elucidation
of the biological features responsible for economic traits.
Network information is publically available at http://
www.animalgenome.org/cgi-bin/host/reecylab/d.

Results

Data from 72 experiments (Additional file 1: Table S1),
which equated to 1470 publically available Affymetrix
Genechip Bovine Genome Arrays, was used to construct
a Cattle condition-free Gene Co-expression Network
(CGCN). These experiments covered 17 tissues and four
broadly classified experimental conditions (Fig. 1). Only
probe sets that mapped to unique Enterz Gene ID’s
(16,607 probe sets represented 11,397 genes) were used
for gene network construction (Additional file 2: Table
S2). Weighted Gene Co-expression Network Analysis
(WGCNA) [18] was used to identify highly connected
gene sets (modules) based on their normalized expres-
sion levels (see Methods). Sixty percent (10,095 of
16,607 probe sets), of probe sets were consolidated into
32 modules (Fig. 2a and Additional file 2: Table S2). The
approximate high Scale-Free Topology Fitting Index (R?)
shows approximate scale free topology in CGCN
(Fig. 2b).

Since genes belonging to the same module are co-
expressed across a vast array of tissues and experimental
conditions, they are likely to encode proteins with re-
lated functions or are within a given pathway [14]. The
potential biological function of the identified modules
were investigated using gene ontology [19] and
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Reactome pathway information [20] (functional enrich-
ment analysis). Almost all modules exhibited high en-
richment for GO terms (32 modules) or Reactome
pathways (29 modules) (Table 1 and Additional file 3:
Table S3). The concordance between enriched GO terms
and pathways in each module strengthened the bio-
logical function of computational modules. The bio-
logical function of modules in CGCN can be categorized
into four major functional categories (metabolic process,
gene expression process, immune system process and
growth and developmental process) (Fig. 3). In each
module, there were several tight clusters of GO terms
that had many links between these groups of genes
(Additional file 3: Table S3), which may represent robust
interactions between these processes.

The white module contained 80 probe sets, which
mapped to 63 genes, and had 3160 edges (connections).
Interrogation of the cattle protein interaction network
database [21] revealed that 38 of 63 genes (60 %) had
evidence that they interacted (physically or functionally),
i.e. a combined interaction score of more than 600 (Fig. 4
and Additional file 4: Table S4). These results indicated
a strong functional concordance between genes included
in this module. Through consolidation, significantly
over-represented Biological Process (BP) GO terms com-
bined into seven clusters with related functions (Fig. 5a
and Additional file 3: Table S3): cellular response to
virus (18 genes), defense response to virus (18 genes),
negative regulation of multi-organism process (15 genes),
response to virus (20 genes), response to type I interferon
(18 genes), innate immune response (19 genes), positive
regulation of multi-organism process (6 genes) and
ISG15-protein conjugation (3 genes). The top over-
represented BP GO term in the module was defense re-
sponse to virus. There was a close similarity between this
term and other over-represented BP GO terms in the
module (Fig. 5a).

The Molecular Function (MF) GO terms of the genes
included in this module were related to regulation of gene
expression such as: single-stranded RNA binding, double-
stranded RNA binding, NAD+ ADP-ribosyltransferase ac-
tivity and exonuclease activity, active with either ribo- or
deoxyribonucleic acids and producing 5'-phosphomonoe-
sters (Fig. 5b and Additional file 3: Table S3). In addition,
this module was highly over-represented for Reactome
[20] pathways related to RIG-I/MDAS5 mediated induction
of IFN-alpha/beta pathways, interferon signaling and cyto-
solic sensors of pathogen-associated DNA were over-
represented (Fig. 5¢ and Additional file 3: Table S3).

The saddle brown Module had 62 probe sets, which
mapped to 53 genes, and contained 1891 edges. Forty
two percent of these genes (22 genes) had high inter-
action scores (interaction score > 600; Additional file 4:
Table S4), which highlights the functional connection
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Fig. 1 Composition of the 1470 Affymetrix Genechip Bovine Genome Arrays used in this study. Arrays were classified according to the

experimental conditions (a) and distribution (b)

between genes in this module. This module exhibited Enriched MF GO terms associated with this module
several clusters of over-represented BP GO terms related  were related to cell signaling such as: cytokine activity,
to: defense response to bacterium (20 genes), regulation = non-membrane spanning protein tyrosine kinase activity
of inflammatory response (13 genes), leukocyte chemo- and RAGE receptor binding (Additional file 3: Table S3
taxis (10 genes), inflammatory response (15 genes), in- and Additional file 5: Figure S1B). In accordance with
flammatory response to antigenic stimulus (5 genes), these results, this module was highly over-represented
and leukocyte migration (10 genes). The top over- for cell surface interactions at the vascular wall as its
represented BP GO term in the module was defense re- Reactome pathway (Additional file 3: Table S3 and
sponse to bacterium (Table 1, Additional file 3: Table S3)  Additional file 5: Figure S1C).

and close similarity between this term and the other The light green Module contained 169 probe sets,
over-represented GO terms in the module (Additional which mapped to 160 genes that were connected via
file 5: Figure S1A) indicate response to bacterium as the 14,196 edges. Thirty nine percent of these genes, 62 out
main biological function of this module. of 160 genes, had high protein interaction scores (>600;
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Fig. 2 Network topology of the CGCN. a Visualizing the CGCN (based on TOM similarity matrix) using heatmap plot. Light color represents low
overlap and progressively darker red color represents higher overlap. Blocks of darker colors along the diagonal are the modules. The gene
dendrogram and module assignment are also shown along the left side and the top. b Scale free topology evaluation of CGCN using Scale-Free
Topology Fitting Index [18]
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Table 1 Modules identified in the network and their top over-represented Biological process GO terms

Module # probes # genes GO term Genes in GO term? p-value®
Turquoise 2569 2050 system process 241/652 3.30E-31
Blue 806 690 nucleic acid metabolic process 211/2322 6.89E-10
Brown 606 526 organic acid metabolic process 113/565 1.38E-36
Yellow 566 521 RNA processing 83/455 6.26E-26
Green 557 471 RNA metabolic process 151/2064 3.36E-09
Red 519 431 cell cycle process 117/604 4.93E-50
Black 454 384 negative regulation of peptidase activity 22/129 2.76E-07
Pink 348 304 RNA metabolic process 117/2064 7.20E-17
Magenta 292 267 gene expression 111/2568 1.56E-08
Purple 275 361 ribonucleoprotein complex biogenesis 44/266 3.10E-24
Green yellow 271 214 chromatin modification 26/336 3.79E-07
Tan 269 225 anatomical structure morphogenesis 72/1323 9.65E-14
Salmon 239 216 translation 85/398 1.40E-67
Cyan 202 181 oxidation-reduction process 35/619 1.15E-08
Midnight blue 200 191 hydrogen ion transmembrane transport 14/60 1.14E-10
Light cyan 188 151 leukocyte activation 34/365 7.29E-20
Grey60 184 158 leukocyte activation 30/365 3.28E-13
Light green 169 160 purine ribonucleoside triphosphate metabolic process 17/133 2.08E-09
Light yellow 165 149 sterol biosynthetic process 15/31 221E-18
Royal blue 164 146 mitochondrial translation 8/43 9.87E-06
Dark red 158 139 proteasomal protein catabolic process 12/245 6.00E-3
Dark green 146 128 response to endoplasmic reticulum stress 15/146 2.23E-09
Dark turquoise 120 88 tricarboxylic acid metabolic process 3/27 5.75E-3
Dark grey 102 80 inflammatory response 28/269 140E-23
Orange 98 78 antigen processing and presentation of peptide antigen 12/26 1.00E-18
Dark orange 95 85 regulation of mRNA metabolic process 3/69 140E-2
White 80 63 defense response to virus 15/138 4.68E-15
Sky blue 67 53 transcription from RNA polymerase | promoter 3/32 49184
Saddle brown 62 53 defense response to bacterium 7/94 1.16E-11
Steel blue 61 48 acute inflammatory response 6/46 7.97E-07
Pale turquoise 34 24 L-serine metabolic process 3/7 2.55E-06
Violet 29 23 amino acid activation 7/36 1.84E-12

*The two values listed in this column refer to the number of genes associated with the over-represented GO term in the module and the number of genes associated

with the same GO term in Affymetrix Genechip Bovine Genome Array

PThe p-value indicated the probability that a module contains equal or larger number of genes associated with the GO term under a hypergeometric distribution after

Bonferroni step-down correction

Additional file 4: Table S4). This module had over-
represented BP GO terms related to energy metabolism
such as: purine ribonucleoside triphosphate metabolic
process (38 genes), generation of precursor metabolites
and energy (14 genes) and cristae formation (3 genes)
(Additional file 3: Table S3 and Additional file 6: Figure
S2A). Enriched MF GO terms associated with this mod-
ule was related to hydrogen ion transmembrane trans-
porter activity and inorganic cation transmembrane
transporter activity (Additional file 3: Table S3 and

Additional file 6: Figure S2B). This module was over-
represented for the following Rectome pathway terms:
citric acid cycle (TCA) and respiratory electron trans-
port, glycolysis, metabolism of nucleotides, processive
synthesis on the C-strand of the telomere and TP53 reg-
ulates metabolic genes (Additional file 3: Table S3 and
Additional file 6: Figure S2C).

The red module contained 519 probe sets, which
mapped to 431 genes, and had 134,421 edges. Just less
than half of these genes, 244 out of 519 genes, had high
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protein interaction scores (>600) (Additional file 4:
Table S4) that highlight the functional connection
between genes in the module. Gene ontology enrichment
analysis revealed cell-cycle as the top over-represented BP
GO term in the module. Close similarity between this
term and more than 80 % of over-represented BP GO
terms in the module (139 out of 160) indicated that cell-
cycle was an umbrella process for this module (Additional
file 3: Table S3 and Additional file 7: Figure S3A). Molecu-
lar function GO terms for this module were related to
ATP binding, DNA binding, damaged DNA binding,
DNA helicase activity and cyclin-dependent protein
serine/threonine kinase regulator activity (Additional file
3: Table S3 and Additional file 7: Figure S3B). This module
also displayed a high number of over-represented Reac-
tome pathways related to cell cycle such as chromosome
maintenance, mitotic G2-G2/M phases, activation of the
pre-replicative complex and mitotic prophase (Additional
file 3: Table S3 and Additional file 7: Figure S3C).

The potential function of 133 genes with no previous
functional annotation, e.g. no associated/assigned GO
terms, was predicted based on functional uniformity
among the associated genes (Additional file 8: Table S5).
Interestingly, we found four intra-modular hub genes
with un-known function: LOC509513, LOC100848208,
LOCI100850151 and MGCI137211 which were located in
the light cyan, yellow, blue and brown modules, respect-
ively. Functional analysis of their located module and
close interconnectedness (i.e. topological overlap meas-
ure (TOM)>0.01) with known genes (Table 2 and
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Additional file 8: Table S5) revealed that they are potentially
involved in biological functions related to leukocyte activa-
tion (LOC509513), RNA processing (LOCI00848208),
nucleic acid metabolic process (LOCI00850151) and
organic-acid metabolic process (MGC137211). Such highly
connected genes should be investigated more closely as
they likely to have key regulatory roles in the cattle.

Discussion

Gene annotation projects indicate that some protein
coding genes in a variety of organisms have no known
functionally or have weak functional annotation [22].
Defining the functions of all genes in the genome of an
organism is a formidable task. Gene expression data is a
valuable resource that can provide possible functional
annotation of a gene. Each gene is estimated on average
to interact with four to eight other genes and to be in-
volved in 10 biological functions [23]. Gene co-
expression analysis provides a framework to study gene
function in the context of interactions derived from
multiple data sources and integrated into a global inter-
actome. With emphasis on cattle the application of
RNA-sequencing has paved the way for transcriptome
analysis of cattle in recent years in various experimental
conditions [24-26]. For the purpose of genome-wide co-
expression analyses, a comprehensive catalogue of ex-
perimental conditions from RNA-seq studies is still
incomplete. Nevertheless, historical microarray data have
provided a basis for genome-wide co-expression studies
in cattle. In this study, cattle condition independent gene
co-expression networks were generated using the large
number of publicly available high-quality microarray
chips from either NCBI GEO [27] or EBI ArrayExpress
[28]. The hypothesis of this study was that genes with
similar pattern of accumulation across a vast array of tis-
sues and experimental conditions are likely to encode
proteins with related functions [14]. The first attempt to
construct a genome wide gene co-expression network
has been made by Lee et al. [29]. They presented a
large-scale analysis of mRNA co-expression based on 60
large human data sets and explained how the large body
of accumulated microarray data can be exploited to in-
crease the reliability of inferences about gene function.
Since then, several attempts have been made to con-
struct massive scale gene co-expression network as a
source of functional annotation in many species from
yeast to human [12-16].

WGCNA [18], a powerful ‘guilt-by-association’-based
method, was used to construct CGCN. Several measures
can be used to define correlation coefficient in correl-
ation networks such as Pearson correlation, Spearman
correlation and Biweight midcorrelation [9]. The
Pearson correlation is sensitive to outlying observations
and it just considers the linear relations between
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Fig. 4 Heatmap visualization of module one gene interactions based on cattle protein interaction network [21]

variables. While Spearman correlations protect against
outliers and can account for non-linear relations. It is
however overly conservative in many applications [9]. In
this study, we used Biweight midcorrelation for network
construction which combines the advantages of both the
Pearson (relatively high power) and Spearman correla-
tions (relatively high robustness) [30].

WGCNA is based on the concept of a scale-free net-
work. Metabolic networks in all organisms have been
suggested to be scale-free networks [18], and scale-free
network phenomena have been observed in many empir-
ical studies [31-33]. Scale-free networks are extremely
heterogeneous, and their topology being dominated by a
few highly connected nodes that link the rest of the less
connected nodes to the system [9]. The main property
of scale-free networks is their remarkable tolerance
against attacks of randomly selected nodes but not
against directed removals of central nodes (hubs) [18].
These hub nodes can be detected using nodes connectiv-
ity in the whole network (whole network hubs) or in the

subnetworks of the main network (intra-modularhubs)
[9]. Intra-modularconnectivity has been found to be an
important complementary node screening variable for
finding biologically important genes [18]. They argued
that while whole-network connectivity is important in
many context, nodes important for particular functions
in large, complex networks are often not among the
whole-network hubs [18]. Based on these results, intra-
modularconnectivity was used to detected hub genes in
CGCN.

Constructing a gene co-expression network and natur-
ally partitioning the network into modules, provided a
systems-level understanding of the gene modules that
coordinate multiple biological processes to carry out
specific biological functions [13]. The effectiveness of
our approach is best illustrated by correspondence of
these computational modules with actual biological en-
tities. Most of gene interactions found in each module
were also supported with protein interaction data (phys-
ical or functional interactions) from String database [21].



Beiki et al. BMC Genomics (2016) 17:846 Page 7 of 13

Qresponse to type I ISG 15-protein conjugation **
(S/\nterferon - . .
AN positive regulation of multi

. a8 .
ISG 15-protein C;L) . organism process **
conjugation cellular response to virus innate immune response **
P response to type I interferon **
p

innate immune

response ‘

esponse to virus **

response to virus positive regulation
‘ of mult|6gan|sm
,;,-.\‘; ! )

negative regulation ®

of malti:organism

process -

i *k. I’ . .
defense response to virus negative regulation of multi

organism process **

double-stranded RNA binding **
A
AU NG

,\ 4
NAD+ADP-ribosyltra

exonuclease activity, active
nsferase activity

with eaither ribo-or
deoxyribonucleic acids and
producing
5’-phosphomonoesters **

single-stranded RNA binding **

single-stranded

o RNA binding
exonuclease activity,

active with either ribo-
or deoxyribonucleic
acids and producing
5’-phosphomonoesters

double-stranded
RNA binding

NAD+ADP-ribosyltransferase
activity **

cytosolic sensors of
pathogen-associated DNA
*xk

®

cytosolic sensors of
pathogen-associated DNA

interferon signaling **

\ X ) RIG-I/MDAS mediated

N induction of IFN-alpha/beta
\ O\ pathways **
x\ /Z
RIG-I/MDAS mediated
induction of

IFN-alpha/beta pathways

Fig. 5 Functional analysis of the white module genes. Over-represented GO/pathway terms were grouped based on kappa statistics. The size of
each category within a pie chart represents the number of included terms. Only the most significant GO/terms within groups were labeled. GO/
pathway terms are represented as nodes, and the node size represents the term enrichment significance, while the edges represent significant
similarity between categories. a Representative biological processes interactions among module genes. b Representative molecular function
interactions among module genes. ¢ Representative Ractome analysis interactions among module genes

The white module had several close interconnected
over-represented GO terms and Reactome pathways re-
lated to immune response to virus (Fig. 5). This module
was also enriched for ISG15-protein conjugation BP GO
terms, which were associated with ISGI5, UBA7 and
UBE2L6. ISG15 ubiquitin-like modifier gene (ISG15) en-
codes for an interferon induced ubiquitin like (UbL) pro-
tein, which plays a key role in the innate immune

response to viral infection either via its conjugation to
both host and viral proteins (ISGylation) or via its action
as a free or unconjugated protein [34]. The ISGylation
process requires three sequential reaction steps: activa-
tion, conjugation and ligation, which are performed by
E1-E3 enzymes, respectively [35]. The other two genes,
UBA7 and UBE2L6, encode for ubiquitin/ISG1S5 activat-
ing and conjugating enzymes, respectively [36]. Another
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Table 2 Functional enrichment analysis of close neighbors (TOM > 0.01) of hub genes with no functional annotation in CGCN?

Gene # Top BP GO term p-value® Top Reactome pathway p-value®
LOC509513 1 T cell activation 1.58E-20 Adaptive Immune System 1.04E-21
2 T cell aggregation 1.58E-20 Immunoregulatory interactions between 3.55E-19
a Lymphoid and a non-Lymphoid cell
3 lymphocyte aggregation 1.84E-20 Immune System 7.66E-19
LOC100848208 1 RNA processing 8.95E-07 Mitochondrial translation elongation 2.12E-08
2 mMRNA metabolic process 1.87E-04 Mitochondrial translation termination 2.12E-08
3 mitochondrial translation 2.18E-04 Mitochondrial translation 2.50E-08
LOC100850151 1 RNA processing 3.82E-15 Cell Cycle 8.78E-11
2 mMRNA processing 6.36E-11 Processing of Capped Intron-Containing 391E-10
Pre-mRNA
3 mRNA metabolic process 1.56E-10 Cell Cycle, Mitotic 2.79E-08
MGC137211 1 carboxylic acid metabolic process 1.32E-41 Metabolism 4.96E-41
2 monocarboxylic acid metabolic process 1.05E-23 Biological oxidations 2.20E-18
3 alpha-amino acid metabolic process 6.84E-20 Metabolism of lipids and lipoproteins 3.72E-18

@Just three top over-represented biological process (BP) and Reactome pathways are listed, More information related to these hubs and other un-known genes in

the network are provided in Additional file 6: Table S5

bThe p-value indicated the probability that a module contains equal or larger number of genes associated with the GO term under a hypergeometric distribution

after Bonferroni step-down correction

gene in the module, HERCS, has ligase activity and is in-
volved in the UbL conjugation pathway [36]. HERC6 has
been reported to be important in the antiviral response
[37], where it functions as the main E3 ligase for global
ISGI5 conjugation in mouse cells [38]. The expression
change and direct regulation of HERC6 and Interferon-
Simulated Genes (ISGs) by interferon Tau (IFNT) has
been shown in cattle endometrium [39]. Interferon Tau
shows antiproliferative effects and antiviral activities that
have less toxicity than the other type-I IFNs [40]. Ubi-
quitin specific peptidase (USP18) had the highest intra-
modularconnectivity and is the hub node for the white
module (Additional file 2: Table S2). This gene has
ISG15-specific protease activity, i.e. it removes ISGI15
from ISGylated proteins [41] as evidenced by its associ-
ated MF GO term [19]. USP18 protein highly interacts
(i.e. combined interaction score > 600) with 40 % of the
proteins encoded in the white module (25 out of 63 pro-
teins) (Fig. 4 and Additional file 4: Table S4). For ex-
ample, a combined interaction score>600 meant that
connection between two proteins ranked in the top 90
percentile combined scores in the String database [21]
(Additional file 9: Figure S4A). These results might indi-
cate its close functional relations with the other genes
included in the white module. The function of this gene
is crucial for proper cellular balance of ISGI5-conju-
gated proteins [41]. In addition, LZSP18 has a major role
in the regulation of signal transduction pathways trig-
gered by type I interferons (IFNs) [36], which play a cen-
tral role in the antiviral innate immune response of
vertebrates [35].

Regulation of gene expression is determined in large
part by the activity of transcriptional activator proteins.
Also, transcriptional regulation enables cells to respond
to environmental cues such as viral infection [42]. Two
members of interferon regulatory factors (IRFs) gene
family, IRF7 and IRF9, were included in the white mod-
ule. IRFs transcription factors (TFs) regulate IFNs gene
transcription and protein production [43] and have a
well-known activity against pathogenic infections in sev-
eral species [44]. In cattle, the antiviral activity of IRF7
and IRF9 has been reported to be associated with both
Bovine Herpesvirusl [45] and Foot-and-Mouth Disease
Virus [46, 47] infection. High connectivity (TOM > 0.01)
between the module hub node and these TFs indicate
that they are potentially co-regulated. For example, a
TOM score >0.01 meant that connection between two
genes ranked in the top 99 percentile connectivity across
networks (Additional file 9: Figure S4B).

The saddle brown module was highly enriched for sev-
eral BP GO terms related to response to bacterium
(Additional file 5: Figure S1A). In addition, this module
had over-represented MF GO terms and Reactome path-
ways related to different aspects of cellular surface inter-
actions involved in immune response (Additional file 5:
Figure S1A, B). Individual cells monitor their surround-
ing environment and react to extracellular challenges
that require adaptation or threaten viability [48]. The
plasma membrane forms a barrier between a cell and its
surroundings and participates in the initial response to
biological attack [48]. Cytokines, important mediators of
immune responses, are secreted by immune cells in
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response to pathogenes, and bind to specific membrane
receptors, which then signal the cell via second messen-
gers, often tyrosine kinases, to alter cellular activity, e.g.
gene expression [49]. Four genes with cytokine activity
were included in the module: IL10, IL1B, ILIRN and
PF4. The antibacterial activity of these well-known genes
with the highest quality annotation scoring in the
UniProt database [50], have been reported in response
to several bacterial infections in cattle [51-53]. The sad-
dle brown module hub gene, SI00A9 plays a prominent
role in the regulation of inflammatory processes and im-
mune response [36]. This gene can induce neutrophil
chemotaxis, adhesion and increase the bactericidal activ-
ity of neutrophils by promoting phagocytosis [54]. It has
antibacterial activity via chelation of Zn**, which is es-
sential for bacterial growth [54]. In addition, SIO0A9 acts
as an alarmin or a danger associated molecular pattern
(DAMP) and can stimulate innate immune cells via
binding to pattern recognition receptors such as Toll-
Like Receptor 4 (TLR4) [36].

The light yellow module had several over-represented
GO terms and Reactome pathways related to different as-
pects of energy metabolism (Additional file 6: Figure S2).
In addition, this module was highly enriched for cristae
formation as BP GO term (Additional file 6: Figure S2A).
The unbiased studies on knockout mice revealed that telo-
mere dysfunction is associated with impaired mitochon-
drial biogenesis and energy production [55]. Despite the
over-representation of the GO term, TP53 Regulates
Metabolic Genes pathway, in the light green module, the
TP53 gene was not included in the module. This gene was
included in the yellow module that showed high enrich-
ment for GO terms related to gene expression and RNA
processing (Additional file 3: Table S3). Closer inspection
of nine genes in TP53 regulates metabolic genes pathway
(COX16, COX5A, HDACI, LAMTORI, MED27, TFDP2,
TXNRD1, YWHAB and YWHAQ) revealed tight connect-
ivity (TOM > 0.01) between the probe sets that mapped to
these genes and 7P53. This result indicates that TP53
might be an intermediate node between the yellow and
light green modules. COX5A gene had the highest con-
nectivity in the module and considered as an intra-
modular hub node. This gene encodes for mitochondrial
Cytochrome c oxidase subunit 5A, which is the heme A-
containing chain of cytochrome c oxidase, the terminal
oxidase in mitochondrial electron transport and has a key
role in cell energy production [36].

The red module had over-represented GO terms and
pathways related to cell cycle process (Additional file 7:
Figure S3). The typical eukaryotic cell cycle is divided
into four phases: two gap phases (G1 and G2); a synthe-
sis phase (S), in which the genetic material is duplicated;
and an M phase, in which mitosis partitions the genetic
material and the cell divides [56]. The regulation of gene
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expression is an important component of cell cycle con-
trol [57]. Cyclins are one of the main cell cycle regula-
tory proteins that control the progression of cells
through the cell cycle by activating cyclin-dependent
kinase (CdK) enzymes [58]. Ten cyclin genes included in
the module were: CCNA2, CCNBI, CCNB2, CCNEI,
CCNE2, CCNF, CDKN1A, CDKN2C, CKS1B and CKS2.
These genes regulate different cell cycle phases such as
G1/S (CCNE1, CCNE2 and CDKN2C), G2/S (CDKNIA),
G2/M (CCNA2 and CDKNI1A) and cell division (CCNE,
CKSI1B, CKS2, CCNB1 and CCNB2) [36]. CDCAS8 gene
had the highest connectivity in the red module and con-
sidered as the intra-modular hub node (Additional file 2:
Table S2). This gene is a component of the chromo-
somal passenger complex (CPC), a complex that acts as
a key regulator of mitosis [36]. The CPC complex has
essential functions at the centromere in ensuring correct
chromosome alignment and segregation and is required
for chromatin-induced microtubule stabilization and
spindle assembly [36].

The fact that functionally related genes are connected
together in co-expression networks provides evidence
for prediction of the cellular roles for hypothetical genes
based on a GBA principle [11]. Neighborhood (genes
that are highly connected to a given set of genes) ana-
lysis based on TOM can be used as a powerful tool for
this purpose. Briefly, two genes have a high topological
overlap if they connect and disconnect the same genes.
The potential cellular roles of 132 functionally unknown
cattle genes including four unknown hub genes were
predicted using neighborhood analysis (Additional file 6:
Table S5) based on GBA principle. There were weak se-
quence similarities between these potential genes and
known genes in orthologous species. The results of this
study might be used as a new insight for possible bio-
logical function of these potential genes.

Genes with little to no associated functional informa-
tion generally have no gene symbol and so are automat-
ically assigned an identifier such as LOC533597. Gene
nomenclature, i.e. the scientific naming of genes, tries to
standardized representation of genes within an organ-
ism, but not necessarily between organisms, based on
the biological process or pathway in which they are in-
volved. Although the results of the current study cannot
be used directly for nomenclature purposes as they have
no supporting biological information, they provide a rich
resource for experimental biologists to begin to define
the real biological function and thereby helping to assign
gene symbols to such genes.

Conclusions

In summary, these analyses indicate that the cattle gene
co-expression network and corresponding regulons pro-
vides rich information for experimental biologists to
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design experiments, interpret experimental results, and
develop novel hypotheses on gene function in cattle.
Combinatorial approaches that integrate multiple omics
findings will provide an important resource that should
lead to the elucidation of molecular mechanisms under-
lying traits of interest in cattle.

Methods

Microarray data analysis

CEL files for 1470 publicly available Affymetrix Genechip
Bovine Genome Array (Bos taurus) were downloaded
from either NCBI GEO [27] or EBI ArrayExpress [28]
(Additional file 1: Table S1). Arrays from individual
experiments were preprocessed as briefly described; ex-
pression levels were summarized, log2 transformed and
normalized using the robust multichip analysis algo-
rithm (RMA) as implemented in the R Affy package
[59]. Quality tests were performed on the normalized
array data using the Bioconductor arrayQualityMetrics
package [60]. Arrays that failed all three outlier tests (i.e.
Distances between arrays, Boxplots and MA plots) were
excluded from further analyses. The annotation informa-
tion of the Affymetrix Genechip Bovine Genome Array
was obtained from the GPL2112 microarray platform
(August 2014) [27]. Microarray probe sets were mapped
to Bos taurus UMD 3.1.1 genome assembly using
AffyProbeMiner [61] with December 2014 release of Bos
taurus genome annotation as reference [62]. The control
probes from the Affymetrix Genechip Bovine Genome
Array were removed from the sample data. Probe-set
IDs that did not map to an Entrez gene ID or Probe-set
IDs that mapped to multiple Entrez gene IDs were dis-
carded. The parametric Bayes Combat algorithm [63]
was used to re-scale the expression intensity and remove
experimental batch effects.

Weighted Gene Co-expression Network Analysis (WGCNA)
The WGCNA R package [18] was used to identify net-
work modules from normalized gene expression values.
Briefly, an adjacency matrix was formed with elements
ri» which were the Biweight midcorrelation coefficient
[9] between expression values of probe sets i and j. A
connectivity measure (k) per probe set was calculated by
summing the connection strengths with other probe
sets. Subsequently as described by Zhao et al. [23], the
adjacency matrix was replaced with the weighted adja-
cency matrix based on the p parameter with a scale-free
topology criterion. The goodness of fit of the scale-free
topology was evaluated by the Scale-Free Topology
Fitting Index (R?), which was the square of the correl-
ation between log (p (k)) and log (k). A S8 coefficient of
seven with R* of 0.9 was used to develop a weighted ad-
jacency matrix. The weighted adjacency matrix was used
to then develop the topological overlap matrix (TOM)
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as described by Langfelder et al. [18]. The TOM reflects
the relative interconnectivity between two genes based on
their degree of shared neighbors across the whole network
[18]. Dynamic Tree Cut algorithm [64], which utilized a
gene tree dendrogram that was developed based on TOM-
based dissimilarity (1-TOM) using hclust algorithm [65],
was used to place probe sets into modules. Within the
cutreeDynamic function, deep split was set to two and
minimum module size was set to 25. Similar modules were
merged based on their eigengenes similarities using merge-
CloseModules function and height cut of 0.2. All other
WGCNA parameters remained at their default settings.

Protein interaction information

Potential interaction between genes included in each
module were evaluated with the protein interaction net-
work (v10) from String database [21]. String uses eight
major sources of interaction/association data (neighbor-
hood, fusion, co-occurrence, co-expression, experimental,
database and text mining) to define interaction between
proteins using a probabilistic confidence score [21]. The
combined score [21] of all these available resources were
used to estimate the interaction strength between pro-
teins. If the interaction between two genes was based on
more than one protein-protein interaction, the interaction
scores were averaged using a custom R script.

Gene ontology and pathway enrichment analysis

To decipher the potential mechanism of action of de-
tected modules, ClueGO [66], a widely used Cytoscape
[67] plugin, was applied to identify biological interpret-
ation of functional modules in the network. The latest
update of gene ontology annotation database (GOA) [19]
and Reactome pathway database [20] (released November
2015) were used in the analysis. Genes included on Affy-
metrix Bovine Genechip Array were used as background.
Ontologies were designated as biological processes, mo-
lecular function and Reactome pathways. The GO tree
interval ranged from 3 to 20 with the minimum number
of genes per cluster set to three. Term enrichment was
tested with a right-sided hyper-geometric test that was
corrected for multiple testing by the Bonferroni step-
down method [68]. Only GO/pathway terms that were
significantly enriched (p-value < 0.05) were included in the
analysis. Kappa statistics were used to link and grouping
of the enriched terms and functional grouping of them as
described in [66]. The minimum connectivity of the
pathway network (kappa score) was set to 0.4 units.

Additional files

Additional file 1: Table S1. Microarray datasets used in this study.
(XLSX 152 kb)
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Additional file 2: Table S2. Module membership and connectivity of
16,608 probe sets used in this study. (XLSX 980 kb)

Additional file 3: Table S3. Over-represented GO/Pathway terms in the
co-expressed modules. (XLSX 287 kb)

Additional file 4: Table S4. String [21] protein interaction information
of four selected modules in CGCN. (XLSX 1177 kb)

Additional file 5: Figure S1. Functional analysis of the red module.
Over-represented GO/pathway terms were grouped based on kappa
statistics. The size of each category within a pie chart represents the
number of included terms. Only the most significant GO/terms within
groups were labeled. GO/pathway terms are represented as nodes,
and the node size represents the term enrichment significance, while
the edges represent significant similarity between categories. (A)
Representative biological processes interactions among module
genes. (B) Representative molecular function interactions among
module genes. (C) Representative Ractome analysis interactions
among module genes. (PDF 2606 kb)

Additional file 6: Figure S2. Functional analysis of the light green
module genes. Over-represented GO/pathway terms were grouped based
on kappa statistics. The size of each category within a pie chart represents
the number of included terms. Only the most significant GO/terms within
groups were labeled. GO/pathway terms are represented as nodes, and the
node size represents the term enrichment significance, while the
edges represent significant similarity between categories. (A) Representative
biological processes interactions among module genes. (B) Representative
molecular function interactions among module genes. (C) Representative
Ractome analysis interactions among module genes. (PDF 2605 kb)

Additional file 7: Figure S3. Functional analysis of the red module
genes. Over-represented GO/pathway terms were grouped based on
kappa statistics. The size of each category within a pie chart represents
the number of included terms. Only the most significant GO/terms within
groups were labeled. GO/pathway terms are represented as nodes, and
the node size represents the term enrichment significance, while the
edges represent significant similarity between categories. (A) Representative
biological processes interactions among module genes. (B) Representative
molecular function interactions among module genes. (C) Representative
Ractome analysis interactions among module genes. (PDF 3753 kb)

Additional file 8: Table S5. Functional enrichment analysis of close
neighbors (TOM > 0.01) of 133 un-annotated genes in CGCN.
(XLSX 479 kb)

Additional file 9: Figure S4. (A) Frequency of combined interaction
scores from the String database [21] and (B) Frequency of TOM
connectivity in BGCN. (PDF 648 kb)
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