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Deep sequencing of transcriptomes from
the nervous systems of two decapod
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important for neural circuit function and
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Abstract

Background: Crustaceans have been studied extensively as model systems for nervous system function from single
neuron properties to behavior. However, lack of molecular sequence information and tools have slowed the adoption
of these physiological systems as molecular model systems. In this study, we sequenced and performed de novo
assembly for the nervous system transcriptomes of two decapod crustaceans: the Jonah crab (Cancer borealis) and the
American lobster (Homarus americanus).

Results: Forty-two thousand, seven hundred sixty-six and sixty thousand, two hundred seventy-three contigs were
assembled from C. borealis and H. americanus respectively, representing 9,489 and 11,061 unique coding sequences.
From these transcripts, genes associated with neural function were identified and manually curated to produce a
characterization of multiple gene families important for nervous system function. This included genes for 34 distinct
ion channel types, 17 biogenic amine and 5 GABA receptors, 28 major transmitter receptor subtypes including
glutamate and acetylcholine receptors, and 6 gap junction proteins – the Innexins.

Conclusion: With this resource, crustacean model systems are better poised for incorporation of modern genomic and
molecular biology technologies to further enhance the interrogation of fundamentals of nervous system function.
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Background
Despite their status as important economic species, their
important place in understanding the evolution and
phylogeny of arthropods, and as models for neurobiology
research, crustaceans have been largely overlooked in the
rush to apply modern molecular biology and high through-
put sequencing approaches to work in “non-genetic” sys-
tems. Even among arthropods they are fairly poorly
represented, with insects dominating the ranks of those

with available genome and transcriptome assemblies. Two
indicators of this are seen in the number of relative
sequence read archive (SRA) and GEO profile publicly
available in NCBI: at the time of this article, there were
2,323 crustacean and 46,866 insect SRAs, and 4,608
crustacean and 1,275,029 insect GEO profiles. To date, only
two crustacean genomes have been made publicly available
[1, 2], with the first, the water flea Daphnia pulex, coming
only in 2011 [1] – a full 11 years after the first arthropod
genome was sequenced [3]. As a microcrustacean, Daphnia
is still a far cry from the large decapod crustaceans that are
common models in neuroscience research, such as crabs,
lobsters, crayfish and shrimp. Thus even with some very
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recent additions to decapod crustacean transcriptome data
[4, 5], there is a strong need to add to our sequence
knowledge of these species.
Many fundamental findings in neuroscience were made

with crustacean preparations. To mention only a small
subset of these, command fibers [6], electrical coupling [7]
and presynaptic inhibition [8] were first described using
crustacean preparations. Work on crayfish and lobsters
established GABA as an inhibitory transmitter [9, 10], and
allowed early studies of the relevance of the fast outward
current, IA, for action potential generation and propaga-
tion [11, 12]. The first intracellular fluorescent dye-fills
were pioneered with crustaceans [13, 14], and crustacean
systems were used early on to understand the organization
of circuits in behavior [15–18].
Several crustacean circuits, including the stomatogas-

tric nervous system and the cardiac ganglion, continue
to provide important new insights into circuit dynamics
and modulation [19–22], but this work has been partially
hampered by the lack of extensive molecular sequence
knowledge in crustaceans. In this study, we generated de
novo transcriptome assemblies from central nervous sys-
tem tissue for two commonly used species in neurosci-
ence research: the Jonah crab (Cancer borealis) and the
American lobster (Homarus americanus). We focus on
an initial identification, curation and comparison of
genes that will have the most profound impact on our
understanding of circuit function in these species,
namely channels and receptors, with the hopes of foster-
ing new avenues of research for these preparations that
continue to be valuable assets in our understanding of
nervous system dynamics. Additionally, such sequence
information provides a valuable resource for compara-
tive molecular neuroscience approaches across phyla.

Methods
Tissue collection and RNA preparation
Adult lobsters, H. americanus, and crabs, C. borealis,
were obtained from The Fresh Lobster Company
(Gloucester, Massachusetts, USA) and maintained in
chilled (12 °C) artificial seawater tanks until experiments
were performed. Lobsters and crabs were anesthetized
on ice for at least 30 minutes prior to dissection. The
brain, abdominal nerve cord, cardiac ganglion and
complete stomatogastric nervous system (STNS) (in-
cluding the commissural, esophageal, and stomatogastric
ganglia) was dissected out of two lobsters and pinned
out in a Sylgard (Dow Corning)–coated dish containing
chilled (12–13 °C) physiological saline. From two crabs
we dissected out brain, complete STNS, and cardiac gan-
glia. Connective tissue and muscle were removed to the
fullest extent possible, and the tissues were rinsed
multiple times in chilled physiological saline (Lobster
saline composition in mM/l: 479.12 NaCl, 12.74 KCl,

13.67 CaCl2, 20.00 MgSO4, 3.91 Na2SO4, 11.45 Trizma
base, and 4.82 maleic acid [pH = 7.45]; Crab saline
composition in mM/l: 440.0 NaCl, 11.0 KCl, 13.0
CaCl2, 20.00 MgCl2, 11.2 Trizma base, and 5.1 maleic
acid [pH = 7.45]) in ultrapure, RNase-free water. After
dissection, tissues for each species were homogenized
in Trizol (Invitrogen). The resulting combined pool of
RNA therefore consisted of mixed nervous system tissue.
Insoluble tissues were pelleted by centrifugation, and the
supernatant stored at −80 ° C until RNA extraction. Total
RNA was isolated as per the manufacturer’s protocol
(Invitrogen), and treated with DNase (Zymo Research)
prior to library construction.

Library construction, sequencing, and de novo assembly
Library construction and RNA-sequencing were performed
as a fee-for-service by GENEWIZ, Inc. (South Plainfield,
New Jersey, USA). Briefly, quantification of RNA samples
was performed using a Qubit 2.0 Fluorometer (Life
Technologies, Carlsbad, California, USA) and RNA quality
checked with an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Palo Alto, California, USA). Illumina TruSeq RNA
library prep, clustering, and sequencing reagents were used
throughout the process as specified by the manufacturer
(Illumina, San Diego, California, USA). mRNAs were
purified using oligo-attached poly-T magnetic beads. The
mRNAs were fragmented and first and second strand
cDNAs were synthesized and end-repaired. cDNA templates
were enriched by PCR following adaptor ligation after ade-
nylation at the 3′ends. cDNA libraries were validated using
an Agilent 2100 Bioanalyzer with a High Sensitivity Chip.
cDNA library yield was quantified with a Qubit 2.0
Fluorometer (Life Technologies, Carlsbad, California, USA)
and by qPCR. After clustering on a flow cell using the cBOT,
the samples were loaded on an Illumina HiSeq 2000 instru-
ment for sequencing with 2x100 paired-end reads.
Raw reads were converted into fastq files and de-

multiplexed using Illumina CASSAVA 1.8.2. Fastq files
were imported into CLC Genomics Workbench Server
5.0.1. Sequence reads were trimmed to remove bases
with low quality ends. De novo assembly was conducted
with the trimmed reads utilizing the CLC Genomics
Server. The total length of the assembled transcripts was
66,058,464 bp for crab and 99,847,148 bp for lobster (see
Table 1). To ensure that the CLC Genomics assembly
was of high quality, we performed a second round of de
novo assembly using the SeqMan NGen assembler from
the DNAstar software suite (SeqMan NGen®. Version
13.0. DNASTAR. Madison, WI.). Following assembly,
quality of assembled contigs was investigated by
comparison with species-specific sequences contained
within GenBank that were previously generated largely
by Sanger sequencing approaches. We used BLAST+
command line application (Version 2.2.30+) to perform
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blastn comparisons of the curated GenBank sequence
versus transcriptome contigs, and calculate percent nu-
cleotide identity for the top hit of each sequence for
both species.

BUSCO transcriptome quality assessment
To analyze the completeness of our transcriptomes, a
reference-based alignment was performed using Bench-
marking Universal Single-Copy Orthologs (BUSCO)
software (Version 1.22). The arthropod BUSCO refer-
ence contains 2675 orthologous genes found within
>90 % of the 38 arthropod species’ genomes used to
construct the reference [23]. The four transcriptomes we
assembled were aligned against the arthropod reference,
resulting in percentages of the reference genes found as
complete, fragmented, or missing from our transcrip-
tomes. “Complete” genes are those which align to a ref-
erence gene with a mean length within two standard
deviations (i.e. 95 %) of the reference value. Genes that
only partially align are deemed ”fragmented”, and those
present in the reference with no match found in the
transcriptome are classified as “missing”.

Functional annotation
For gene ontology (GO) term analysis, the Blast2GO
software package (Version 3.1.3) [24] was used for
functional annotation of the assembled transcriptomes.
A blastx search with an E-value threshold of 10−5 was
carried out against the NCBI non-redundant (nr) protein
sequence database. Assignment of gene names to each
contig was based on the highest scoring BLAST hit.
Scoring of the annotated sequences utilized a threshold
score of ≥ 55. The top 10 significant hits for each query
extracted from the blastx search were used for further
gene annotation. Query sequences were categorized into

three broad ontological classifications: molecular func-
tion, cellular component, and biological process. GO an-
notation filters included: E-value-Hit-Filter of 1.0e-6,
Annotation CutOff of 55, and GO Weight of 5.

Whole-transcriptome alignment comparison
The software VennBLAST [25] was used to compare the
whole C. borealis and H. americanus transcriptomes
against the Daphnia pulex (GCA_000187875.1) protein
sequences from Ensembl Metazoa. Protein sequence
database for D. pulex was chosen as a common subject
to query against the C. borealis and H. americanus tran-
scriptomes. Initially, a local blastx of C. borealis or H.
americanus contigs against D. pulex protein sequences
was performed with the BLAST+ command line applica-
tion (Version 2.2.30+). This output was run through the
VennBLAST Merge tool with the InterGroup Option:
Use Subject to quantify the relative overlap of C. borealis
and H. americanus with D. pulex. A second layer of
filtering was performed using the VennBLAST Filter tool
with an Identity percent of 70 and an E-value threshold
of 1.0e-5, and this output was subsequently merged in
the same manner mentioned previously.

Ion channel and receptor sequence identification and
alignment analysis
We identified putative orthologs of channels and receptors
from the transcriptomes of crab and lobster as follows.
We created local blast databases from the assembled
contigs of each transcriptomes. Because channels and re-
ceptors are fairly well conserved across diverse taxa, and
because the mouse research community has agreed upon
a well-curated systematic naming system for channel and
receptor genes, we used mouse reference mRNA sequence
for each gene of interest as the query in a tblastn search of

Table 1 Overview of transcriptome assembly statistics for C. borealis and H. americanus

C. borealis H. americanus

Raw reads 414,978,768 452,237,240

Clean reads 391,060,790 426,712,238

% Q Scores≥ 30 92.96 92.72

% GC 43.4 39.4

Average clean read length (bp) 97.05 97.16

Assemblers CLC Genomics SeqMan NGen CLC Genomics SeqMan NGen

Number of Contigs 42,766 67,380 60,273 45,043

N50 (bp) 2,178 1,239 2,357 2,258

N75 (bp) 1,058 763 1,169 1,085

Mean contig length (bp) 1,544 1,076 1,657 1,799

Longest contig (bp) 21,761 14,125 25,723 17,700

Shortest contig (bp) 454 451 453 450

Total assembled bases 66,058,464 72,508,321 99,847,148 81,065,797
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each transcriptome database. We used initially stringent
e-value cutoffs (1e-100 to 1e-50) for our searches to find
very high sequence similarity matches. Top contig
matches from these blast searches were then compared
with the results of the remainder of the blast queries for a
given gene family. Often multiple mouse input sequences
resulted in the same top hit from the crustacean transcrip-
tomes, indicating that fewer members of the gene family
were present in our invertebrate sequence than the
mammalian gene families. Once a complete gene family
search was obtained, all putative orthologs were then
blasted against the Non-Redundant Protein (NR) Se-
quence Database hosted at NCBI via blastx. This allowed
us to look for conserved sequence across all taxa and con-
firm a given gene identification. Once gene families were
obtained from the C. borealis transcriptome, the process
was repeated with H. americanus as the subject database.
We additionally used the crab sequences as queries to find
the direct ortholog for a given gene in H. americanus.
These sequences were confirmed in the same way via
blastx against the NR database, and moved forward into
sequence alignment as described below. As is to be ex-
pected from manually performed sequence-by-sequence
discovery and curation such as this, at times other
searches and sequence comparisons were performed on a
case-by-case basis with comparator species such as
Daphnia pulex, Drosophila melanogaster, or other insect
species to gain insight or clarification as to the best pos-
sible identification for a given transcript.
The web-based software tool Biology Workbench

(Version 3.2) [26] was used for sequence analysis of pu-
tative ion channels and receptors from the assembled
transcriptomes. Coding regions were determined based
on the longest open reading frame (ORF) from the
SIXFRAME tool in Biology Workbench. ClustalW was
utilized (default parameters) to perform the multiple se-
quence alignment (MSA) for ion channel and receptor
family subtypes based on amino acid sequences from
predicted coding regions. The rooted phylogenetic trees
were constructed from the output of the MSA from
ClustalW. The data matrix for all phylogenetic trees was
deposited into TreeBASE (Study Accession URL: http://
purl.org/phylo/treebase/phylows/study/TB2:S19948).
We used blastp to generate percent identities and simi-

larities for predicted amino acid sequences of orthologs
between species. We used only sequences that were full-
length or those that were near full length. Sequences were
assumed to be full length coding sequences if they met
three criteria: the sequence began with a start codon, was
approximately the same length as similar sequences in the
non-redundant database based on a blastx search, and the
sequence ended with a stop codon. Sequences were con-
sidered to be close to full-length if they were at least 80 %
the length of similar sequences on the NR database,

regardless of the presence of start and stop codons. In
addition, the two sequences from crab and lobster had to
be at least 80 % of the length of one another. This gener-
ated 42 pairwise comparisons for orthologous protein se-
quence between crabs and lobsters.

Results
We note that all nomenclature for transcripts described
in this study will conform to one nomenclature conven-
tion: transcripts from Cancer borealis, will be noted with
the species prefix Cb-, and the species prefix Ha- will be
used for Homarus americanus gene products. All cu-
rated gene sequences described below were submitted to
GenBank and assigned individual accession numbers as
noted in Tables 2, 3, 4 and 5.

Mixed nervous system transcriptome sequencing and de
novo assembly
Constructing RNA-seq libraries from nervous tissues of
adult crustaceans, a total of 414,978,768 and 452,237,240
raw reads were obtained from the paired - end sequen-
cing of C. borealis and H. americanus, respectively. The
average read length for both species was approximately
97 bp, as expected for 100 bp paired-end Illumina Se-
quencing. Following quality checks removing adaptors,
contaminating sequences, and low-quality sequences,
391,060,790 (94.2 %) clean reads were found for C.
borealis and 426,712,238 (94.4 %) for H. americanus.
These high-quality cleaned reads were subsequently
assembled de novo into contigs using two different as-
semblers: CLC Genomics and Seqman NGen. For C.
borealis, CLC assembly resulted in 42,766 contigs with
an average length of 1544 bp and an N50 length of
2178 bp, while SeqMan assembly resulted in 67,380 con-
tigs with an average length of 1076 bp and N50 of 1239
(Table 1; Fig. 1a). For H. americanus, CLC assembly re-
sulted in 60,273 contigs with an average length of
1657 bp and N50 length of 2357 bp, while SeqMan
NGen resulted in 45,043 contigs with an average length
of 1799 bp and N50 of 2258 (Table 1; Fig. 1a).
To compare the quality of our transcriptomes from

multiple assemblies, a reference-based alignment was
performed using BUSCO [23]. The arthropod BUSCO
reference contains 2675 orthologous genes expected
within most arthropod species that were compared
against the gene content of our transcriptomes. The
alignment of our transcriptomes against the arthropod
reference resulted in similar percentages of the reference
genes found as complete (C), fragmented (F), or missing
(M) across our transcriptomes (Fig. 1b). The C. borealis
metrics were C: 59.0 %, F: 13.5 %, and M: 27.5 % for the
CLC Genomics assembly and C: 58.4 %, F: 20.1 %, and
M: 21.5 % for the SeqMan NGen assembly. The H.
americanus metrics were C: 56.1 %, F: 16.4 %, and M:
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27.5 % for the CLC Genomics assembly and C: 66.5 %,
F: 13.4 %, and M: 20.1 % for the SeqMan NGen assem-
bly. These results were compared against the arthropod
transcriptome reference scores provided in the BUSCO
supplementary materials, a recently published Homarus
americanus nervous system transcriptome assembled
using Trinity [5], and a recent transcriptome of the
freshwater crayfish Astacus astacus [29]. Our results are
comparable with the Astacus transcriptome in complete-
ness and an apparent extension of the published
Homarus americanus transcriptome [5]. One possible

explanation for the missing arthropod genes from our
transcriptomes can be explained by the fact that our se-
quences were derived solely from nervous system tissue,
while the references were built from arthropod genomic
sequences.
Using the NCBI BLAST+ suite to perform a blastn of

28 Cancer borealis sequences already contained within
GenBank against our assembled contigs, we found an
average sequence identity from the CLC assembly of
99.2 %, with the lowest identity score 96 %. SeqMan
NGen assembly for C. borealis transcripts had an

Table 2 Accession numbers for ion channels identified from transcriptome assemblies of C. borealis and H. americanus

Channel Family Gene Name Current/Channel Type C. borealis H. americanus

Voltage-dependent
K+ Channels

shaker Voltage-gated A-type potassium (IA or Kv1) FJ263946 KU702655

shab Voltage-gated delayed rectifier (IKd or Kv2) DQ103255 KU702656

shaw1 Voltage-gated delayed rectifier (IKd or Kv3) KU681456 KU681443

shaw2 Voltage-gated delayed rectifier (IKd or Kv3) KU681455 KU681444

shal Voltage-gated A-type potassium (IA or Kv4) DQ103254 KU702654

KCNQ1 Voltage-gated slow delayed rectifier (M-type or Kv7) KU681453 KU681441

KCNQ2 Voltage-gated slow delayed rectifier (M-type or Kv7) KU681452 KU681440

KCNH1/EAG Ether-a-go-go type potassium (Kv10) KU681458 KU681446

KCNH2 Ether-a-go-go-related potassium (elk or Kv12) KU681459 KU681447

KCNH3 Ether-a-go-go-related potassium (erg of Kv11) KU681460 KU681448

Other K+ channels BKKCa Large conductance (BK) voltage/Ca2 + −activated potassium DQ103256 KU712072

SKKCa Small conductance (SK) Ca2 + −activated potassium KU710383 KU712071

KCNT1 Sodium-activated potassium KU681454 KU681442

IRK Inward-rectifier potassium (IRK) KU681451 KU681439

KCNK1 Two-pore domain leak potassium (K2p) KU681438 KU681450

KCNK2 Two-pore domain leak potassium (K2p) KU681437 KU681449

Ca2+ Channels CaV1 L-type high-voltage-activated (HVA) calcium N809809 KU702651

CaV2 P/Q-N high-voltage-activated (HVA) calcium JN809808 KU702650

CaV3 T-type low-voltage-activated (LVA) calcium JN809810 KU702652

Na + Channels NaV Voltage-gated fast sodium para type (Nav) EF089568 KU702653

NALCN non-selective sodium leak KU681457 KU681445

Hyperpolarization-Activated/
Cyclic Nucleotide Gated Channels

HCN/IH Hyperpolarization-activated cyclic nucleotide-gated DQ103257 KU712077

CNG-Alpha1 Cyclic nucleotide-gated channel alpha 1 KU716097 KU712074

CNG-Alpha2 Cyclic nucleotide-gated channel alpha 2 KU716098 KU712075

CNG-Alpha3 Cyclic nucleotide-gated channel alpha 3 KU716099 KU712076

CNG-Beta1 Cyclic nucleotide-gated channel beta 1 KU716096 KU712073

Transient Receptor Potential
(TRP) Channels

TRP-A1 Transient receptor potential cation channel, subfamily A, member 1 KX037435 KX037441

TRP-A-like Transient receptor potential cation channel, subfamily A, member KX037434 KX037440

TRP-M1 Transient receptor potential cation channel, subfamily M, member 1 KX037436 -

TRP-M3 Transient receptor potential cation channel, subfamily M, member 3 KX037433 KX037439

TRP-M-like Transient receptor potential cation channel, subfamily M, member KX037437 KX037444

TRP-V5 Transient receptor potential cation channel, subfamily V, member 5 KX037438 KX037445

TRP-V6 Transient receptor potential cation channel, subfamily V, member 6 - KX037443

TRP-pyrexia Pyrexia transient receptor potential channel - KX037442
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average sequence identity of 99.03 %, and the lowest per-
cent identity was 95 %. For H. americanus, 75 GenBank
sequences were aligned against our transcriptome,
resulting in an average sequence identity to CLC assem-
bled sequences of 99.3 % with the lowest being 94.5 %.
SeqMan NGen assembly for H. americanus transcripts
had an average sequence identity of 98.97 %, and the
lowest percent identity was 87 %.
Based on the relative similarity in many of the metrics

for these two assembly methods, the somewhat better
performance of CLC contigs when compared with
Sanger sequencing generated orthologs, and the fact that
portions of the H. americanus transcriptome based on
the CLC assembly have previously been published [4],
we chose to perform the remaining representative ana-
lysis of these sequence data based on the CLC assembled
contigs. The H. americanus Transcriptome Shotgun As-
sembly (TSA) project has been deposited at GenBank
under Accession No. GEBG00000000 (BioProject No.
PRJNA300643; BioSample No. SAMN04230440). The C.
borealis Transcriptome Shotgun Assembly (TSA) project
has been deposited at GenBank under the Accession No.
GEFB00000000 (BioProject No. PRJNA310325;

BioSample No. SAMN04450329). The versions described
in this paper represent the first versions, GEBG01000000
and GEFB01000000 respectively.

Annotation and gene ontology mapping
Entrez Gene IDs were obtained for both transcriptomes
using blastx against the NCBI non-redundant (NR) pro-
tein database. These annotations consisted of 9489
unique proteins among C.borealis transcripts, and
11,061 among H, americanus transcripts. Mapping these
gene IDs to Gene Ontology (GO) categories yielded
9351 (22 %) of the C. borealis and 6191 (10 %) of the H.
americanus contigs successfully identified (Fig. 2a). Simi-
lar percentages have been observed in other de novo

Table 3 Accession numbers for biogenic amine and GABA
receptor subtypes from transcriptome assemblies of C. borealis
and H. americanus

Receptor Family Gene Name C. borealis H. americanus

Octopamine/
Tyramine Receptors

Tyr-R KU710373 KU712061

Oct-αR KU710375 KU712062

Octβ-R1 KU710372 KU712063

Octβ-R2 KU710374 KU712064

Octβ-R3 KU710370 KU712065

Octβ-R4 KU710371 KU712066

Dopamine Receptors D1αR KU710377 KU712059

D1βR KU710376 KU712060

D2αR KU710378 KU712058

Serotonin Receptors HTR1A KU710381 KU712070

HTR1B KU710382 KU712069

HTR2B KU710380 KU712067

HTR7 KU710379 KU712068

Histamine Receptors HisR1 KU716100 KU716104

HisR2 KU716101 KU716106

HisR3 KU716102 KU716103

HisR4 - KU716105

GABA Receptors mGABAr-1 KU986868 KU986874

mGABAr-2 KU986869 KU986875

LCCH3-like KU986871 KU986878

RDL-like KU986872 KU986876

GRD-like KU986873 KU986877

Table 4 Accession numbers for glutamate and acetylcholine
receptor subtypes from transcriptome assemblies of C. borealis
and H. americanus

Receptor Family Gene Name C. borealis H. americanus

Metabotropic
Glutamate Receptors

mGluR1 KU986879 KU986885

mGluR2 KU986880 KU986887

mGluR3 KU986881 KU986888

mGluR4 KU986882 KU986890

mGluR5 KU986883 KU986886

mGluR7 KU986884 KU986889

Kainate-Like
Receptors

Kainate-1A KX016772 KX016777

Kainate-1B KX016773 KX016778

Kainate-2A KX016774 KX016779

Kainate-2B KX016775 KX016780

Kainate-2C KX016776 KX016781

NMDA-like Receptors NMDA-1A KX016782 KX016787

NMDA-1B KX016783 KX016788

NMDA-2A KX016785 KX016789

NMDA-2B KX016786 KX016791

NMDA-2-like KX016784 KX016790

Glutamate-Gated
Chloride Channel

Glu-Cl KX059698 KX059699

Acetylcholine Receptors mAChR-A KX021822 KX021833

mAChR-B KX021821 KX021832

nAChR-alpha1 KX021828 KX021840

nAChR-alpha2 KX021827 KX021839

nAChR-alpha3 KX021829 KX021841

nAChR-alpha4 KX021830 KX021842

nAChR-alpha5 KX021824 KX021836

nAChR-alpha7 KX021825 KX021837

nAChR-alpha8 KX021831 -

nAChR-alpha10 - KX021835

nAChR-alpha16 KX021826 KX021838

nAChR-beta1 KX021823 KX021834
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transcriptome analyses [27, 28]. From the functional an-
notation, transcripts were classified into three broad cat-
egories: cellular compartment (CC), molecular function
(MF), and biological process (BP) [24]. Within these
broad categorizations, the highest abundance GO terms
of H. americanus and C. borealis were compared against
each other, which included the top 9 CCs, 18 MFs, and
16 BPs for both species (Fig. 2b). The arrangement of
GO terms was based on the highest abundance H.
americanus terms, in descending order. The only
notable exception to this order was the BP GO term
“RNA-dependent DNA Replication” ontology due to its
high abundance in C. borealis but relatively low abun-
dance in H. americanus. These same GO terms were
compared between the two species using the relative
percentage of each GO term for its broad GO classifica-
tion (CC, MF, BP) (Fig. 3). The most striking differences
between the GO ontologies of each species include a
much higher incidence of “protein binding” terms for C.
borealis MF than that of H. americanus, a much higher in-
cidence of “metabolic process” in H. americanus BP, and a
prominent difference between the “RNA-dependent DNA
Replication” term for BP. The source of these differences
could be attributed to factors including, but not limited
to, the variation in tissue types (abdominal nerve cord was
used in H. americanus, but not C. borealis), depth of
sequencing, or natural variation in transcript abundance.

Species comparisons: distribution and VennBLAST
analysis
Using the Blast2GO software suite, the number of species
that the C. borealis and H. americanus neural transcrip-
tomes align with was determined from a blastx against the
NCBI non-redundant database. The species distribution
for both C. borealis and H. americanus gave similar top
species, such as Tribolium castaneum, Daphnia pulex,
and Strongylocentrotus purpuratus within the top 5 spe-
cies hits (Fig. 4). The absence of termite (Zootermopsis
nevadensis) from the C. borealis species distribution of
blast hits is due to the fact that the Z. nevadensis protein
sequences had yet to be uploaded to the NCBI non-

redundant database at the time of the blast analysis of the
C. borealis transcriptome, while the H. americanus
analysis was performed after the Z. nevadensis reference
became available.
Venn diagrams were generated (Fig. 5a) using the soft-

ware VennBLAST [25] to compare the whole C. borealis
and H. americanus transcriptomes against the Daphnia
pulex (GCA_000187875.1) protein sequences from
Ensembl Metazoa. The protein sequence database for D.
pulex was chosen as a common subject to query the C.
borealis and H. americanus transcriptomes against due
to the mutual high top-hit species distribution (Fig. 4),
as well as the well-annotated genome of the crustacean
D. pulex [1]. Initially, a local blastx of C. borealis or H.
americanus contigs against D. pulex protein sequences
resulted in 17,343 and 14,818 hits, respectively. Upon
overlapping these hits with the VennBLAST Merge tool,
11,258 hits from C. borealis and H. americanus were
found to have the same top hit for D. pulex. A second
analysis with increased stringency was performed using
the VennBLAST Filter tool to retain only high-quality
matches, leaving C. borealis with 7,460 and H. americanus
with 7,268 hits to D. pulex. Subsequent merger of these
filtered hits resulted in 6,226 common top-hits for D.
pulex, resulting in an increased percentage (from 54 %
overlap to 73 %) of common top-hits.
For the remainder of our transcriptome analysis, we

identified and characterized sequences for 6 different
Innexin proteins (gap junctions), 34 distinct ion channel
types, 17 biogenic amine receptors, 5 GABA receptors,
and 28 major transmitter receptor subtypes including
glutamate and acetylcholine receptors. These are de-
scribed in detail below. These receptor groups consisted
of 27 different ligand-gated channel subunits (ionotropic
receptors) and 23 metabotropic receptor types. To better
quantify the similarity across lobster and crab, we
performed analyses of percent amino acid identity and
similarity between orthologs of a subset of genes (see
Methods). Overall, the sequence similarity is very high
between these species, as one might expect for members
of the same Order (Fig. 5b); across 42 genes surveyed,
there was a mean ± SD of 85.27 % ± 8.46 % amino acid
identity between genes. However, we also noticed a sig-
nificant trend across different types of gene products:
there was significantly lower amino acid identity and
similarity for metabotropic receptors than for the other
classes of genes (Fig. 5b). In particular, the G-protein
coupled (GPCRs) receptors that we analyzed were some
of the most divergent between crab and lobster. For ex-
ample, Octβ-R1, 3, and 4 shared 72, 72, and 74 % amino
acid identity respectively. Conversely, the most highly
conserved genes were in the Shaker family of voltage-
gated K+ channels. Shaker, Shal, and Shaw1were 98, 98,
and 96 % identical between crabs and lobsters. From

Table 5 Accession numbers for Innexin subtypes from
transcriptome assemblies of C. borealis and H. americanus

Gene Name C. borealis H. americanus

Innexins INX1 JQ994479 KM984498

INX2 JQ994480 KM984499

INX3 JQ994481 KM984500

INX4 KJ642222 KM984501

INX5 KJ817410 -

INX6 KJ817411 KM984502

INX7 - KM984503
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these results we would predict more conservation in
channel function and physiology across species than that
of the GPCRs.

Ion channels
For our initial analysis of these crustacean transcrip-
tomes, we decided to focus on some of the most critical

A

B

Fig. 1 Length distribution of the de novo assemblies and annotation coverage of the C. borealis and H. americanus transcriptomes. a Size distribution
of contigs shown for two different de novo assemblies of the C. borealis and H. americanus nervous system transcriptomes. Each assembly is shown
individually, and overlaid contig lengths are shown in the right panels. Assembly statistics are shown in Table 1. b Horizontal stacked bar plots showing
proportions of gene sets in BUSCO quality categories for the 4 different assemblies shown in panel A (CLC and SeqMan NGen, noted in bold). A
previously published nervous system transcriptome from H. americanus (denoted by *) is also provided for comparison [5]. Quality categories are as
follows: i) Complete BUSCOs: genes that match a single gene in the BUSCO reference group; ii) Fragmented BUSCOs: genes only partially recovered
with gene length exceeding alignment length cut-off; iii) Missing BUSCOs: non-recovered genes
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proteins involved in nervous system function. We there-
fore first conducted an analysis of ion channel subtypes.
Putative ion channels were identified based on tblastx
searches utilizing the transcriptomes as a reference data-
base and querying with known channel protein largely
consisting of sequences from mouse (Mus musculus)
and Drosophila melanogaster. A 100 % overlapping set
of ion channels were found to be present in both C. bor-
ealis and H. americanus (Table 2; Fig. 6). We specifically
hand-curated and annotated these channel sequences,
and the full list is available in Table 2, including putative

current types carried by each channel. We used the mul-
tiple sequence alignment (MSA) output from CLUS-
TALW [30] to develop a fairly comprehensive ion channel
tree based on amino acid sequence similarity, allowing us
to cluster channels by type to effectively interrogate the
nervous system channel content of these crustaceans.
Our analysis of the crab and lobster transcriptomes

led us to identify and characterize 34 distinct channel
subtypes representing several gene families (Table 2;
Fig. 6). Each identified channel transcript was found in
both crab and lobster transcriptomes. Our analysis

A

B

Fig. 2 Annotation-score distribution of C. borealis and H. americanus transcripts. a Distribution of annotation scores for all Gene Ontology (GO) terms
assigned during the Blast2GO annotation process of the CLC assembled contigs. b Distribution of GO terms for C. borealis and H. americanus. Absolute
values of GO annotation for the ontology categories of Cellular Component, Molecular Function, and Biological Process. Order was based on top GO
counts for H. americanus, except for one case (RNA-dependent DNA Replication) due to high incidence in C. borealis biological process
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confirmed the presence of 3 major voltage-dependent
calcium channel subtypes [31] corresponding one each
to the L-type (CaV1), P/Q-type (CaV2), and T-type
(CaV3) families of calcium channels. In addition, we
identified a single member of the NaV-type voltage-
gated Na+ channel representing the para type channel
identified in other species. Finally, in both species we
identified a non-selective sodium leak channel (NALCN)
thought to underlie TTX-resistant Na+ conductance im-
portant in baseline neuronal excitability [32]. One other
major family of non-selective cation channels we identi-
fied was the cyclic-nucleotide-gated channels of the

HCN/CNG type. Both species contained one member of
the hyperpolarization-activated cyclic nucleotide-gated
(HCN) channel family, the channels that give rise to IH
type currents in crustacean neurons [33]. In addition, we
identified 3 α -subunits and 1 β-subunit of the cyclic
nucleotide gated ion channel types (CNG), which are ac-
tivated by the binding of cAMP and cGMP to carry a
non-selective cation current [34].
The pore-forming α-subunits of K+ channels can be

sub-divided into voltage-dependent subunits (Kv), in-
ward rectifiers (Kir), two-pore subunits (K2P), and those
activated by intracellular calcium (KCa) or sodium (KNa)

Fig. 3 Gene ontology comparison between C. borealis and H. americanus neural transcriptomes. GO annotation categories Cellular Component,
Molecular Function, and Biological Process were plotted as a percentage of their total annotation counts for each category
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ions. We identified a diverse array of voltage-dependent po-
tassium channel subtypes in the transcriptomes of both the
crab and lobster (Table 2; Fig. 5). The best already character-
ized of these channels in crustaceans are the Shaker family
of channels, having been identified in crab [35, 36] and spiny

lobsters (Panulirus interruptus, [37, 38]), with the latter hav-
ing an extensive characterization via expression in oocyte
systems [39, 40]. Previously, 4 members of this family were
already known from Cancer borealis: shaker, shal, shab, and
shaw.We found orthologs to each of these in H. americanus

Fig. 4 Species distribution of blast hits of C. borealis and H. americanus neural transcriptomes. Total hits and top-hit numbers for a given species
from C. borealis and H. americanus transcriptomes
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as well. We further discovered that in both species there ac-
tually were 2 distinct shaw-related channel transcripts
(Fig. 6). The newly re-named “Shaw1” transcript from
this analysis is a perfect match with the previously
identified shaw transcript from Cancer borealis (Ac-
cession #EF089569), while the newly identified shaw-
like transcript is presented as Shaw2. We also identi-
fied two members of the KCNQ family of K+ channels.
KCNQ genes encode a family of six transmembrane
domain K+ channel alpha-subunits that have a wide range
of physiological roles, including likely underlying the slow
voltage-gated M-type currents [41]. Rounding out the
voltage-dependent K+ channel subtypes are 3 members of
the ether-a-go-go/KCNH family. In addition to voltage-
dependent K+ channels, we also identified one Kir channel
(IRK), two members of the K2P family (KCNK), one
sodium-activated K+ channel (KCNT), and two calcium-
activated K+ channel types. These KCa channels had previ-
ously been identified in C. borealis [36] and correspond to
one BK- and one SK- type channel.
Transient receptor potential (TRP) channels have been

implicated as a primary channel for generation of sensa-
tions including temperature, taste, pain, pressure, and vi-
sion. In our analysis, we found various TRP subfamilies
within both C. borealis and H. americanus (Table 2; Fig. 6).
These subfamilies included TRPV (vanilloid), mediating
odor and pain sensations; TRPA (ankyrin), associated with
mechanical stress receptors; TRPM (melastatin), associ-
ated with magnesium reabsorption [42]; and TRP pyrexia,
a thermal sensing receptor [43]. In crustaceans, TRP chan-
nels have been primarily studied for their role in olfactory
reception [44] and stretch reception [45]. Not all orthologs
of TRP channels were identified in both species. We did
not identify in this data set orthologs of TRP-V6 and
pyrexia from C. borealis and an ortholog of TRP-M1 was
not identified in H. americanus. It is most likely that these
“missing” orthologs are due to limitations in the sequence
depth, although we cannot rule out the possibility that
these two species have distinct complements of TRP chan-
nel genes. No sequences were found in either species that
represent the TRPC, TRPP, TRPL, or TRPN subfamilies.
These results are consistent with found in a previously
published transcriptome of H. americanus that identified
2 TRPA, one pyrexia, and two TRPM type channels [5].
We extend these results to include identification of the
TRPV family of channels in both H. americanus and C.
borealis.

Biogenic amine receptors
Biogenic amine neuromodulators were some of the first
modulatory compounds to be thoroughly studied in the
crustacean nervous system [46–49], and specifically in
the stomatogastric nervous system [47, 50–52] where
some of the most comprehensive understanding of the

70%

75%

80%

85%

90%

95%

100%

Innexins
(N=4)

Ion
Channels

(N=14)

Ionotropic
Receptors

(N=13)

Metabotropic
Receptors

(N=11)

% identity
% similarity

***

***

FILTERED

73% (n=6226)

15% (n=1234)
12% (n=1042)

UNFILTERED

54% (n=11258)

29% (n=6085)
17% (n=3560)

Cancer borealisHomarus americanus

A

B

Fig. 5 Comparison of overlap of C. borealis and H. americanus neural
transcriptomes. a VennBLAST comparison of C. borealis and H.
americanus neural transcriptomes. Alignment of top hit sequence
comparison was performed with a tblastx of both C. borealis and H.
americanus against a common top hit species, D. pulex, allowing for a
highly annotated crustacean database for reference. Filtering added
another further stringency on top of that from the tblastx by requiring
an amino acid identity percent of 70 % and E-value threshold of
1.0e-5. b Percent amino acid sequence identity (blue points) and similarity
(red points) for selected neural function related gene products. For the
specifically curated gene products described in the remainder of the
study, we found very high (>90 %) amino acid sequence identity and
similarity between C. borealis Innexins (gap junction proteins), ion
channels, and ionotropic receptors and the corresponding sequence in H.
americanus. We saw a significant drop (one-way ANOVA with post-hoc
t-tests) in similarity in sequences for metabotropic receptor subtypes. This
indicates that channel proteins (including gap junction, voltage-gated,
and ligand gated) show more highly conserved amino acid sequence
than receptors that work via intracellular signal transduction cascades. ***
indicates significant difference (P< 0.001, t-test) between metabotropic
receptors and each of the other three groups. None of the other groups
were significantly different from one another

Northcutt et al. BMC Genomics  (2016) 17:868 Page 12 of 22



multiple targets and modulatory impacts of these com-
pounds on neural circuits has been described [53–59].
Therefore, we decided it would be valuable to provide a
thorough characterization of these receptor subtypes as

well to complement the extensive and elegant physiology
work that has been going on for decades.
Dopamine has been perhaps the most extensively

characterized biogenic amine from a functional and

Fig. 6 Ion channel subtypes and families identified in C. borealis and H. americanus transcriptome assemblies. Amino acid sequence alignment
was carried out using ClustalW, and subsequent trees were generated using ClustalW2_Phylogeny. We were not attempting to generate true
phylogenetic relationships, but rather simply used tree-based analysis to identify putative gene families. Hence no bootstrap values are calculated.
There was a 100 % overlap in identified genes from both species, with the exception of TRP channels. A comprehensive list of channel types
identified, their putative membrane currents, and accession numbers are provided in Table 2. Transcripts with the prefix “Cb” were identified from
C. borealis, while those with “Ha” were identified from H. americanus
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biochemical perspective in crustaceans. Previous work
[60, 61] identified 3 subtypes of dopamine receptors in
the nervous system of the spiny lobster, Panulirus inter-
ruptus: D1αPan (Type 1A DAr), D1βPan (Type 1B DAr),
and D2αPan (Type 2 DAr). We found clear orthologs to
all three of these receptor subtypes in both C. borealis
and H. americanus (Table 3; Fig. 7), and our transcrip-
tome search protocol did not come up with any other
putative DAr subunit transcripts. Therefore, it is likely
that these three receptor subtypes represent the
complete complement of dopamine receptors in these
decapod crustaceans. In deference to the extensive
characterization of these receptors in the closely related
spiny lobster, we conform the naming of these channels
to match with the Panulirus nomenclature: for example,
Cb-D1αR, Cb-D1βR, and Cb-D2αR (Fig. 7).

Serotonin receptors are less described in crustaceans
than the dopamine receptors. Previous reports describe
two distinct subtypes of serotonin receptors in the P.
interruptus [62] as well as the crayfish Procambarus
clarkii [63]: one type-1 and one type-2 serotonin recep-
tor. Our analysis of the transcriptomes of C. borealis and
H. americanus found clear orthologs to both of these re-
ceptor subtypes, and based on homology with mouse
and Drosophila sequences we identified two novel puta-
tive serotonin receptor subtypes as well. Figure 6 uses
the existing P. interruptus and P. clarkii sequences to
root the new sequences in a tree representing these
crustacean serotonin receptors. Our analysis suggests
that the previous type-1 5HTr subtypes identified are
most similar to mammalian 5HT1A (HTR1A) receptors,
while the crustacean type-2 5HTr subunit is most

Fig. 7 Biogenic amine receptor subtypes identified in C. borealis and H. americanus transcriptome assemblies. Trees were generated as described in Fig. 6.
Once again a 100 % overlap in transcript types was found between the two species, with one exception – a histamine receptor (Ha-HisR4) was identified in
lobsters that had no corresponding sequence from the crab transcriptome. In the case of serotonin (5HT) and dopamine receptor types, existing crustacean
sequence from two different decapod species (Panulirus interruptus and Procambarus clarkii) were used to help identify orthologs from C. borealis and H.
americanus. These are also included in their respective trees as points of reference. Pan- represents P. interruptus while Pro- represent P. clarkii. A
comprehensive list of amine receptor subtypes, including accession numbers, is provided in Table 3
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similar to 5HT2B (HTR2B) receptors. We also identified a
putative type-1B receptor (HTR1B) as well as a putative
type-7 receptor (HTR7). These identities are assigned based
on mouse query sequences used in our tblastx protocols
that generated the strongest hits (i.e. lowest e-values) when
queried against the crustacean transcriptomes. We follow
the mammalian classification and nomenclature guidelines
for these 5HT receptors in assigning gene names (Table 3;
Fig. 7), as these are well defined and organized relative to
the invertebrate nomenclature: e.g. Cb-HTR1A, Cb-HTR1B,
Cb-HTR2B, and Cb-HTR7.
Octopamine receptors are virtually undescribed in

crustaceans, with the sole decapod receptor described as
a tyramine/octopamine receptor from the freshwater
prawn, Macrobrachium rosenbergii [64]. Thorough work
with crustacean octopamine receptors is found in the
barnacle, Balanus improvisus, where one alpha- and four
beta-like receptor subtypes have been very nicely charac-
terized [65]. Our analysis identified the same distribution
of receptor types in C. borealis and H. americanus as
was described in the barnacle – one alpha- and four
beta-like subunits (Table 3; Fig. 7). However, there were
no particularly conserved motifs that resulted in a clus-
tering of decapod and barnacle receptor subtypes to
converge on a common nomenclature for these recep-
tors; the four beta-like receptors in barnacle most closely
related one another rather than subtypes across species.
As a result, we have simply named these β-like octopa-
mine receptors subtypes with ascending numbers and in
the style of the descriptions given to those identified in
B. improvisus (Bi): e.g. Cb-Oct-αR, Cb-Octβ-R1, Cb-
Octβ-R2, Cb-Octβ-R3, and Cb-Octβ-R4. However, we do
not mean to imply direct orthology between BiOctβ-R1
and Cb-Octβ-R1, for example. Finally, we also identified
a single putative tyramine receptor in both of our spe-
cies (Cb-Tyr-R and Ha-Tyr-R), and these sequences are
most similar to the tyramine/octopamine receptor re-
ported from Macrobrachium rosenbergii, which is most
effectively activated by tyramine [64, 66].
Histamine is also a major neurotransmitter in inverte-

brates, but sequence information for histamine receptors in
crustaceans has yet to be described. In vertebrates, these re-
ceptors are part of a protein family of G-protein-coupled
metabotropic receptors. In invertebrates, histamine acts
exclusively through ionotropic histamine receptors, as no
metabotropic histamine receptors appear to be present in
invertebrates [67]. We discovered putative orthologs for 3
distinct ionotropic histamine receptors in both C. borealis as
well as H. americanus (HisR1-3) and a fourth sequence was
found in H. americanus that did not have an obvious match
from C. borealis (Fig. 7). In sequence comparisons with
Drosophila melanogaster, the closest orthologs are described
histamine-gated chloride channels. This is consistent with
the known physiological characterization of crustacean

histamine gating of chloride channels [68, 69]. Because
naming conventions are lacking for these receptors in
crustaceans, we have simply assigned these transcripts
ascending numbers (1–4) to distinguish between different
putative histamine receptor subtypes (Fig. 7; Table 3).

Metabotropic glutamate receptors
Metabotropic glutamate receptors (mGluRs) are seven-
transmembrane domain proteins coupled to G-proteins
capable of controlling many cellular processes through
signaling cascades. mGluRs can be classified into three
primary classes [70]: Class I consists of mGluR1 and
mGluR5 and are associated with phospholipase-C and
utilize intracellular calcium signaling cascades; Class II
consists of mGluR2 and mGluR3; and Class III consists
of mGluR4, mGluR6, mGluR7, and mGluR8 and are
negatively coupled with adenylyl cyclase activity. These
receptors exist as either homo- or heterodimers on the
cell surface, and it is the associated G-protein alpha-
subunit that determines which class the mGluR falls
under (e.g. Class I associates with Gq and G11). In crus-
taceans, mGluRs have a relatively short history of study,
mostly owing to the fact that the metabotropic form of
glutamate receptors had not been characterized until the
late 1980s [71]. In crustacean preparations, it has been
found that mGluRs play a role in rhythm generation in
the stomatogastric ganglion [72, 73]. In our analysis of
these transcriptomes, we found six mGluR sequences for
each species, which covered all three primary classes of
mGluRs (Table 4; Fig. 8). We did not find mGluR6 and
mGluR8 orthologs in either species. It should also be
noted that Ha-mGluR2 and Ha-mGluR4 aligned more
closely to one another than to their C. borealis counter-
parts. This discrepancy could be due to the relatively short
partial sequence found for Cb-mGluR2; that is, only the
first 200 amino acids were found for Cb-mGluR2, while
the Ha-mGluR2 sequence found is 1027 amino acids long.

Ionotropic glutamate receptors
The most common excitatory neurotransmitter found in
crustaceans at the neuromuscular synapse is glutamate
[74]. The three primary ionotropic glutamate receptors
are NMDA, AMPA, and kainate receptors, named re-
spectively after the agonists N-methyl-D-aspartate, α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,
and kainic acid that activate them. One of the initial
characterizations of NMDA receptors from crustaceans
was performed in the crayfish optic lobe [75]. Since
then, NMDA receptors have been studied in crustaceans
for their role in memory [76], axon-to-glial signaling
[77], and central pattern generation [78]. We were able
to identify 4 separate NMDA receptors from both C.
borealis and H. americanus, which fell into two primary
categories: 1-like and 2-like (Table 4; Fig. 8). We further
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identified these receptors into 1A, 1B, 2A, and 2B based
on their pairing, but this is not meant to imply orthology
with other naming schemes in other species. We also found
one NMDA receptor in both C. borealis and H. americanus
that we did not find a highly similar pair for, which we have
included as Cb-NMDA-2-like and Ha-NMDA-2-like.
AMPA receptors have been virtually undescribed in

crustacean preparations, which coincides with our re-
sults. In our analysis, we did not find any receptors that
most closely resembled AMPA receptors. Known AMPA
receptors blasted against our transcriptomes aligned best
against the putative kainite-type receptors, which is un-
surprising considering both AMPA and kainate are con-
sidered non-NMDA receptors. Kainate receptors have
been implicated as modulators of synaptic transmission
and excitability [79]. In crustacean systems, kainic acid
historically has been shown to elicit depolarizations at
the crab neuromuscular junction [80], as well as the
crayfish neuromuscular junction [81]. Five pairs of
kainite-like receptors were found between the C. borealis
and H. americanus transcriptomes (Table 4; Fig. 8), fall-
ing into two discrete categories: kainate type-1-like and
2-like. Sequences were further subdivided into A, B, and

C on the simple basis of pairing between the two species
and not based on any specific orthology to other species.
Beyond the excitatory glutamate-gated cation channels

(NMDA- and kainate-like), an inhibitory glutamate-
gated chloride channel (GluCl) was also found for both
C. borealis and H. americanus (Table 4). Soon after their
discovery as extrajunctional receptors in locust muscles
[82], GluCls were described as postsynaptic receptors in
the crustacean stomatogastric ganglion [50, 83]. In our
analysis, we found a single GluCl transcript for each spe-
cies, named Cb-GluCl and Ha-GluCl. The finding of a
single channel is consistent with some other inverte-
brates, with a single GluCl also found in most insects
[84]. Because of their distinct characteristics, the GluCl
channels we identified were not placed on any of the
trees shown in the Figures.

GABA receptors
The neurotransmitter γ-amino butyric acid (GABA) has
been studied in crustacean species for decades for its role
in synaptic transmission and neural inhibition [85–88].
Interestingly, in invertebrates several different neural
responses to GABA have been found that have distinct

Fig. 8 Glutamate receptor subtypes identified in C. borealis and H. americanus transcriptome assemblies. Trees were generated as described in
Fig. 6. We separated glutamate receptor subtypes into metabotropic (G-protein coupled), and the ionotropic Kainate- and NMDA-like. A single
glutamate-gated chloride channel (GluCl) sequence was identified in both C. borealis and H. americanus, and is not included as a member of a
given receptor subclass in the figure. A comprehensive list of glutamate receptor subtypes, including accession numbers, is provided in Table 4

Northcutt et al. BMC Genomics  (2016) 17:868 Page 16 of 22



profiles from that of vertebrate GABA receptors [83,
89–91]. GABA receptors are classified into two major
groups: GABAA type receptors, comprising receptor com-
plexes that are part of a ligand-gated ion channels, or
GABAB type receptors, G-protein-coupled receptors that
act via metabotropic signaling systems. GABAA receptors
are pentameric transmembrane receptors responsible for
fast, usually inhibitory synaptic currents, and heteromulti-
mers of the individual subunit types can form distinct
channel properties in invertebrates [92]. We identified
orthologs of three GABAA type receptor subunits from
both H. americanus and C. borealis (Fig. 9; Table 3), in-
cluding orthologs of Drosophila LCCH3-, RDL-, and
GRD-like receptor subunits – and we have preserved
naming conventions for these subtypes. Two GABA re-
ceptor subunits previously have been cloned from H.
americanus [93], and very recently a GABAA type recep-
tor was identified in the crayfish, Procambarus clarkii
[94]. Sequence comparison reveals these previously de-
scribed sequences to be orthologous to the RDL-like re-
ceptor from our data. The metabotropic GABAB type
receptors are GPCRs responsible largely for slower inhibi-
tory synaptic effects, and functional GABAB receptors are
heterodimers formed by GABAB1 and GABAB2 subunits
[95]. We identified orthologs of both GABAB1 and

GABAB2 subunits in both C. borealis and H. americanus
(Table 3; Fig. 9).

Acetylcholine receptors
Acetylcholine receptors are classified into two family
subtypes: nicotinic receptors (nAChRs), which are
ligand-gated ion channels that are activated by nicotine;
and muscarinic receptors (mAChRs), which are metabo-
tropic GPCRs that respond to the agonist muscarine.
Muscarinic acetylcholine receptors are further classified
into subtypes based on the specific G-protein associated
with the receptor [96]. In our analysis, we discovered
two discrete subtypes of mAChRs (Table 4; Fig. 9) in
both C. borealis and H. americanus, which is consistent
with other arthropods [97]. The A- and B-type mAChR
are defined based on their differential sensitivity to mus-
carine (A-type is 1000x more sensitive than B-type), as
well as the antagonist binding properties (atropine, sco-
polamine, and QNB block A-type but not B-type) that
each receptor exhibits [97].
Nicotinic acetylcholine receptors are common through-

out the invertebrate central nervous system, mediating
largely fast excitatory neurotransmission [98–101]. For
nAChRs in nervous systems of C. borealis and H.
americanus, each species was found to have 1 β-subtype

Fig. 9 GABA and acetylcholine receptor subtypes identified in C. borealis and H. americanus transcriptome assemblies. Trees were generated as
described in Fig. 6. GABA and acetylcholine are both small molecule transmitters in crabs and lobsters. Both transmitters act through ionotropic
and metabotropic receptor subtypes. Metabotropic GABA receptors (GABAB-type) and ionotropic GABA subunits (GABAA-type) were identified in
both species. A comprehensive list of GABA receptor subtypes, including accession numbers, is provided in Table 3. Both nicotinic (ionotropic)
and muscarinic (metabotropic) acetylcholine receptors were identified from both species, including one nicotinic beta-subunit and 8 alpha-subunit
types. A comprehensive list of acetylcholine receptor subtypes, including accession numbers, is provided in Table 4
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and 8 α-subtypes (Fig. 9). A thorough characterization of
invertebrate nAChRs has been performed for the snail,
Lymnaea stagnalis [102]. Our analysis revealed that few dir-
ect orthologous sequences occurred from snail (Mollusca)
to crustaceans that would allow us to adopt the nomencla-
ture put forward in Lymnaea. Therefore, the crustacean re-
ceptor subtypes were named based on their most similar
mammalian counterpart, with the exception of the α16 sub-
unit found, named so due to its similarity to acr-16 found in
C. elegans [103]. This subunit is most comparable to α7 in
humans, but we found other sequences nAChRs more simi-
lar to human α7 than that of the putative α16.

Gap junction proteins (Innexins)
The proteins responsible for gap junctions in inverte-
brates are the Innexins [104]. A family of Innexins have
previously been described for both C. borealis and H.
americanus [105]. We include them here as character-
ized through the transcriptome analysis for complete-
ness. Three full-length sequences were named Innexins
1–3 (Fig. 10; Table 5) based on significant sequence
similarity to coding sequences of Innexins from multiple
other organisms, including other decapod crustaceans
[106]. Innexins 4–6 (Fig. 10; Table 5) were subsequently
identified from our transcriptome analysis of C. borealis
nervous system. We identified clear orthologs from lob-
ster and crab for Innexins 1–4 and 6; but two Innexins
showed enough dissimilarity to be classified separately,
and these are classified as Innexin 5 in C. borealis and
Innexin 7 in H. americanus (Fig. 10). All of these identi-
fied Innexin sequences have the signature motif
YYQWV in the second TM domain as well as a series of
other conserved amino acid residues considered hall-
marks of Innexins [105].

Discussion
The era of modern genomics and high-throughput sequen-
cing has revolutionized the study of neuroscience, and pro-
vided an opportunity for classic physiology systems in the

study of neural circuit properties to experience a renewed
level of impact. In particular, invertebrate model systems
that historically have been invaluable to our understanding
of basic circuit properties, dynamics, systems neuroscience,
and neuromodulation now present themselves as novel con-
tributors to molecular neuroscience. In particular, classic
preparations such as the Tritonia swim system [107],
Aplysia feeding circuits as well as the classic gill and siphon
withdrawal reflex [108, 109], and crustacean stomatogastric
systems [19] revolutionized our understanding of neural
circuitry. Each of these systems is the renewed focus of gen-
omic and transcriptomic approaches [4, 5, 110, 111] – in-
cluding this study – that promise to merge the unparalleled
experimental accessibility on the neurophysiology end of the
spectrum with new molecular tools to understand and ma-
nipulate these circuits. Decapod crustacean systems have
also been foundational in the understanding of modulation
of behavioral states. The earliest work implicating serotonin
broadly in aggression can be traced to seminal work in lob-
ster behavioral studies [48, 112]. GABA was first identified
as an inhibitory transmitter in these same decapod lobster
species [9, 113]. Finally, the crayfish escape behavioral re-
sponse has been a paradigm for the true integration of neu-
roethological work across single neurons, neural circuitry,
behavior, modulation, and social status [114]. Therefore, the
accessibility of a molecular perspective and toolset will allow
researchers to revisit these seminal works with greater po-
tential to understand integrated nervous system function.
It can be challenging to stay up to date with all of the

sequence data being published. To the best of our know-
ledge, there are a relatively small number of published
transcriptome projects with decapod crustaceans as
model systems. Sequence discovery projects in decapod
crustaceans began with expressed sequence tag (EST)
analyses over a decade ago [115, 116], and these have
been used to examine olfactory receptor expression in
the lobster system [117]. Since then, a mixed tissue tran-
scriptome sequencing projects have been performed
from the spider crab, Hyas araneus [118, 119] and spiny

Fig. 10 Innexin subtypes identified in C. borealis and H. americanus transcriptome assemblies. Trees were generated as described in Fig. 6. Innexins are
proteins responsible for gap junctions in invertebrates. Six distinct Innexin subtypes were identified in both C. borealis and H. americanus (see also [103]). Of
these six, one from each species did not contain enough sequence homology to classify as the same type across species (Cb-INX5 and Ha-INX7) hence are
named as distinct subtypes. A comprehensive list of Innexin subtypes, including accession numbers, is provided in Table 5
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lobster Sagmariasus verreauxi [120]. Some of the most
proactive work in crustacean transcriptomics lies in the
area of neuropeptidomics for the discovery of neuroac-
tive peptides and their receptors [121–124], including a
study that makes use of the H. americanus sequence
data contained reported here [4]. However, none of these
studies provides analysis of ion channel or receptor se-
quence as contained within our study.
The most directly comparable transcriptome study was

carried out in H. americanus, and used RNA-seq to exam-
ine differences in gene expression across tissues, including
nervous system, as well as responses to hormonal treat-
ment and temperature perturbations [5]. While this study
uses GO and other annotation approaches to identify
channel and receptor groups that are differentially
expressed, identification of these gene products is at the
level of gene family. For example, McGrath et al. [5]
identify glutamate receptors as a broad group that are dif-
ferentially expressed in tissues, but make no further dis-
tinction as to receptor subtype –reporting that they have
126 transcripts that map to a global glutamate receptor
subtype group. This high number is likely due to identifi-
cation of multiple short contigs of the same receptor se-
quence, as opposed to distinct receptor sequences, and
may be reflected by the lower N50 value of this transcrip-
tome (1,289). In contrast, the N50 of our H. americanus
transcriptome is 2,357, leading to longer contigs and often
the identification of full-length coding sequence that
greatly aided our ability to characterize and identify dis-
tinct channel and receptor subtypes. Nevertheless, to the
extent these studies can be compared, we saw results
largely consistent with the overall identifications provided
[5]. For example, both studies identified 5 octopamine re-
ceptor subunits, including at least 3 beta-type receptors.
Further, all reported differentially expressed voltage-
dependent ion channel and transmitter receptor subtypes
[5] were present in our data set. While there is no direct
overlap in the goals of these studies, the characterization
provided in our study will provide a reference by which
subsequent expression analyses can be combined with
thorough annotation to provide more insight into gene-
specific changes related to neural function.

Conclusion
In this study we sequenced the nervous system tran-
scriptomes for two highly utilized species in invertebrate
neuroscience research: the Jonah crab (Cancer borealis)
and the American lobster (Homarus americanus). Our
sequencing, assembly, and annotation efforts have
yielded an extensive set of sequence information from
which we can begin to mine gene products critical to
fundamental nervous system output: channels and re-
ceptors. This study represents the first attempt to
characterize to this extent these critical building blocks

of circuit function from these model systems. In doing
so we have identified for the first time in these species
previously undescribed channel and receptor families, as
well as added to the incomplete characterization of
amine receptors known to modulate both circuit func-
tion and behavior in these animals. This sequence infor-
mation opens up these target proteins for use in gene
manipulation techniques such as overexpression [125] or
RNA-interference mediate knockdown [126] to deeply
interrogate circuit function. Finally, the stomatogastric
system has been used extensively in computational stud-
ies that have revolutionized our understanding of circuit
fundamentals, dynamics, and the role of variability in
neuronal parameters in circuit function [127–130].
These models have relied on biological data for identifi-
cation of likely membrane conductances present in the
networks. Molecular screening and quantitative assays of
channel expression can effectively be used in concert
with computational modeling [131, 132] to generate bet-
ter and more biologically realistic models with which to
uncover fundamental aspects of neural circuit dynamics.
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