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Abstract

Background: While a few studies on the variations in mRNA expression and half-lives measured under different
growth conditions have been used to predict patterns of regulation in bacterial organisms, the extent to which this
information can also play a role in defining metabolic phenotypes has yet to be examined systematically. Here we
present the first comprehensive study for a model methanogen.

Results: We use expression and half-life data for the methanogenMethanosarcina acetivorans growing on fast- and
slow-growth substrates to examine the regulation of its genes. Unlike Escherichia coliwhere only small shifts in half-lives
were observed, we found that most mRNA have significantly longer half-lives for slow growth on acetate compared to
fast growth on methanol or trimethylamine. Interestingly, half-life shifts are not uniform across functional classes of
enzymes, suggesting the existence of a selective stabilization mechanism for mRNAs. Using the transcriptomics data
we determined whether transcription or degradation rate controls the change in transcript abundance. Degradation
was found to control abundance for about half of the metabolic genes underscoring its role in regulating metabolism.
Genes involved in half of the metabolic reactions were found to be differentially expressed among the substrates
suggesting the existence of drastically different metabolic phenotypes that extend beyond just the methanogenesis
pathways. By integrating expression data with an updated metabolic model of the organism (iST807) significant
differences in pathway flux and production of metabolites were predicted for the three growth substrates.

Conclusions: This study provides the first global picture of differential expression and half-lives for a class II
methanogen, as well as provides the first evidence in a single organism that drastic genome-wide shifts in RNA
half-lives can be modulated by growth substrate. We determined which genes in each metabolic pathway control the
flux and classified them as regulated by transcription (e.g. transcription factor) or degradation (e.g. post-transcriptional
modification). We found that more than half of genes in metabolism were controlled by degradation. Our results
suggest thatM. acetivorans employs extensive post-transcriptional regulation to optimize key metabolic steps, and
more generally that degradation could play a much greater role in optimizing an organism’s metabolism than
previously thought.
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Background
The stability of an RNAmolecule, as measured by its half-
life, is a critical factor in defining timescales for cellular
events. It also sets the correlation time of transient adap-
tations relative to a cell’s growth rate, when compared
to its more long-term “basal” phenotype. For example,
rapid, high-fidelity responses to extreme external stimuli
are mediated through small RNA (sRNA, siRNA, miRNA,
etc.) whose function depends largely on search time and
efficiency of stimulated co-degradation, sequestration or
stabilization when in complex with the target mRNA [1].
On longer timescales degradation finely tunes abundances
of critical RNAs [2], controls slow shifts in RNA levels
during adaptation between different growth states [3], and
contributes significantly to the noise in the steady-state
distribution observed in populations of cells [4]. These
observations and those of many other studies demon-
strate that post-transcriptional control of RNA dynamics
is critical to understanding the cellular state; however, the
factors defining stability over an organism’s entire tran-
scriptome have yet to be fully defined. Furthermore, the
consequences of changing RNA stability on metabolic
state remains unknown.
Significant strides towards understanding the indi-

vidual factors affecting RNA stability have been made.
To date, genome-wide analyses of RNA stability have
been reported for many single-celled, model organisms
including representatives of the families Escherichia
[5–9], Mycobacterium [10], Bacillus [11, 12], Sulfolobus
[13–15], Halobacterium [15], Methanocaldococcus
[16, 17] and various yeasts [18–21]. However, the majority
of species studied were fast-growing bacterial or eukary-
otic species, and archaeal species account for only a small
fraction of the whole-transcriptome reports. This study
aims to extend our knowledge of RNA stability in archaea
by characterizing it in Methanosarcina acetivorans, a
versatile organism capable of growth and methanogenesis
using many substrates and therefore of great importance
in the global carbon cycle [22, 23]. The organism has also
been implicated in a historical mass extinction as the fossil
record shows increase in biogenic methane along with an
increase in environmental nickel, an important cofactor
in the methanogenesis pathways, and the evolution of the
acetotrophic (acetate utilization) pathway [24].
Genome-wide RNA stability has been characterized

in the first sequenced methanogen Methanocaldococcus
jannaschii [16, 17]; however, this organism is a class I
methanogen only capable of growth wherein electrons
derived from hydrogen or formate are used to reduce
CO2 [25]. More complex class II methanogens [25] such
as those in the family Methanosarcinaceae are capable of
growing on a diverse set of substrates including mono-,
di-, and tri-methylated molecules as well as acetate, car-
bon monoxide, and H2/CO2; thus, requiring branched

methanogenesis pathways and more complex regulation
to optimize their growth to a particular environment.
They also generally have genome sizes 2–4 times larger
than M. jannaschii, requiring significantly more regu-
lators, the number of which have been found to scale
quadratically in the number of genes [26].
The study of RNA stability in M. jannaschii identi-

fied noncatalytic cleavage sites about 12–16 nucleotides
upstream of the translation start site for about a quar-
ter of genes examined, suggesting 5′ leader sequences
play a role in post-transcriptional regulation of genes
[17]. Several studies posited a similar mechanism could
exist in class II methanogens. One study of the operon
encoding the acetyl-coenzyme-A decarbonylase/synthase
complex in Methanosarcina acetivorans identified post-
transcriptional regulation to be important in acetotrophic
and carboxydotrophic methanogenesis and hints at the
possibility that altering transcript stability could play a
more global genetic role [27]. A very recent study in a dis-
tantly related methanogen Methanolobus psychrophilus
has demonstrated that both transcriptional and post-
transcriptional regulation play important roles providing
extra stability in this slow growing, cold-adapted organ-
ism [28]. Several studies have discovered small RNAs in
the related speciesM.mazei [29, 30]; however, their role in
regulating transcript half-lives have yet to be established.
Whether post-transcriptional regulation is widespread
and whether such regulation is mediated by targeted
endonucleolytic degradation or small RNA regulation or
translational initiation is yet unknown. Therefore, a char-
acterization of RNA stability in class II methanogens will
help us to determine what role degradation plays in the
larger context of the cell’s economy.
Regulation of gene expression by change in half-life

has recently been demonstrated in L. lactis and E. coli
[7–9]. The authors of these papers proposed a method to
determine “control coefficients” (which describe whether
mRNA abundance is transcriptionally or degradationally
controlled) from half-life and expression data. They found
that change in growth rate on glucosemanifest small shifts
in half-lives and that only about ∼10% of genes were
degradationally controlled. To determine the extent to
which degradation plays a role regulating gene expression
in M. acetivorans we performed whole-genome analy-
ses of RNA expression and half-lives in two fast growth
substrates (methanol and TMA) and one slow growth sub-
strate (acetate) and applied the control theory. We found,
in contrast to the studies in L. lactis and E. coli, significant
shifts in half-life with growth rate and that degradation
controls gene expression for up to 28% of genes.
This study provides the first global picture of differen-

tial expression and half-lives for a class II methanogen,
as well as provides the first evidence in a single organism
that drastic genome-wide shifts in RNA half-lives can be
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modulated by growth substrate. Furthermore, we demon-
strate how combining half-lives with expression data can
be used to predict transcription rates and average mRNA
copies per cell which can in turn be used with com-
putational modeling to predict metabolic phenotype. In
the process, we updated the most recent genome-scale
metabolic model forM. acetivorans to include newly char-
acterized reactions. We used expression data to constrain
metabolic fluxes to generate several hypotheses about
changes in the metabolic state and metabolite production
due to carbon source. We created a metabolic map onto
which all information generated in the study could be dis-
played including reaction energies, enzyme commission
numbers, metabolic subsystem, cluster of orthologous
group categories, differential expression statistics, half-
lives, regulation control coefficients and steady-state reac-
tion fluxes. This effectively creates a visual database which
can be used to understand regulation and the associated
metabolic state.

Results
Half-life distributions
We characterized the half-lives genome-wide for cells
growing on acetate, methanol (MeOH) and trimethy-
lamine (TMA) in order to identify changes in tran-
script “stability” under different growth conditions (see
Fig. 1, Additional file 1: Table S1 and Figures S1 and S2).

Half-lives were extracted from RNA transcriptome pro-
files measured at six timepoints following transcriptional
arrest by the antibiotic actinomycin D as described in the
methods. Transcriptome profiles at different timepoints
for the same growth substrate were highly correlated
(Pearson’s r>0.94, Additional file 1: Figure S3). The three
biological replicates at each timepoint showed aminimum
correlation coefficient of 0.99. Both of these observations
indicate that our experimental procedure is reproducible
(see Additional file 1: Figure S3).
Expression profiles were averaged at each timepoint and

the time series normalized such that the most stable, core
gene sodB (MA1574) [13] had a half-life of∼2 hours. After
normalization, most genes had positive half-lives. After
fitting the degradation profile to a first-order decay func-
tion, 4486, 4487 and 3667 genes in methanol, TMA and
acetate grown cultures were found to have positive half-
lives with residual error in the fit below 50% of the value
of the decay rate (i.e. coefficient of variation, CV<50%).
Genes with negative half-life or large fitting residual were
omitted in subsequent analyses. High-energy yield sub-
strates methanol and TMA had similar average half-life—
59 ± 25 min and 72 ± 29 min, respectively—while the
lower-energy yield substrate acetate showed a significantly
longer average half-life of 159 ± 59 min (standard devia-
tion, n = 3). Probability distributions of the half-lives for
each growth substrate where highly statistically different

Fig. 1 Shift in Half-Life With Growth Substrate. a) Genome-wide histograms of RNA half-lives forM. acetivorans growing in methanol (blue), TMA
(red), or acetate (green) media. The shorter lifetimes in high-energy substrates are apparent when compared to the acetate distribution. The inset
shows the distribution of half-lives after they have been scaled by doubling time (7.5hr [43, 95, 96], 8.9hr [43] and 24.6hr [43, 95, 97] for growth in
MeOH, TMA and Acetate, respectively), demonstrating that the average transcript half-life is a constant fraction of the cell cycle, or about
12.7%±3.5% the doubling time (dashed line). See Additional file 1: Figure S4 for a larger version of the inset. b) A breakdown of changes in half-life
by pairwise comparison of growth conditions. Unregulated genes that show no statistically significant (t-test, p >0.01) shift in half-life under any of
the conditions (1339 total; red bar) and those marked as “No Change” (blue bar) do not show significant changes when comparing the indicated
conditions. Genes that are stabilized or destabilized when comparing the second condition to the first condition are labelled as “longer” (green) and
“shorter” (purple), respectively. Hatched regions indicate the fraction of genes that are differentially expressed in addition to having different
half-lives. As discussed more thoroughly in the text, almost half of the stabilized and destabilized genes are common when comparing
methylotrophic conditions to acetotrophic growth, suggesting there is a similar stabilization mechanism based on either growth rate or substrate
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(p < 1.6 × 10−133, Mann-Whitney test) demonstrating
that each substrate has unique degradation characteris-
tics. Histograms of the RNA half-lives for the three sub-
strates are shown in Fig. 1a where the significant shift
towards longer half-lives for growth in acetate is apparent;
however, a sizable portion of the half-lives remain rela-
tively unchanged as evidenced by the flat profile between
0 and 100 min.
In Fig. 1b shifts in half-lives for individual transcripts

comparing growth conditions and comparing methano-
genesis type (methylotrophic vs. acetotrophic) are shown.
A “core” set of 1339 genes showed no statistical change
among any of the three conditions (t-test, p >0.01)
which means that ∼25% of the genome is not differen-
tially degraded; however, most other genes show some
shift in half-life when comparing growth substrates. The
observation that not all genes show similar shifts in half-
life suggests the organism might employ a mechanism
to selectively stabilize/destabilize certain mRNAs. More
than 10 times as many genes were destabilized dur-
ing methylotrophic growth than were stabilized, with a
total of 1153 having longer half-lives in acetate than in
methanol and TMA.
To further understand the shift in half-lives seen in

Fig. 1b, genes were binned by clusters of orthologous
groups (COGs, the 2014 revision [31]; arCOGs, the 2015
revision [32]). After computing statistics for the distribu-
tion of half-lives in each bin we found that the means
many COG classes were significantly shifted between
growth substrates (Fig. 2 and Additional file 1: Figure S5).

About 11 classes of genes had significantly longer
mean half-life when growing on acetate than methy-
lotrophic conditions including RNA processing (A), car-
bohydrate transport and metabolism (G), lipid transport
and metabolism (I), cell wall biogenesis (M), cell motility
(N), inorganic ion metabolism (P), secondary metabo-
lite metabolism (Q), intracellular trafficking and secretion
(U), defencemechanisms (V), extracellular structures (W)
and the mobilome (X). Additionally, three classes had sig-
nificantly shorter half-lives including energy production
and conversion (C), amino acid transport and metabolism
(E), and translation, ribosome structure and biogenesis (J).
It is interesting to note that the three classes that have
shorter half-lives in acetate (slow growth) all play major
roles in cell growth. Comparing MeOH and TMA growth
most classes showed minor shifts except those involved
in RNA processing (A), chromatin structure (B), energy
production (C), lipid transport (I), replication (K) and
extracellular structures (W). The selective stabilization by
functional class indicates that M. acetivorans uses degra-
dation to prioritize certain functions on different growth
substrates.
Only 81 transcripts were stabilized in both methy-

lotrophic conditions compared to acetotrophic growth
(see Fig. 1b). Using gene set enrichment analysis (GSEA)
it was found that translation (ribosomal proteins and ini-
tiation factors) and methanogenesis (mcr, cdh, mrp, hdr)
genes were highly enriched in the transcripts that were
particularly stabilized during methylotrophic growth (p <

4.9 × 10−5, p < 2.8 × 10−2, respectively; computed

Fig. 2 Half-Life Shift by Functional Class. The median half-lives for the 23 COG classes demonstrate different behaviors for low- and high-energy
substrates. The shift in RNA half-lives between substrates are not uniform across functional classes, suggesting there exists a mechanism to
selectively stabilize/destabilize the transcripts. See Additional file 1: Figure S5 for details about the median and quartiles. Uncertainties were
calculated as the weighted standard deviation and are shown as error bars
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via PANTHER [33]). In general, correlation of half-lives
between any two growth conditions was low (|r| < 0.15);
however, half-lives for genes that were stabilized or desta-
bilized when during methylotrophic growth had a sig-
nificantly higher correlation (r = 0.43, p < 4 × 10−53,
t-test). This observation might indicate similar stability
control for growth inmethanol and TMA.GSEA also indi-
cated that transcripts involved with aromatic amino acid
synthesis were especially stabilized, encoding growth rate
controlled genes in Trp, His, Asp and Phe biosynthesis
pathways (p < 1.4 × 10−2; PANTHER).
We found that half-lives did not correlate significantly

with RNA Gibbs energy of folding of the ORF as com-
puted using state-of-the-art RNA folding software (r =
0.018, p = 0.23 by t-test, for both Andronescu2007 and
Turner2004 parameters; data not shown). This confirms
previous reports which found no correlation of the folding
energy to RNA half-life [5, 11]. RNA stability was also not
correlated with gene length (|r| < 0.09; data not shown).
Similarly, changes in RNA stability between growth con-
ditions were not correlated to RNA folding energy or gene
length, suggesting different attributes determine stability;
perhaps the number of internal cleavage sites, 5′ or 3′
untranslated regions, susceptibility to different RNases or
regulation by sRNAs.

Differentially expressed genes
The regulation of gene expression may be a functional
role for the selective stabilization of mRNA transcripts. To
confirm this hypothesis, we needed to determine which
genes were regulated. A comparison of gene expression
for cultures growing exponentially in the three media

was performed. Three methods [34–36], each employing
different underlying assumptions about gene expression,
were used to predict statistically differentially expressed
genes (DEG). Because each method gave diverse results,
we took the common set of DEG—hereafter referred to
as the “consensus set”—to be a conservative estimate of
the DEG (see Additional file 1: Figure S7). Our observed
fold change in RNA expression between acetate, MeOH
and TMA are in good agreement with the previous, but
limited, qRT-PCR and microarray studies that have been
published [37] with a Pearson correlation coefficient, r, of
0.82 (p < 3× 10−9; Additional file 1: Figure S6A). We also
found that, while absolute protein count was very weakly
correlated to RNA expression (r = 0.12, p >0.1), fold
change in protein levels [38–43] were highly correlated to
change in RNA expression (r = 0.63, p < 2.2 × 10−11;
Additional file 1: Figure S6B).
Counts of differentially expressed genes can be found

in Table 1. The consensus set consisted of 201±50 DEG
comparing methanol and acetate (MA), 645±162 DEG
comparing TMA and acetate (TA) and 211±62 DEG
comparing methanol and TMA (MT) members with a
p-value < 0.01 (see Additional file 1: Figure S7 for over-
lap between methods). The uncertainty in number of
differentially expressed genes due to limited replicates
was estimated to be 24–30% using a bootstrapping pro-
cedure (see Additional file 1: Section “Uncertainty in
Differentially Expressed Genes” and Figure S2). Genes
involved in energy metabolism (C), translation (J), coen-
zyme metabolism (H), and amino acid metabolism (E) are
most drastically effected, though all COG classes have at
least one representative gene (Fig. 3a). We also computed

Table 1 Count of genes that are differentially expressed when comparing growth substrates predicted by several methods

Genes

Comparison edgeR DESeq2 PoissonSeq Consensusb

MeOH vs Acetate 621 341 400 201 (126d)

MeOH vs TMA 2839 258 2348 211 (112d)

TMA vs Acetate 2762 757 1955 645 (335d)

Methylotrophic vs
511 179 301 100

Acetotrophic

Operonsa

Comparison DOOR2 Microbes Online ProOpDB Rockhopper Consensusc

MeOH vs Acetate 205 (144) 183 (110) 189 (129) 207 (151) 157

MeOH vs TMA 202 (148) 198 (117) 211 (143) 212 (158) 163

TMA vs Acetate 662 (450) 701 (343) 667 (406) 655 (469) 571

Methylotrophic vs
112 (75) 97 (53) 91 (56) 112 (79) 76

Acetotrophic

aIntersection of the sets of differentially expressed genes predicted by the three methods. bCount of differentially expressed genes that are associated with reactions in the
metabolic model. cThe differential expression procedure applied to reads summed over putative operons of a specific dataset, where the number reported is total genes
called as differentially expressed, while the number in parenthesis is the total number of operons called as differentially expressed. dIntersection of the sets of differentially
expressed genes predicted to be in differentially expressed operons (because operon structures were not conserved across the methods)
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Fig. 3 Breakdown of Differentially Expressed Genes. Breakdown of differentially expressed genes (DEG) comparing MeOH/Acetate (orange),
MeOH/TMA (purple) and TMA/Acetate (cyan) by (a) COG class and (b) metabolic subsystem (metabolic genes include those that are associated with
reactions in the metabolic model iST807). The outliers in (a) include coenzyme/vitamin metabolism (H) and translation and ribosome biogenesis (J)
when comparing MeOH and TMA. The inset in a shows the count of DEG in each category. The inset in (a) shows the count of DEG in each category.
Genes with a p-value ≤ 0.01 were considered to be differentially expressed

differential expression for gene operons. To do so, we
combined reads over gene operons (as predicted by four
different methods [44–47]) and applied the same meth-
ods as for genes. We found that the consensus set DEG
computed by operons largely reflected those computed by
individual genes and that about 80% of genes were called
as differentially expressed (see Table 1).
Differentially expressed genes were largely associated

with metabolic reactions. Of the 201, 211 and 645 dif-
ferentially expressed genes identified, about half were
associated with reactions in our genome-scale metabolic
models for M. acetivorans [48, 49] (affecting 149, 110,
359 total reactions, respectively). Genes associated with
energy metabolism account for only 8–18% of all DEG
depending on compared substrates (Fig. 3a), demonstrat-
ing that carbon source plays a larger role in defining
metabolic state than merely by changing expression of
methanogenesis genes (Fig. 3b). Nucleotide, cofactor, aro-
matic amino-acid biosynthesis and transport metabolic
pathways were also regulated extensively, each account-
ing for between 5 and 15% to total regulated genes
(Fig. 3b). Notably, genes in translation also contribute
to ∼3–16% of all differentially expressed genes, suggest-
ing a tight coupling between growth substrate and genes
affecting growth rate (Fig. 3a). In metabolism methano-
genesis accounts for 15–35% of differentially expressed
genes alone; however, genes involved in nucleotide, vita-
min and cofactor biosynthesis as well as transport each
constitute ∼10% of differentially expressed genes, sug-
gesting that growth substrate has significant effect on the
cell economy, likely affecting energy carrier balance and
import and export of nutrients. Figure 4 shows a mapping
of differentially expressed genes.

Regulatory control coefficients
In light of the fact that half-lives for mRNAs change sig-
nificantly between growth substrates and that the changes
are specific to certain functional classes of mRNA, it
is likely that selective degradation of mRNAs plays a
regulatory role. A recent theory was proposed to deter-
mine whether change in transcript abundance for a gene
between two growth conditions is determined by change
in the degradation or transcription rate [7, 8]. The theory
defined “control coefficients” that describe the effective
change in mRNA level as resulting from degradation or
transcription, under the assumption that gene expres-
sion is at steady-state (i.e. the population is growing
exponentially and in homogenous growth condition). We
computed the degradational (ρD = −dlnγ /dln[mRNA];
where γ is the degradation rate) and transcriptional (ρT =
dlnktrn/dln[mRNA]; where ktrn is the transcription rate)
control coefficients for each of the genes using the half-
life and expression data. See Additional file 1: Section
“Control Coefficients” for a derivation and description
of these control coefficients. See Fig. 5 for a mapping of
control coefficients comparing TMA and acetate.
Three regulation regimes are of interest [7–9]: 1) pri-

marily degradationally controlled, (ρD ≥ 1), 2) primarily
transcriptionally controlled, (ρD ≤ 0) and 3) mixed degra-
dation and transcription control 0 < ρD < 1. The results
for all genes can be found in Table 2. Our analyses show
that between 16 and 28% of the changes in steady-state
transcript levels are due to degradational control. Between
16 and 23% of transcripts show both degradational and
transcriptional control effects. A summary of the control
coefficients computed for differentially expressed genes
can be seen in Table 3. Strikingly, more than 50% of
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Fig. 4Mapping of Differentially Expressed Genes (DEG) on Metabolism. The map of all known metabolic reactions effected by differentially
expressed genes comparing MeOH vs. acetate (orange), MeOH vs. TMA (purple), TMA vs. acetate (cyan) and MeOH/TMA vs. acetate (green). Reactions
and metabolites are represented as green diamonds and red circles, respectively. Reactions are connected to participating metabolites by edges.
Common metabolites are duplicated. Unregulated reactions are indicated by thin lines. Genes were considered differentially expressed if the p-value
≤ 0.01 as computed in all of the three methods: DESeq2, edgeR and PoissonSeq. Reaction and metabolite names can be seen by zooming into
Additional file 1: Figures S19 and S20

all differentially expressed metabolic genes, defined as
the 807 genes which are associated with reactions in
the metabolic model (iST807; see the next section), were
primarily controlled by degradation. This high percentage
underscores the substantial role that degradation plays in
regulating metabolism inM. acetivorans.

Metabolic model forM. acetivorans
Modifications to the metabolic reconstruction and
model for M. acetivorans were necessary in order to
simulate the effect of regulation on pathway usage.
We updated the genome-scale metabolic reconstruc-
tion iMB745 [48] by incorporating newly characterized

pathways and gene:reaction mappings. Several additional
model improvements dealt with amino acid synthesis
and ligation (e.g. tRNA-charging). First, the pathway for
pyrrolysine biosynthesis was added to reflect the require-
ment for this amino acid for cells growing on methy-
lamine substrates (Additional file 1: Figure S8). Second,
the alternate cysteine aminoacylation pathway, wherein
O-phosphoserine is converted to cysteine while charged
to tRNACys, was added [50, 51] (Additional file 1: Figures
S9 and S10). Third, tRNA-charging was explicitly included
in the model, wherein the protein biomass composi-
tion was altered to require charged tRNAs instead of
free amino acids. This change allows comparison of
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Fig. 5 Control Coefficients Mapped onto Metabolism. A mapping of the control coefficients for changing mRNA expression levels between TMA
and acetate. Red indicate reactions where mRNA levels are regulated by shifts in the degradation rate, while green indicates mRNA level shifts due to
changes in transcription rate. Blue indicates reactions where mRNA levels are affected by both transcription and degradation rate. Reaction and
metabolite names can be seen by zooming into Additional file 1: Figures S19 and S20

Table 2 Classification of regulation type between growth conditions for all genes

Transcriptionally controlled Shared control Degradationally controlled
ρD ≤0 0< ρD <1 ρD ≥1

Comparison Number (%a) Number (%) Number (%)

MeOH vs. TMA 2987 (67.2) 718 (16.1) 742 (16.7)

MeOH vs. Ace 2219 (61.2) 562 (15.5) 847 (23.3)

TMA vs. Ace 1763 (48.5) 844 (23.3) 1026 (28.2)

aPercentage of total genes for which half-lives and RNA reads were of sufficient quality to apply the control analysis (i.e. CVτ < 0.5)
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Table 3 Classification of regulation type for differentially expressed metabolic genes in the consensus set from Table 1. Metabolic
genes are defined as those that are associated with a reaction in the metabolic model iST807

Transcriptionally controlled Shared control Degradationally controlled Indeterminateb

ρD ≤0 0< ρD <1 ρD ≥1

Comparison Number (%a) Number (%a) Number (%a) Number (%a)

sectionMeOH vs. TMA 54 (25.6) 23 (10.9) 126 (59.7) 8 (3.8)

MeOH vs. Ace 25 (12.4) 49 (24.4) 97 (48.3) 30 (14.9)

TMA vs. Ace 107 (16.6) 149 (23.1) 320 (49.6) 69 (10.7)

aPercentage of DEG out of those for which half-lives and RNA reads were of sufficient quality to apply the control analysis (i.e. CV<0.5). bRegulation coefficients could not be
determined because half-life data was low quality (CV≥0.5)

differential expression of tRNA genes with metabolic
flux. Fourth, the biosynthesis pathway for methanofu-
ran was updated based on recent characterization of the
five mfn genes [52–55]. Methanofuran is a component in
the methyl-oxidation branch of methanogenesis playing a
role in a key redox step inter-converting a formyl group
and CO2 and is required for all modes of methanogenic
growth [37, 56]. Fifth, metabolic pathways for incorpo-
rating the methylated sulfur compound, methylmercap-
topropionate, have been added/updated based on recent
molecular biology studies [57]. Finally, several genes and
a recently characterized reaction have been added to lipid
biosythesis [58–60].
The model biomass equation was refined by incorporat-

ing osmolytes, salts, and metals [61] and gluconeogenesis
intermediates [62]. Additionally, pyrrolysine was added
as a requirement for growth on methylamines, allowing
for the correct prediction of pyl gene knockouts
when growing on these substrates (Additional file 1:
Figure S11). The model was modified to allow uptake
of cysteine, a component of the media [63], at a rate
consistent with experiments. Newly required osmolytes
α-glutamate, N-acetyl-β-lysine and glycine betaine fix
several dead-end pathways in the model, thus increasing
the predictive capability of the model (see “Discussion”
section). Incorporating ion andmetal requirements allows
the model to predict how differential expression of mem-
brane bound transporters affect osmolyte concentrations.
Overall, the model can now take up all of the components
of the Wolfe media [63] for which metabolites exist in the
model (see Additional file 1: Table S2).
Altogether the newmetabolic reconstruction consists of

759 non-biomass reactions (829 when including metabo-
lite exchange) with 807 associated genes. The recon-
struction was laid out as a map to allow visualization
of metabolic fluxes and gene expression data (see Fig. 4
and Additional file 1: Figure S12). The map is available in
formats compatible with the Cytoscape [64] and Escher
[65] software. The map and modified FBA model (called
iST807) are available in several formats in the additional
files accompanying this manuscript. See Additional file 1:

Section ‘Modifications to Metabolic Model” for a com-
plete discussion of map and model modifications and
verification (see Additional file 2 for model and maps).

Discussion
Regulation of half-lives
We found that M. acetivorans growing on different
substrates exhibits drastically different RNA half-life sta-
bilities. A much stronger growth rate effect was observed
than in the previous studies; whereas half-lives in E. coli
were shifted by a factor of 1.5 for a 6 fold change in growth
rate, in M. acetivorans a nearly linear shift in half-lives
with growth rate was observed. To test the hypothesis that
half-life is correlated to growth rate, we scaled the half-life
distributions by the doubling time, effectively defining
a fraction of the cell cycle that an RNA persists before
degradation (see Fig. 1 and Additional file 1: Figure S4).
As demonstrated, the scaled half-life distributions
align with means that are statistically indistinguishable
(p >0.33, t-test). This scaling indicates that for a given
growth substrate, the cell will modulate mRNA stability
such that the half-lives are, on average, a constant fraction
of the cell cycle. We could not identify any differentially
expressed RNases among our data which would facili-
tate these changes in half-lives indicating that another
mechanism is in play (perhaps sRNA, riboswitches, etc.).
Studies have examined how conserved mRNA half-lives

are among related species. One study on two strains of
Bacillus cereus showed high correlation among half-lives
(r = 0.72) [12] and another compared two species of the
Solfolobus genus also finding high correlation (r = 0.51)
[14]. These studies show that RNA degradation is evo-
lutionarily conserved and suggest that our study of RNA
stability in M. acetivorans may be extended to related
organisms such as M. mazei or M. barkeri. We compared
our measured half-lives to five that had been previously
measured in M. mazei [66] and found them to have sim-
ilar values (Fig. 6a). We also estimated mRNA copies per
cell for 12 transcripts in methanol and acetate growth
conditions (Fig. 6b and Additional file 1: Figure S13 and
Additional file 3). Transcript counts also matched
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Fig. 6 Comparison of Transcripts withMethanosarcinamazei [66] a) A comparison of mRNA half lives measured via our RNAseq data compared with
a previous study using qtRT-PCR in the related organismMethanosarcinamazei growing in methanol or acetate. Cao et al. measured
methyltransferase (mtaA1,mtaCB1) half-lives from methanol grown cells, while they measured acetoclastic gene (pta, ack) half-lives for acetate
grown cells. As can be seen in the figure half lives match for methanol and acetate grown cells. Arrows indicate which bars correspond to the
comparison to Cao et al. b) A comparison of mRNA copies per cell estimated via our RNAseq data, and previous studies that utilized RT-qPCR to
quantify transcript abundance in the related organismMethanosarcinamazei grown in methanol (see Additional file 1: Figure S13 for acetate
growth). Error bars are standard deviation of the mean for 3 replicates. Values from Cao et al. are for cells grown at 30 °C compared to our cells which
were grown at 37 °C. All values agree within uncertanties except for cdh,mtaA2, andmtaB2 indicating the organisms have similar expression profiles
and our estimates for mRNA counts are good

those measured in M. mazei [66] suggesting these
Methanosarcina species could have similar transcription
and degradation characteristics, similarly to the two Sul-
folobus species. In general some of the conclusions drawn
from this study might hold for evolutionarily related
methanogens (e.g. class II methanogens). However, half-
lives of homologous genes are not correlated between
distantly related organisms such as E. coli and B. subtilis
[11], and therefore care should be used when extend-
ing the conclusions about individual transcripts here to
distantly related methanogens (e.g. class I methanogens).

Inheritance of gene regulation
Our genome-wide study identified many DEG in addition
to those previously identified due to the higher number
of experimental replicates (higher statistical power of dif-
ferential expression test) and the greater number of com-
pared growth conditions. The current study verified 80%
of previously [37] identified DEG in M. acetivorans, indi-
cating that the RNA data is of sufficient quality to match
potentially higher accuracy methods such as qtRT-PCR.
Additionally, our pattern of DEG comparing methanol
and TMA was similar to the one reported for M. mazei
[67]. A total of 42 of the 71 directly homologous genes had
similar patterns of differential expression in our dataset
were highly correlation in fold change (r = 0.85, p <

10−5). The similarity of transcript abundance and half-life
and similarity between differentially expressed genes (see
Fig. 6) suggest that regulation is conserved among these

closely related organisms. Genes that are similarly dif-
ferentially expressed between these two Methanosarcina
species include methyltransferases for methanol and
methylamine assimilation, a putative thiamine biosynthe-
sis gene (thiC), genes involved in valine, leucine and aro-
matic amino acid biosynthesis (aroDE, leuA, and trpABE),
cobalt metabolism enzymes (MA1418 and MA3250) as
well as many hypothetical proteins and regulators. The
rest of the genes either had no homologs or were not
determined to be differentially expressed. Genes that
were not identified as differentially expressed could be
optimized for the different environments in which M.
mazei and M. acetivorans grow; perhaps due to the
adaptation to freshwater and saline environments. A
recent study of M. mazei strains along the Columbia
River show differences in genomic content comparing
those in fresh- and salt-water environments that resulted
in differences in metabolic efficiency/utilization of
TMA [68].
Genes coding for enzymes involved in biotin syn-

thesis, including biotin synthase (bioB), were found to
be very highly expressed (> 4×) when growing on
TMA compared to the other substrates. This along
with the observation that growth on TMA of the
closely related methanogen Methanohalophilus mahii
was stimulated by addition of biotin suggesting that
it plays a role in methylamine-based growth [69],
perhaps as a cofactor involved in vitamin and lipid
biosynthesis.
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Identification of regulated transcription factors
Over 200 putative transcription factors have been anno-
tated in the DBD transcription factor database [70]. We
found that 10, 9 and 13 of these transcription factors
were significantly differentially expressed upon compar-
ing MeOH vs acetate, MeOH vs TMA and TMA vs
acetate, respectively. A number of the regulators have
been characterized and are of particular interest. For
example, the gene msrA (methanol-specific regulator A)
was found to be highly expressed in both methylotrophic
growth substrates confirming a previous report [41].
Additionally, msrC and msrF were found to be more
highly expressed in TMA than acetate, also confirming
previous experiments [41, 71].
For the uncharacterized transcription factors we exam-

ined their expression characteristics to attempt to identify
regulatory roles and targets (see Additional file 1: Figure
S14 for correlations). Two putative transcription regula-
tors (MA2055 and MA3302) were more highly expressed
in acetotrophic growth, the latter of which has previously
been suggested to be a global regulator of methanogene-
sis pathways and dubbedmreA (Methanosarcina regulator
of energy-converting metabolism A) [72]. The former
of these is an uncharacterized MarR-like protein that
has a similar gene expression profile to another tran-
scription regulator MA2212, being correlated with genes
involved involved in acetotrophic methanogenesis and
ATP production (Additional file 1: Section Figure S14;
“Differentially expressed genes”). Two other mre like
regulators were found to be differentially expressed: 1)
mreB (MA1671), when comparing TMA and acetate
(and almost significant for TMA vs MeOH, p =
0.0103), and 2) mreD (MA3130), which was found to
be more highly expressed in methylotrophic conditions
and sits in a conserved cluster of genes that also con-
tains hdrABC. The hdrABC homologs are differentially
expressed under different growth conditions as previ-
ously reported [43]. These genes reroute metabolic flux
allowing these microbes to outcompete other organisms
[43, 73]. The proximity of mreD to hdr in the genome
suggests it could regulate hdrABC differentiating methyl-
totrophic and acetotrophic growth, while mreB could
differentiate methylamine growth from other conditions,
potentially in optimizing one/several of the other hdr
homologs; however, these hypotheses remain to be tested.
The putative nickel response regulator MA1395 is

highly conserved among all the methanogens and is anti-
correlated to Hsp60 genes (MA0086/MA1682/MA4413)
along with several key metabolic genes such as
pyruvate synthase (por, MA0031–MA0034) and
methenyltetrahydromethanopterin-cyclohydrolase (mch,
MA1710), suggesting that during nickel starvation key
metabolic enzymes are downregulated during methy-
lotrophic conditions (see Additional file 1: Figure S14). It

is, however correlated with quinolinate synthase genes
(MA0959/MA2716), suggesting when nickel is taken up,
more NADH/NADPH should be produced, and phosho-
glycerate dehydrogenase (MA0592), which produces a
precursor in the pathway that produces coenzymes F420
and F390. If MA1395 does indeed regulate these genes
it could act to sense available nickel in the environment
and slow metabolism (via mch and por) while affect-
ing redox balance (via production of NADH/NADPH
and coenzyme F420). A previous study on regulation
in Methanococcus maripaludis identified a homolog of
MA1395 (MMP0719) as being coexpressed with mch
along with the methyltransferasemtr, the energy conserv-
ing hydrogenase ehb and genes involved in pyrophosphate
uptake (ppaC) and purine biosynthesis (purP) [74].
Together these suggest an ancient role for MA1395 that
needs to be further studied.

Regulation of general transcription factors
Our data is consistent with a previous study showing that
the primary TATA binding protein (TBP; tbp1) transcript
was similarly expressed under the three growth conditions
[75]; however, it differs for comparisons of accessory TBPs
wherein our data suggest that tbp2 and tbp3 are expressed
at similar levels to each other, while the previous report
showed that the latter of the two was much less highly
expressed. Both [75] and our study show that tbp3 is more
highly expressed duringmethylotrophic than acetotrophic
growth (almost identical fold changes in both studies),
and this is supported by the observation that genes in
amino acid metabolism and methylamine metabolism are
differentially expressed upon its knockout as seen previ-
ously. Discussion of four additional transcription factors
can be found in Additional file 1: Section “Differentially
expressed genes”.

Regulation of translation machinery
During methylotrophic growth, proline, lysine and argi-
nine tRNAs are more highly expressed as seen in the
“tRNA charging” reactions in Fig. 4. Additionally, valine,
alanine and methionine tRNAs are more highly expressed
under methanol growth than acetate growth, and threo-
nine more highly during methylamine growth (see Fig. 4).
Generally, they are 3–42× more highly expressed in
methylotrophic conditions, suggesting either: 1) there is
a much higher requirement for these amino acids under
methylotrophic growth, or 2) the slower growth in acetate
can tolerate lower amounts of tRNAs, potentially due to
the longer time allowed to find ribosomes while maintain-
ing a protein production rate necessary for steady growth.
Similarly, the genes coding ribosomal proteins are a fac-
tor of 8 times more highly expressed in methylotrophic
growth conditions. These results lend additional sup-
port to the idea that cells differentially regulate ribosome
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numbers which have been shown in bacteria (E. coli;
6,800–72,000 depending on growth rate [76]) and archaea
(Haloferax volcanii; 11,600–25,400 depending on growth
rate [77]). This constitutes the first detailed analysis of
differential expression of translation machinery inM. ace-
tivorans.

Regulation of vitamin and cofactor metabolism
Vitamin and cofactor biosynthetic pathways include many
differentially expressed genes (see Fig. 4), suggesting they
play important roles in each of the growth conditions. Six
genes involved in nicotinamide (nadA1), coenzyme F420
biosynthesis (cofH1, mptA), and cobalamin biosynthesis
(cbiX) are more highly expressed during methylotrophic
growth. These enzymes are found at the beginning of
a linear pathways or at the branch-point of two path-
ways, allowing their regulation to have a large impact
on production of these cofactors. Additionally, 13 genes
are most highly expressed in methylamine metabolism,
including many in the pathway forming adenosyl-cobyric
acid (cbiCFHL) and the final step thereof (cobQ), and
those in heme production (hemC), riboflavin biosynthe-
sis (ribH) and anthranilate synthase (trpGE). The gene
involved in riboflavin biosynthesis is at a branchpoint of
the coenzyme F420 biosynthesis and cobalamin biosyn-
thesis, and thus has the potential to divert metabolic flux,
in the case of growth on methylamines, towards produc-
tion of cobalamin, consistent with the fact that cobalamin
biosynthesis pathway transcripts are highly expressed. We
hypothesize that larger amounts of adenosylcobalamin are
required for growth in the methylamines with one possi-
ble explanation being that there are three differentmethyl-
transferase systems encoded by mtmCBA, mtbCBA and
mtmCBA which process tri-, di- and monomethylamine,
respectively, abstracting a single methyl group each. If
enzymatic activity does not vary significantly between the
three enzymes, and therefore a similar amount of each
protein exists in a cell to maintain a certain metabolic
flux, three times the equivalents of cobalamin would be
needed compared with growth on methanol. The differ-
ential expression data indicates that enzymes involved
in cobalamin synthesis are in fact 2.5-3.5x more highly
expressed in trimethylamine growth than in methanol
growth, supporting this hypothesis. Biochemical charac-
terization could be used to test this hypothesis.

Control of gene expression by transcription or degradation
Many DEG in the consensus set were represented in gene-
protein-reaction relations as part of iST807, suggesting
that the regulation due to different growth substrates
could have large effects on the distribution of metabolic
fluxes. A composite showing reactions affected by differ-
entially expressed genes demonstrates significant regula-
tion throughout metabolism (Fig. 4). Key control points

in linear pathways stand out, and we observe that regu-
lation is generally clustered around branches in pathways
(for example at the branchpoint between flavin biosyn-
thesis and coenzyme F420 biosynthesis and extensively
on the pathways leading from pyruvate towards different
amino acids). Within the set of DEG, two obvious classes
arise: methylotrophic and acetotrophic growth (contribut-
ing to 75 and 10% of the total variance computed via PCA;
Additional file 1: Figure S1) which are classes with which
to identify differential pathway usage.
Because the total concentration of transcripts associ-

ated with a gene are affected by both transcriptional rate
and degradational rate the question of which factor plays
the largest role is of interest. Dressaire et al. [8] recently
proposed a method to determine whether the level of a
transcript is primarily controlled by degradation, tran-
scription, or both and applied it to L. lactis and found that
degradation played a role in setting transcript level for
maximally 12% of genes studied. The method was subse-
quently applied to E. coli by Esquerré et al. [7] showing a
similarly small effect. In the latter case, a role of degrada-
tional control was found to play an important role in gly-
colysis, pentose phosphate, Entner-Doudoroff pathways
and the TCA cycle. Furthermore, they identified a role of
degradational control in setting the levels of key degra-
dational machinery transcripts including several RNases
and Hfq. Both of these studies, however, used chemostat
experiments for cultures growing in one growth substrate,
and the question remains whether degradation plays a
larger role in optimizing an organism for different growth
substrates. We applied the analysis to generate the tran-
scriptional (ρT = dlnktrn/dln[mRNA]) and degradational
(ρD = dlnγ /dln[mRNA]) control coefficients, which
describe the relative change in mRNA due to relative
changes in transcription rate ktrn and degradation rate γ

(see Additional file 1: Section “Control Coefficients”). In
contrast to the previous single substrate experiments in
L. lactis and E. coli, our analyses show that between 16
and 28% of the changes in steady-state transcript levels
are due to degradational control (Table 2). A close analysis
of the data leads to the striking conclusion that degra-
dational control appears primarily at branchpoints and
is enriched in amino acid metabolism, lipid metabolism
and vitamin metabolism (Figs. 5 and 10a, c, and e). This
localization at pathway branchpoins could indicate an
important uncharacterized role for degradational control.
And because more than half of differentially expressed
metabolic genes appear to be controlled by change in
degradation rate it is likely that the change in degradation
plays a significant role regulating metabolism in M. ace-
tivorans (see Table 3). If a regulated gene is significantly
destabilized (stabilized), the production of its protein is
expected to proportionally decrease (increase). This is
because the average protein count for a gene should go
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as 〈P〉 ∝ ktkrτ/kdil where kt is the transcription rate,
kr is the translation rate, τ is the half-life and kdil is the
doubling rate. This argument neglects translational regu-
lation with growth condition, which has been shown to
exist in Eukaryotes [78] and in haloarchaea up to 30%
of all transcripts [79, 80]. Translational regulation will
additionally effect the kr in this equation, potentially caus-
ing a nonlinear response when coupled with the change
in kt or kd.

Modelling metabolic phenotype
The question then arises: How does the regulation of
metabolic genes affect metabolism and what role does
degradation play in defining metabolic state? To connect
the regulation to metabolic function, we integrated the
differential expression data with the updated genome-
scale metabolic model to predict change in fluxes through

metabolic pathways when the organism grows on dif-
ferent substrates. Briefly, the coefficients of biomass
components, which describe a cell’s physiological require-
ment for that molecule, were allowed to vary between
growth substrates and fitted such that the deviation of the
metabolic flux ratio from gene expression ratios of DEG
in those pathways were minimized (see Additional file 1:
Section “Additional Modeling Methods and Results”
for a full description of the model; fitted biomass coef-
ficients can be seen in Fig. 7 and Additional file 1:
Figure S15). Prior to this procedure, only flux changes
in methanogenesis were correlated to expression data.
After fitting the biomass coefficients flux ratios weremore
highly correlated to expression ratios and many more
pathways carried different flux (Figs. 8, 9, 10 and Addi-
tional file 1: Figure S16). The results of this procedure
are hypotheses about which pathways carry more or less

Fig. 7 Fitted Biomass Coefficients. A comparison of fitted biomass coefficients. Orange squares indicate the coefficients for growth in MeOH while
the green circles indicate the optimized biomass coefficients. Large error bars indicate that the coefficient can take on many values while still being
optimal. Only metabolites with a significant shift comparing either MeOH to acetate or MeOH to TMA are included in the plot (all fitted biomass
coefficients can be found in Additional file 1: Figure S15)
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Fig. 8Metabolic Flux Differentces between MeOH and Acetate. Predicted changes in flux comparing growth on methanol to growth on acetate.
Pathways that carry more flux (>2 fold change in flux) when grown on acetate are indicated by red while those that carry more flux when grown on
methanol are indicated by blue. Unaffected pathways are shown as grey lines. Reaction and metabolite names can be seen by zooming into
Additional file 1: Figures S19 and S20

flux when the organism is grown in one condition com-
pared to another. For instance, when comparing MeOH
and acetate growth we find that in general most path-
ways carry significantly more flux when growing MeOH
(Fig. 8, blue lines). Those reactions that carry more flux
under acetotrophic growth outside of methanogenesis
are primarily involved with biosynthesis of several amino
acids (Ile, Thr, Trp, Asn, Cys) and interconversion of
alcohols and aldehydes (Fig. 8. red lines). The results
comparing MeOH and TMA are more varied, especially
with regards to ion and metal transport and carbohy-
drate metabolism (see Fig. 10f). By examining these results
we can ascribe the function each differentially expressed
gene has in defining the metabolic phenotype. The results
contrasting the three substrates are mapped onto the

metabolic network in Fig. 10b, d, and f. The largest
effect is seen in acetate growth, where the majority of
biosynthetic pathways carry less flux, especially those that
generate amino acids and nucleotides as well as the cobal-
amine and coenzyme B pathways. Vitamin and cofactor
metabolism show the majority of change compared to
methanol. Decreased adenosylcobalamin and coenzyme
F420 biosynthesis usage in acetate compared to methanol
are associated with many differentially expressed genes
(see previous section). Similarly, increased coenzyme
F420 biosynthesis when growing on TMA compared to
MeOH is associated with differentially expressed genes
(cbiCFHL, cobQ). Our procedure correctly predicted the
increase of coenzyme M in acetate grown cells com-
pared with MeOH grown cells [81]; however, there are
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Fig. 9Metabolic Flux vs Gene Expression. Ratio of metabolic fluxes
compared to ratio of gene expression for growth in different media.
Each point represents a mapping between one reaction and one
gene; therefore each reaction or gene may be represented by
multiple points. If the same biomass requirements are used for the
different growth substrates few of the reactions show any difference
in flux (green diamonds) and there is weak correlation between
expression and flux. The differences in fluxes that are observed are
primarily due to genes encoding proteins that act in methanogenesis.
By relaxing the assumption that biomass coefficient are constants
across all growth substrates the model can be fit to improve the
correlation between regulation and metabolism (red circles). After
fitting, many additional pathways are predicted to carry different flux,
as demonstrated by more points moving off the horizontal towards
y = x (dashed line)

few studies that have examined biomass composition,
and the validity of our predictions remains to be tested,
especially from a quantitative perspective. The modeling
results show how the DEG in this study effect metabolism
connecting, for the first time, regulation to metabolic
phenotype for this organism. A detailed analysis of flux
changes and fitted biomass coefficients can be found in
Additional file 1: Section “Additional Modeling Meth-
ods and Results”.

Conservation of differentially expressed genes
The similarity of mRNA degradation rates among related
species grown under similar conditions—as evidenced by
comparison of our results to the limited studies on M.
mazei [66] and findings of other studies in other organ-
isms [12, 14]—suggests that metabolic control points and
regulatory modes identified in one organism could be
inferred in the metabolism of similar organisms. From
an evolutionary stand-point related organisms subjected
to similar environments would likely retain regulatory
controls that optimize their fitness. A simple analysis

shows that most of the differentially expressed genes
are conserved among the Methanosarcinae (as shown
in Fig. 11, and Additional file 1: Figures S17 and S18).
The amount of conservation drops off as one moves fur-
ther away fromMethanosarcinae and towards the simpler
methanogens which lack significant metabolic capabili-
ties that are found in the Methanosarcinae. This is clearly
illustrated by the energy production (e.g. methanogene-
sis, electron transport) genes where the hydrogenotrophic
methanogens lack significant portions of genes that
are responsible for enabling the utilization of growth
substrates beyond carbon dioxide. Despite the metabolic
differences, a large fraction of all differentially expressed
genes are still conserved across all the methanogens, espe-
cially those for translation. The problem that remains is
to discover the structure and elements of the regulatory
network and explore how they evolved.

Conclusion
In this study we have demonstrated that the carbon source
regulates significantly more than just methanogenesis in
Methanosarcina acetivorans, with genes all across the
genome affected especially those involved in growth (e.g.
transcription, translation) and metabolism (amino acid,
nucleotide and vitamin biosynthesis).We found that while
mRNA half-lives scale with doubling time, the effect was
not uniform across functional classes, suggesting that the
cell prioritizes certain capabilities at lower growth rates
most likely to account for lower available energy. By com-
bining the expression data with the half-life data we were
able to identify genes that were likely targets of tran-
scriptional regulation (e.g. transcription factors) or degra-
dational regulation (e.g. sRNAs, RNases, riboswitches),
providing testable hypotheses that can direct molecular
studies of regulation within the organism. For example,
we identified ∼32 putative regulators and their targets in
Methanosarcina acetivorans and found that about 6 of the
transcription factors and their targets were highly con-
served across the order of Methanosarcinales and some
were conserved across among all the methanogens. We
hypothesized functions for those regulators, based on
similarly conserved genes, which can be readily tested
with molecular biology experiments.
We found that most differentially expressed genes were

involved inmetabolism and about half of themwere under
degradation control. This is the first study to find such a
prominent effect of degradation control inmetabolism. As
the RNases are not differentially expressed, this suggests
that M. acetivorans may make extensive use of sRNAs
and riboswitches to fine-tune the degradation of mRNAs
that encodemetabolic proteins according to their environ-
ment.We tuned coefficients of the biomass reaction of our
metabolic model to increase correlation between fluxes
and expression data for each carbon source. By doing so
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Fig. 10 Control Coefficients and Fluxes contrasting all Substrates. Comparisons of control coefficients (a, c, e) to predicted metabolic fluxes (b, d, f).
(a, b) MeOH vs Acetate, (c, d) TMA vs Acetate, (e, f) MeOH vs TMA. Control coefficients (a, c, e) indicate that reactions are transcriptionally controlled
(green), degradationally controlled (red) or shared control (blue). Mappings of predicted metabolic fluxes indicate higher flux in the second substrate
(red) versus lower flux in the second substrate (blue). Larger versions of (a, b) can be seen in Figs. 5 and 8. Larger versions of (b-f) can be seen in
Additional file 1: Figures S19, S20, S21, and S22. The names for each reaction and metabolite can be seen by zooming into the the larger versions of
the maps in the Additional file
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Fig. 11 Phylogeny of Differentially Expressed Genes. Conservation of the genes that are differentially expressed between MeOH and acetate
growth. Each vertical bar indicates that a homolog for the differentially expressed gene exists in the indicated species (computed as the
bidirectional best hits functionality in the ITEP software [92] with an E-value cut-off of 10−5 for a database of ∼125000 proteins). Most differentially
expressed genes are highly conserved among theMethanosarcinales; however a core set of genes are conserved across all methanogens

we could determine how the metabolite demand along
certain pathways varies with growth substrate. This pro-
cedure allows us to account for the differential expression
of genes in those pathways. Altogether the half-life, dif-
ferential expression, and correlated fluxes data allows us
to build a richer picture of regulation than possible with
transcriptome-only studies.
This work reveals many new features about regula-

tion and metabolism in methanogens that inspired sev-
eral hypotheses for further testing. Molecular genetic
studies with corresponding transcriptomic information
will be necessary to clarify the role of the differentially
expressed transcription factors. Future bioinformatic and
genetic studies will be required to confirm the presence
and define the function of post-transcriptional regulators,
especially any sRNAs. Additional proteomics data could
confirm the changes in pathway fluxes that we predict for
growth under various substrates. Such studies will allow

the construction of a combined regulatory/metabolic net-
work model that can predict how methanogens impact
everything from the gut microbiome to the global carbon
cycle.

Methods
Experimental
Strains, media, and growth conditions
M. acetivorans C2A strain (wild-type, WWM82 [82])
was grown in single cell morphology [83] at 37 °C
in high-salt (HS) medium containing either 125 mM
methanol, 50 mM TMA or 120 mM acetate [63, 84].
Handling and manipulation of all strains was carried
out under strict anaerobic conditions in an anaerobic
glove box, using sterile anaerobic media and stocks.
Growth was quantified by measuring the optical density
at 600 nm (OD600, Milton Roy Company Spectronic 21
spectrophotometer).
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RNA isolation procedure
RNA was isolated as previously reported [85]. Briefly,
M. acetivorans C2A wild type was adapted to grown,
TMA or acetate for 33 generations. Cells were grow
in batch cultures tubes. The total RNA was isolated
from mid-exponential phase cultures (OD600 = 0.4 for
MeOH/TMA, 0.2 for acetate growth cells) using TRIzole
(Invitrogen, Carlsbad, CA) and the Zymo Direct-zol RNA
MiniPrep kits (Zymo Research, Irvine, CA). Specifically,
at mid-exponential phase 2 mL of culture were added to
2 mL TRIzole and 4 mL ethanol was added. Samples were
processed with the Zymo Direct-zol RNA MiniPrep kit
and RNA was eluted at 50 muL. The RNA samples were
depleted of the 16s- and 23s-rRNA through hybridization
to complementary biotinylated oligonucleotides and were
subsequently removed with streptavidin-magnetic beads
(modified from [86]). Samples were stored at−80 ◦C. Total
RNA concentration and integrity were assessed using a
Nanodrop� and Agilent BioAnalyzer, respectively. The
A260/280 ratios measured by the BioAnalyzer were gener-
ally >2.0 and Nanodrop indicated between 200 and 800
ng/μL RNA obtained. Triplicate biological cultures were
processed for each time-point. An additional two and five
cultures were processed from mid-exponential phase for
TMA and methanol, respectively.

RNA transcription inhibition
In order to estimate half-lives for RNA transcripts, a series
of RNAseq experiments were performed at timepoints
after halting transcription. Transcription was halted by
addition of 1 mL of ∼ 80 μM of actinomycin D to cul-
tures growing in exponential phase (OD600 = 0.4 for
MeOH/TMA, 0.2 for acetate growth cells). At 6 or 7 times
after transcription was halted 2 mL of culture was with-
drawn (5, 10, 20, 30, 60, 120, and 240 min). RNA was
isolated as described above. All half-life experiments were
performed with three biological replicates.

Sequencing
Construction of cDNA libraries and high-throughput
sequencing of RNA were carried out by the Roy J. Carver
Biotechnology Center at University of Illinois at Urbana-
Champaign using an Illumina HiSeq2500. All sequence
data generated in this report are available online in
the GEO database (accession number GSE77738). See
Additional file 1: Section “Additional Methods and
Materials” and Table S1 for details. Additionally, three
RNAseq datasets were taken from the GEO database
accession GSE64349.

Computational
Data quality control and normalization
Quality of the RNA reads in each experiment
were assessed using the FastQC tool (http://www.

bioinformatics.babraham.%20ac.uk/projects/fastqc/).
Individual reads with systematic sequencer error (blocks
of unassignable nucleotides, N) were removed, and then
reads were trimmed. The adapter sequence was trimmed,
constituting between 6 and 12 bases off the head or tail
of the read. In some cases 2 bases were trimmed from
the end of the read when the Sanger Phred quality score
at that base had a score below 20. Trimmed reads were
mapped to the reference genome (accession number
NC_003552 [87]) using Rockhopper v2.0.2 [46]. The soft-
ware was set to map single ended reads strand-specifically
to the genome. Only the highest scoring mapping for
each read was retained. A minimum seed of one-third the
read’s length was used and the only reads mapping more
than 85% of the bases exactly were kept. Resulting reads
were considered for further analysis.
Mapped reads were further processed by normalization

and averaging. Two normalization schemes will be con-
sidered: 1) reads are normalized per kilobase (gene length)
then per one million reads (referred to as RPKM), and 2)
reads are normalized per kilobase (gene length), then aver-
aged across operons (see section “Operon regulation”)
and finally normalized per one million reads (referred to
as ORPKM). After normalization, the triplicate biological
replicates were averaged for each O/RPKM and the stan-
dard deviation computed. These O/RPKM values were
used for subsequent analyses (see Additional file 4 for
combined data).

Life-time fitting and RNA stability estimation
For each distinct experimental growth condition RPKM
values for genes were normalized so that the superoxide
dismutase (MA1574, sodB), which has been character-
ized as having one of the longest known half-life in the
archaeon Sulfolobus solfataricus [13], had a half-life of
2 hours to match that measured in S. solfataricus. The
degradation of each gene was fit to a first-order decay
reaction:

Ri = Ri,0e−kit (1)

using the Levenberg-Marquardt nonlinear least-squares
method in SciPy [88]. Here Ri,0 is taken to be the RPKM
for the gene i at time 0 and ki is the decay rate. The half-life
τi is then calculated:

τi = ln(2)
ki

(2)

Standard fitting residuals were used to compute p-
values for the fits as well as for statistical significance
testing of half-lives between and within growth condi-
tions. Genes with uncertainty in the fitting value τi of
greater than 50% were omitted from subsequent analysis.
These half-lives can be found in the Additional file 5.

http://www.bioinformatics.babraham.%20ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.%20ac.uk/projects/fastqc/
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RNA structural stability (folding energy) was estimated
for each gene by folding the open-reading frame, as anno-
tated in the genome NCBI genome NC_003552, using the
RNAFold package [89] using both the Turner 2004 [90]
and Andronescu 2007 parameters [91] leaving all other
parameters as their default value.

Differential expression calling
Differentially expressed genes (DEG) were computed
using three statistical models: edgeR v3.8.5 [34], Poisson-
Seq v1.1.2 [35], and DESeq2 v1.6.3 [36]. For all methods
the default normalization provided by the packages was
used in computing the DE statistics. A description of the
workflow for each of the statistical models can be found
in Additional file 1: Section “Additional Methods and
Materials” and code to reproduce the results can be found
in Additional file 6. Genes with a p-value ≤ 0.01 were
considered to be differentially expressed. Differentially
expressed genes can be found in the Additional file 7.

Operon regulation
Four sets of putative polycistronic operon structures for
the genome of M. acetivorans were considered. One set
was predicted by Rockhopper [46], and three sets were
taken from the online databases: Microbes Online [44],
ProOpDB [45], and DOOR2 [47]. Mapped reads were
pooled across operons and differentially expressed analy-
sis was performed (as computed in Section “Differential
expression calling” and described in Section “Differen-
tially expressed genes”).

Computing evolutionary conservation
The Integrated Toolkit for Exploration of Microbial Pan-
genomes (ITEP) was used to compare conservation of
differentially expressed genes [92]. ITEP was used to con-
struct a database of ∼60 methanogens with published
complete or nearly complete genomes. Default parame-
ters were used to construct the database (E–value cut-
off of 1.0 and 1×10−5 for nucleic acids and proteins,
respectively; MCL clustering was run with the maxbit
option with inflation and score cutoffs of 2.0 and 0.4,
respectively). For each differentially expressed gene in
M. acetivorans, the top scoring homolog in each other
methanogen was identified, if one exists. These were
ordered by degree of conservation and plotted on a phylo-
genetic tree that is rooted atMethanopyrus kandleri using
the Python ETE Toolkit [93] (see Fig. 11 and Additional
file 1: Figures S17 and S18).

Biomass coefficient fitting procedure
A new method was developed to integrate differential
expression data with the metabolic model, as existing
methods to integrate expression data into genome-
scale metabolic networks have been shown to per-
form relatively poorly unless metabolomic data was

also available and integrated [94]. We reasoned that
since mRNA level and protein level generally have poor
correlation—in our case, a Pearson r = 0.63—that
using expression data to make quantitative predictions
would be problematic. Therefore, we devised a scheme
designed to make qualitative predictions about changes
in metabolic flux distributions and the metabolites that
the pathways produce. The method takes a single growth
substrate as the reference and then varies the biomass
coefficients (the required moles of metabolite to create
a new gram of dry cell mass) so that the ratio of fluxes
between the two predictions matches the ratio of mes-
senger expression for differentially expressed genes. The
metabolite requirement in the new condition is then clas-
sified as being higher, lower or unchanged with respect
to the reference growth substrate, suggesting targets for
further experiment.
More specifically the method attempts to minimize an

objective function; that is:

min

⎛
⎝

NDE∑
i=1

⎛
⎝∑

r|i∈r

∣∣∣∣
v1,r
v2,r

− m1,i
m2,i

∣∣∣∣

⎞
⎠

⎞
⎠ (3)

for each biomass coefficient bj. In the equation NDE is
the number of differentially expressed genes, �mc,n is the
expression level of gene n in growth condition c, �vc,r is the
flux through reaction r that has a gene-protein-reaction
rule that contains gene i in growth condition c. In order
to do this, the the list of biomass coefficients is ordered
randomly, and the new optimal biomass coefficient bj,opt
is found in order from the beginning to the end of the list.
For each biomass coefficient, the uptake rate is varied such
that the experimentally measured growth rate is achieved.
This whole process is performed multiple times with per-
muted ordering for optimizing biomass coefficients and
the final biomass coefficients are selected as the best for
that round of optimization.
The average and standard deviation of these biomass

coefficients are computed. If the original biomass coeffi-
cient is different from the range of newly sampled biomass
coefficients (p <0.01, t-test) the biomass coefficient is
considered significantly different. If the new coefficient is
larger (smaller) it indicates that metabolite is required in
higher (lower) amounts than in the reference condition.
A large standard deviation indicated that many different
selections for that biomass coefficient could give equally
good scores (Eq. 3).
We used 96 random orderings of the 67 biomass coef-

ficients found in Fig. 7 and Additional file 1: Figure S15.
Nine were significantly different comparing TMA (refer-
ence condition) to acetate, 12 were significantly different
comparingMeOH (reference condition) to acetate, and 16
were significantly different comparing MeOH (reference
condition) to TMA.
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