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Abstract

Background: Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might
be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence
data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or
non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification
scheme of known and putative antimicrobial compounds in the specific context of Bacillales species.

Results: We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs),
polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by
using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update
the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class
their genetic organization and structure. Moreover, we highlight the potential of several known and novel
antimicrobials from various species of Bacillales.

Conclusions: Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source
of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
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Background
Most of the species of the genus Bacillus and related
Firmicutes are Gram-positive, aerobic endospore-forming
and rod-shaped bacteria, which are found in diverse
environments such as soil and clay, rocks, dust, aquatic
environments, on vegetation, in food and in the gastro-
intestinal tracts of various insects and animals [1].
Antimicrobial compounds have been used for a variety of
purposes, such as delaying spoilage by plant pathogens in
agriculture and extending product shelf life in the food
industry [2, 3]. In particular, Bacillus strains are known to
produce a wide variety of biocontrol metabolites, inclu-
ding the ribosomally synthesized antimicrobial peptides

(bacteriocins) [4], as well as non-ribosomally synthesized
peptides (NRPs) and polyketides (PKs) [5].
The discovery of biosynthetic gene clusters of antimicro-

bial compounds by genome mining is a rewarding task,
because this methodology can lead to the identification and
subsequent isolation of novel molecules of pharmacological
and biotechnological interest [6]. Various powerful tools
with broad databases have been created for the automated
screening of bacteriocin gene clusters. BAGEL3 (http://
bagel.molgenrug.nl/) is a versatile fast genome-mining tool
valid not only for modified- and non-modified bacteriocins,
but also for non-bactericidal ribosomally produced and
posttranslationally modified peptides (RiPPs) [7]. The corre-
sponding database [7] contains all the records belonging to
one of the three classes of proteins being core to BAGEL3:
Class I contains RiPPs of less than 10 kDa, which currently
is divided into more than 12 supported subclasses; Class II
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contains unmodified peptides not fitting the criteria of the
first database; Class III contains antimicrobial proteins
larger than 10 kDa. BAGEL3 uses DNA nucleotide se-
quences in FASTA format as input; multiple sequence
entries per file are allowed. The input DNA sequences are
analyzed in parallel via two different approaches; one is the
context of bacteriocin- or RiPP gene-based mining, the
other is precursor (structural gene)-based mining directly
by Glimmer, which increases the success rate and lowers
the need for manual evaluation of results [7]. The output is
visualized in an html page, by a table of putative bac-
teriocins or modified peptides classified into the detailed
bacteriocin class found in the mining sequence; graphics of
gene clusters; annotation of each ORF in the context; as
well as detailed information of putative bacteriocins, such as
BLAST hits in the bacteriocin database, or the pI (Isoelec-
tric point) value. A detailed prediction of the gene clusters
of NRPs, PKs and other antimicrobials is provided by anti-
SMASH (http://antismash.secondarymetabolites.org), a web
server and stand-alone tool for the automatic genomic iden-
tification and analysis of biosynthetic gene clusters [8–10].
A database of classes specific for many types [10] of biosyn-
thesis signature genes is constructed by Hidden Markov
Models (pHMMs) covering a wide range of known or
putative secondary metabolite compounds. The anti-
SMASH web server allows uploading of sequence files of
not only a variety of types (FASTA, GBK, or EMBL files),
but also GenBank/RefSeq accession numbers. Gene clusters
are first predicted and identified by Glimmer and pHMMs,
respectively. Subsequently, several downstream analyses can
be performed by different modules: NRPS/PKS domain
analysis and annotation; prediction of the core chemical
structure of PKSs and NRPSs; ClusterBlast gene cluster
comparative analysis; active enzyme site analysis; and
secondary metabolism Clusters of Orthologous Groups
(smCOG) analysis. Moreover, the ClusterFinder algorithm
is used to detect putative gene clusters of unknown types.
Finally, an html output is generated and putative gene
clusters are listed in a Table [8–10]. Further details includ-
ing gene cluster description, annotation, percentage of gene
homology with known gene clusters or published genome
sequences; genomic loci for this biosynthetic pathway are
shown by clicking on the related words. Biochemical
properties of the putative compounds are also predicted,
especially chemical structures of NRPs and PKs. Results,
stored in an EMBL/XLS/GenBank/BiosynML file, can be
downloaded for additional analysis.
Although a description of Bacillus subtilis antimicrobials

has been made before (excellent review of Stein [11]), we
aim to give an updated overview and classification of bacte-
riocins covering various species of Bacillales, as well as NRPs
and PKs, by genome mining of 57 different species within
328 whole-genome sequenced strains of Bacillales reported
before March 2016 (Table 1, Additional file 1: Table S1 and

Fig. 1). We also highlight examples of each class by describ-
ing the genetics and structure, with a keen eye on biocontrol
properties and applications. Within the genus Bacillus, B.
subtilis, B. amyloliquefaciens, B. licheniformis, B. cereus and
B. thuringiensis are the best studied species for antimicro-
bials production [12]. Genome mining and subsequent
analyses and classification of antimicrobials of other less
explored Bacillales, including Paenibacillus, Brevibacillus,
Alicyclolacillus, Anoxybacillus, Lysinibacillus and Geobacil-
lus will be also included in this analysis, revealing interesting
new features and distributions.

Results
Classification of antimicrobial peptides encountered in
Bacillales
The main classification scheme for ribosomally synthe-
sized antimicrobial peptides currently available is that of
the lactic acid bacteria (LAB) bacteriocins [13], which was
recently reviewed and revised by Alvarez-Sieiro et al. [14].
The main classification scheme for RiPPs (Class I) was
provided by the paper of Arnison et al. [15]. Although
some bacteriocins produced by Bacillus are similar to
those of LAB’s, the Bacillus antimicrobial compound
classification system now is lagging behind that of LAB
classifications. Conveniently, BAGEL3 can be used for
mining bacteriocin gene clusters, some of which were not
identified before. Moreover, some cryptic gene clusters of
bacteriocins were identified that have not been isolated
yet from wild type microorganisms. In this study, we
identified 583 putative bacteriocin gene clusters from 328
strains of 57 species of Bacillales (Table 1), and these gene
clusters were further classified into three classes harboring
46 types of bacteriocins covering 50 species of Bacillales
(Additional file 2: Table S2) according to their gene
organization and the homologies of their structural and
biosynthetic genes. In addition to the published bacterio-
cins, many novel putative bacteriocin gene clusters were
discovered. Combining this with the genome mining re-
sults of antiSMASH, we also address the non-ribosomally
synthesized and polyketide synthesized antimicrobial com-
pounds. In total 1231 putative non-ribosomal antimicro-
bial gene clusters were detected and subgrouped into 23
types of NRPs, five types of PKs and three types of NRPS/
PKS hybrid synthesized compounds distributed over 49
species of Bacillales (Additional file 3: Table S3). In the
following sections, we will describe the various classes of
ribosomally synthesized peptides, NRPs, PKs and other
antimicrobials present in Bacillales and indicate their pres-
ence in the various genomes.

Ribosomally synthesized antimicrobial peptides
The classification system used in this paper for Bacillus
ribosomally synthesized antimicrobial peptides (Table 1)
comprises the major Class I: small RiPPs (based on Arnison
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Table 1 Number of putative antimicrobial gene clusters identified in 328 Bacillales genomes (reported in Genbank)

Class RPsa RPs RPs RPs RPs RPs RPs RPs RPs RPs RPs NRPs PKs

I I I I I I I I II III TOTAL

Genera Lanthipeptides
type I

Lanthipeptides
type II

Head to tail
cyclized peptides

Sacti-peptides Glyco-cins Lasso peptides LAPs Thio-peptides

Bacillus subtilis (39) 6 53 15 1 1 8 84 168 66

Bacillus thuringiensis (46) 4 8 6 5 3 4 24 31 14 99 152

Bacillus anthracis (39) 25 25 117

Bacillus cereus (55) 1 16 11 4 1 9 34 3 22 4 105 144 1

Bacillus amyloliquefaciens (13) 16 1 12 1 30 59 48

Bacillus licheniformis (3) 1 3 4 6 3

Bacillus coagulans (5) 6 1 7

Bacillus megaterium (5) 1 1 2 5 5

Bacillus pumilus (8) 8 2 14 24 17 8

Bacillus atrophaeus (4) 5 4 9 20 8

Bacillus weihenstephanensis (2) 1 1 2 8

Bacillus mycoides (5) 2 4 5 5 4 20 14

Bacillus cytotoxicus (1) 1 1

Bacillus clausii (2) 1 2 3 2

Bacillus halodurans (1) 2 1 3

Bacillus cellulosilyticus (1)

Bacillus infantis (1)

Bacillus selenitireducens (1)

Bacillus methylotrophicus (15) 7 4 15 26 68 58

Bacillus paralicheniformis (3) 3 3 3 9 12 2

Bacillus methanolicus (1) 1 1 1

Bacillus endophyticus (1) 2 1 1 4 2 1

Bacillus smithii (1) 1 1 1

Bacillus pseudomycoides (1) 1 1 1 1 4 3

Bacillus pseudofirmus (1) 1 1

Bacillus bombysepticus (1) 4

Bacillus lehensis (1) 1 1 4

Bacillus toyonensis (1) 1 1 1 3 3

Bacillus gobiensis (1) 1 1 2 2 1

Bacillus sp. (13) 3 1 3 5 1 1 2 6 2 24 36 24

Zhao
and

Kuipers
BM

C
G
enom

ics
 (2016) 17:882 

Page
3
of

18



Table 1 Number of putative antimicrobial gene clusters identified in 328 Bacillales genomes (reported in Genbank) (Continued)

Kyrpidia tusciae (1) 3 3 1

Alicyclobacillus acidocaldarius (2)

Anoxybacillus flavithermus (1) 2 2 1

Geobacillus stearothermophilus (2) 1 1 1 3 2

Geobacillus thermodenitrificans (1) 1 1 2 1

Geobacilllus kaustophilus (1) 1 1 2 1

Geobacillus sp. (9) 5 1 2 1 9 3 6

Lysinibacillus sphaericus (1) 1 1 3 1

Lysinibacillus fusiformis (1) 1 1

Brevibacillus laterosporus (1) 1 1 1 3 5

Brevibacillus brevis (1) 1 1 2 3 3

Paenibacillus polymyxa (7) 11 3 7 21 39 7

Paenibacillus larvae (1) 1 2 2 1 1 7 4

Paenibacillus mucilaginosus (3) 2 3 5 10 4

Paenibacillus peoriae (1) 1 1 2 6

Paenibacillus odorifer (1) 1 1 1

Paenibacillus stellifer (1) 1 1 1

Paenibacillus borealis (1) 1 1 1 2

Paenibacillus bovis (1) 1 1 4

Paenibacillus naphthalenovorans (1) 1 1 1

Paenibacillus beijingensis (1) 1

Paenibacillus graminis (1) 1 1 4

Paenibacillus durus (2) 1 3 2 1 7 4 1

Paenibacillus terrae (1) 1 1 3

Paenibacilllus riograndensis (1) 1 1 4

Paenibacillus sabinae (1) 1 1 1

Paenibacillus sp. (12) 3 3 1 3 1 11 22 6

Total 34 71 52 87 24 48 117 5 121 24 583 964 267

Numbers in parentheses () indicate the number of genomes analyzed per genus
aRPs is short for ribosomally synthesized peptides
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Fig. 1 (See legend on next page.)
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et al.) [15] Class II: unmodified bacteriocins; Class III: large
antimicrobial proteins (see also Alvarez-Sieiro et al. [14]).
Characteristics of the identified bacteriocins of Bacillales
are listed in Additional file 2: Table S2, describing their
precursor sequences, gene clusters and predicted producer
species, respectively.

Class I: Ribosomally produced and posttranslationally
modified peptides (RiPPs)
This class consists of antimicrobial peptides (less than
10 kDa) that are ribosomally synthesized, undergoing
posttranslational modifications (PTMs), resulting in differ-
ent structures and properties. In this study, we found 438
putative gene clusters of class I bacteriocins, widely distrib-
uted over 49 species of Bacillales (Table 1). According to
the modification differences, this class can be subdivided
into seven subclasses. Subclass 1 includes peptides with
modifications typical for lantibiotics (e.g. lanthionine),
while subclasses 2–7 include peptides with other unique
modifications [15–17].

Subclass 1: Lanthipeptides Lanthipeptides are peptides
containing unusual amino acids, such as dehydroalanine/
dehydrobutyrine, lanthionine/methyl-lanthionine residues,
introduced by different kinds of PTMs [15]. Lanthipep-
tides with antimicrobial activity form the so-called lanti-
biotics [17], which can be subdivided into four subclasses,
following the classification scheme of lanthipeptides [18].
The main differences between class I, II, III and IV lanthi-
peptides are the PTM enzymes involved. Class I lanthipep-
tides are modified by two distinct enzymes that carry out
the PTM process: dehydratase LanB and cyclase LanC,
while class II peptides are modified by a bifunctional
lanthionine-introducing enzyme, called LanM. There are
also two-component lanthipeptides consisting of two
peptides, which belong to class II lanthipeptide, because
they are processed by a single modifying enzyme, called
LanM [19–23]. For other lanthipeptides (class III and IV),
the dehydration and cyclization reactions are catalyzed by
multifunctional enzymes (RamC/LabKC or LanL) or they
lack significant antibiotic activity, which are not further
described here [24].
Subtilin is a well-investigated class I lanthipeptide pro-

duced by B. subtilis, the encoding gene cluster of which is
also found in the genome of Bacillus sp. YP1. The gene en-
coding subtilin encodes a 56-residue peptide precursor that
is processed to yield the 32-residue mature peptide, which
is structurally related to the lantibiotic nisin of Lactococus

lactis [25]. The subtilin gene cluster includes the structural
gene spaS, encoding its prepeptide; PTM genes spaB and
spaC, encoding a dehydratase and a cyclase for lanthionine
formation, respectively; transporter gene spaT for modified
precursor export and immunity genes spaIFEG (Additional
file 2: Table S2) [26–28]. The presubtilin will be converted
to mature subtilin by serine proteases secreted by B. subtilis
[29]. Subtilin exhibits bactericidal activity against a broad
spectrum of Gram-positive bacteria, based on pore forma-
tion in the cytoplasmic membrane, using cell wall precur-
sors such as lipid II and undecaprenyl pyrophosphate, the
hydrophobic carrier module for peptidoglycan monomers,
as docking module and as a central constituent of the pore
[30, 31]. The class II lanthipeptide mersacidin produced by
several B. amyloliquefaciens strains [32–34], with a more
globular structure comprising 20 amino acid residues, in-
hibits cell wall biosynthesis by binding to lipid II [35, 36].
The mersacidin gene cluster includes the structural gene
mrsA, two modification genes (Additional file 2: Table S2),
i.e. mrsM coding for both dehydration and cyclation and
mrsD coding for a C-terminal S-[(Z)-2-aminovinyl]-3me-
thyl-D-cysteine formation enzyme, and the gene mrsT cod-
ing for a transporter with an associated protease domain,
as well as three genes, mrsEFG, coding for immunity and
three genes, mrsR1, R2, K1, coding for regulation [37–39].
A total of 105 putative lanthipeptide gene clusters were

discovered in Bacillales in this study (Table 1). Among them,
gene clusters of class I lanthipeptides distribute over the
genomes of B. subtilis, B. thuringinensis, B. cereus, B. mega-
terium, B. mycoides, B. clausii, Bacillus sp., Geobacillus
thermodenitrificans, Geobacillus kaustophilus, Paenibacillus
polymyxa, Paenibacillus larvae, Paenibacillus peoriae and
Paenibacillus durus, while gene clusters of class II lanthipep-
tides distribute over the genomes of B. thuringinensis, B.
cereus, B. amyloliquefaciens, B. licheniformis, B. mycoides, B.
halodurans, B. methylotrophicus, B. paralicheniformis, B.
endophyticus, B. pseudomycoides, Bacillus sp., G. thermode-
nitrificans, P. polymyxa, P. durus and Paenibacillus sp.
(Additional file 2: Table S2 and Fig. 2). Class I lanthipeptides
identified by BAGEL3 includes subtilin, clausin, subtilomy-
cin and geobacillin I [22, 40–42]. Gene clusters of entianin,
ericinA/S, paenibacillin, paenicidin A, B, thuricin 4A and its
derivative thuricin 4D were not found by genome mining
tools (because whole genome sequences of the producing
organisms were not available in most cases) but were also
added to the list (Additional file 2: Table S2) [43–47]. Class
II lanthipeptides usually exhibit a globular structure, inclu-
ding mersacidin, amylolysin, pseudomycoicidin, cerecidin

(See figure on previous page.)
Fig. 1 Potential of different Bacillales for ribosomally synthesized peptides, NRPs and PKs production. Phylogenetic tree was constructed by
bi-directional BLAST all proteins of all genome of 328 Bacillales strains using Proteinortho; the newick tree was generated by p02tree and
visualized using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). The percentage of strains harboring putative gene clusters of different
antimicrobial compounds was calculated. Numbers in parentheses () indicate the number of genomes analyzed per genus

Zhao and Kuipers BMC Genomics  (2016) 17:882 Page 6 of 18

http://tree.bio.ed.ac.uk/software/figtree/


Fig. 2 Distribution of antimicrobials biosynthetic gene clusters among different Bacillales. a Class I ribosomally synthesized peptides; b Class II
ribosomally synthesized peptides; c Class III ribosomally synthesized peptides; d Total ribosomally synthesized peptides, NRPs and PKs, respectively
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A1-A6 and geobacillin II; also two-component class II
lanthipeptides including haloduracin and lichenicidin were
identified [19, 22, 23, 48–52]. It is notable that gene clusters
of two novel subtilin-like lantibiotics were found in several
P. polymyxa strains. By further analysis, both of their
sequence of core peptides showed high similarity with the
N-terminal part of subtilin but were quite different in the C-
terminal part. Moreover, we report a novel gallidermin/
nisin-like lantibiotic from genomes of Bacillus mycoides
ATCC 6462, B. mycoides 2048 and B. cereus AH1272.
Looking into the sequence of its precursor peptide (see
Additional file 2: Table S2), it has the conserved F(N/D)LD
motif in its leader and theoretically could form the same
rings as gallidermin/nisin according the position of serine
and cysteine residues. All of the three putative lantibiotics
have lanBC genes in their gene clusters, which suggest they
are involved in their production. A gene cluster of a two-
peptide bacteriocin was found in the genome of B. cereus
Q1. Due to the existence of a lanM gene, it was predicted to
be a class II lanthipeptide. Interestingly, the C-terminal parts
of both its core peptides are similar to lichenicidin and
haloduracin, and the N-terminal part of one of the core
peptides shows high similarity with one of cytolysins pro-
duced by Enterococcus faecalis [53].

Subclass 2: Head to tail cyclized peptides Head to tail
cyclic peptides are named by their unifying feature, which
is the head to tail circularization of their peptide back-
bones by direct linkage of their N- and C-terminal amino
acids, resulting in a well-defined three-dimensional
structure, by folding in α-helical manner [54–57]. To our
knowledge, these peptides contain no lanthionine, β-
methyl-lanthionine, and dehydrated residues, making
them clearly distinguishable from lanthipeptides [58].
Amylocyclicin was recently reported to be produced

by B. amyloliquefaciens FZB42 and identified as a novel
circular bacteriocin [59], which is derived from the 112
amino acid precursor AcnA (Additional file 2: Table S2)
encoded by acnA, with a 48 amino acid derived leader
cleaved by a protease that is still unknown, and then
circularization occurring between Leu-1 and Trp-64
[59]. There are gene clusters present, regulating their
maturation (e.g. circularization and cleavage), transpor-
tation and self-protection. The first gene of the putative
operon, acnB, encodes a membrane-anchored protein
comprising five transmembrane helices with unkown
function. acnD is likely to encode the transporter
complex, whereas AcnC might act as circularization
enzyme showing high similarity with the sequence of
UclB, which brings uberlysin to maturation [60]. AcnEF
are proposed to be the putative immunity genes. Amylo-
cyclicin has the ability to inhibit Gram-positive bacteria
like B. subtilis, but not against Gram-negative bacteria.

There are 52 gene clusters of putative head to tail
cyclized peptides identified in this genome-mining study,
which distribute over the genomes of B. thuringiensis, B.
cereus, B. coagulans, B. pumilus, B. paralicheniformis, B.
gobiensis, Bacillus sp., Kyrpidia tusciae, Geobacillus stear-
othermophilus, G. kaustophilus, Geobacillus sp., P. larvae
and Paenibacillus mucilaginosus (Table 1 and Fig. 2). An
amylocyclicin-like circular bacteriocin gene cluster was
found in the genomes of B. coagulans. The core peptide
sequence is identical to that of amylocyclicin of B. amylo-
liquefaciens FZB42, but the leader peptide sequence is
quite different (Additional file 2: Table S2). It is note-
worthy that a gene cluster of an uberolysin-like peptide
was detected in the genome of Bacillus sp. 1NAL3E and
gene clusters of circularin A/bacteriocin AS-48 like
peptide were detected in several Geobacillus sp., while
uberolysin was produced by Streptococcus uberis, circu-
larin A was produced by Clostridium beijerinckii and bac-
teriocin AS-48 was produced by E. faecalis [54, 60–63].
From the core peptide sequences, their circularization is
most likely being formed between leucine and tryptophan
(Additional file 2: Table S2). There are also other putative
gene clusters of head to tail cyclized peptides found in this
study, but notably these show no similarity with reported
peptides. Whether these are real circular bacteriocins or
not, need to be further investigated experimentally.

Subclass 3: Sactipeptides Sactipeptides form a class of
cyclic antimicrobial peptides with unusual sulfur to α-
carbon cross-links, which are catalyzed by radical S-
adenosylmethionine (SAM) enzymes in a leader peptide-
dependent manner [64, 65]. Posttranslational linkage of a
thiol to the α-carbon of an amino acid residue responsible
for their antimicrobial bioactivities is rare in ribosomal
synthesized peptides and they are classified as an inde-
pendent group [66–68]. These unusual linkages differ from
lanthionine bridges containing sulfur to β-carbon linkages.
Subtilosin A is a 35-residue peptide, formed by cleavage

of a seven amino acid leader peptide, cyclization of the N-
and C-terminal parts, and further modification of cysteine,
threonine and phenylalanine residues. The maturation of
subtilosin A begins with the transcription and translation
of the sbo-alb genes (Additional file 2: Table S2), resulting
in the precursor peptide SboA [69, 70]. Subsequently, the
radical SAM enzyme AlbA generates the thioether linkages
between the sulfur atom of the cysteine residue and the α-
carbon of the threonine residue [68]. Afterwards, either
AlbE or AlbF (putative proteases) cleaves off the leader
peptide. In the last step, the peptide backbone is circular-
ized by one of the two proteases, resulting in subtilosin A,
which is subsequently exported by the putative ABC
transporter AlbC. The operon is induced under anaerobic
conditions and is controlled by the transition state regula-
tory protein AbrB [4]. It shows antibacterial activity against
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Bacillus spp., E. faecalis, Gardnerella vaginalis and Listeria
monocytogenes by targeting their membranes and forming
pores [71–73].
In this study, we found 87 putative gene clusters of

sactipeptides in the genomes of Bacillales (Table 1), most of
which belong to three reported types of sactipeptides
(Additional file 2: Table S2): subtilosin A from B. subtilis, B.
atrophaeus, B. simthii and Bacillus sp. strains; sporulation
killing factor (SKF) from B. atrophaeus, B. pumilus and B.
subtilis strains; and thuricins, such as thuricin H (17) and
thuricin CD from B. thuringiensis and B. cereus [67, 74–77].
We found several other putative gene clusters of sactipep-
tides in the genomes of B. clausii, G. stearothermophilus,
Brevibacillus laterosporus, P. larvae, Paenibacillus odorifer,
Paenibacillus graminis, Paenibacillus riograndensis and Pae-
nibacillus sp. (Additional file 2: Table S2 and Fig. 2), which
showed very limited similarity with reported sactipeptides,
and that need to be further experimentally confirmed.

Subclass 4: Linear azole-containing peptides (LAPs)
The linear azole-containing peptides (LAPs), form an im-
portant subgroup of RiPPs with a distinguishing heterocyc-
lic ring of oxazoles and thiazoles derived from serine/
threonine and cysteine by enzymatic cyclodehydration and
dehydrogenation [78–81]. Prominent natural products such
as microcin B17 produced by Escherichia coli and streptoly-
sin S produced by LAB, are model of representive LAPs
peptides [82–86]. The LAP family has already been ex-
tended with plantazolicin A and B produced by B. amyloli-
quefaciens and B. methylotrophicus [80, 81].
Plantazolicin A (Additional file 2: Table S2) and its

desmethyl analogue plantazolicin B represent an unusual
type of thioazole/oxazole-containing peptide antibiotic
with a hitherto unknown mechanism of action, which
show inhibition against Bacillus [80, 87]. The mature
product plantazolicin is a linear 41 amino acid precursor
peptide with the 14 amino acid core-peptide encoded by
the structural gene pznA. The trimeric protein complex
PznBCD (cyclodehydratase, dehydrogenase, and dock-
ing/scaffolding protein) likely catalyzes PTMs of ten
cyclodehydrations followed by nine dehydrogenations.
After the protease PznE cleaves off the leader peptide to
yield desmethylplantazolicin plantazolicin B, a final N,
N-bismethylation by methyltransferase PznL gives plan-
tazolicin A [80, 81].
A total of 117 putative gene clusters of LAPs occupy 20 %

of the total putative gene clusters of bacteriocins in this
study and are widely distributed in more than 20 species of
Bacillales (Table 1 and Fig. 2). However, only plantazolicin
A and B produced by B. amyloliquefaciens and B. methylo-
trophicus have been reported before (Additional file 2: Table
S2). This means that many novel LAPs can be found and
need further experimental investigation.

Subclass 5: Thiopeptides Thiopeptides, or thiazolyl
peptides are highly modified via either non-ribosomal or
ribosomal assembly, with a six membered nitrogenous
macrocycle being central of piperidine/pyridine/dehydropi-
peridine and including additional thiazoles and dehydrated
amino acid residues [15, 88, 89]. Because of the trithiazolyl
(tetrahydro) pyridine core, they display high affinity binding
to either the 50S ribosomal subunit or elongation factor Tu.
In the thiocillins, found in the producer B. cereus ATCC

14579, at least 10 and up to 13 of the 14 C-terminal residues
undergo PTM to generate a set of eight related antibiotics.
The thiocillin gene cluster contains four identical copies of a
gene encoding a 52-residue precursor peptide (tclE-H),
which is thought to be posttranslationally modified to yield
the mature antibiotic scaffold (Additional file 2: Table S2).
Four of the eight thiocillins produced abundantly by B.
cereus display similar efficacies against B. subtilis and two
methicillin-resistant Staphylococcus aureus (MRSA) strains
[90, 91].
Thiopeptide gene clusters involved in ribosomal synthe-

sis are found in the genome sequences of several B. cereus,
B. subtilis and Lysinibacillus sphaericus (Additional file 2:
Table S2 and Fig. 2), which might go beyond the classifica-
tion for LAB bacteriocins [14].

Subclass 6: Glycocins Glycocins are bacteriocins with
glycosylated residues. There are various unique and diverse
putative glycopeptide containing bacteriocins named glyco-
cins in Firmicutes [15, 92].
There is one model glycopeptide bacteriocin, sublancin

168 (Additional file 2: Table S2), produced by B. subtilis
with a β-S-linked glucose moiety attached to cysteine22
and two disulfides [92–95]. The sublancin 168 biosynthetic
gene cluster contains the precursor gene sunA coding a 56-
residue polypeptide consisting of a 19-residue leader
peptide and a 37-residue mature peptide and genes bdbA
and bdbB encoding two thiol-disulfide oxidoreductases, i.e.
BdbA and BdbB [95, 96]. In addition, it contains two open
reading frames of unknown function, yolJ and yolF. YolF
was recently suggested to be important for immunity of the
producing strain and was renamed SunI; the function of
YolJ has not yet been reported [97]. SunT is responsible for
transport. The antimicrobial activity spectrum of sublancin
168 was like that of lantibiotics, inhibiting Gram-positive
bacteria, but not Gram-negative bacteria; and acts also
similar to the lantibiotics nisin and subtilin in its ability to
inhibit both bacterial spore outgrowth and vegetative cell
growth [17].
In addition to sublancin 168 found in B. subtilis, genome-

mining study indicated that nine other putative gene
clusters of glycocins were found in genomes of B. thurin-
giensis, B. cereus, B. weihenstephanensis, B. lehensis, Bacillus
sp., Geobacillus sp. and Paenibacillus sp., which need
further characterization (Table 1 and Fig. 2).
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Subclass 7: Lasso peptides Lasso peptides, which form
an emerging class of RiPPs from bacteria, were first
described in 1991 [98]. Their defining structural feature is
an N-terminal macrolactam ring that is threaded by the
C-terminal tail resulting in a unique lasso structure–the
so-called lariat knot. The ring is formed by an isopeptide
bond between the N-terminal α-amino group of a glycine,
alanine, serine, or cysteine and the carboxylic acid side
chain of an aspartate or glutamate, which can be located
at positions 7, 8, or 9 of the amino acid sequence [16, 99].
In general, lasso peptide production requires at least

three genes encoding a precursor peptide A, a cysteine
protease B, and an ATP-dependent lactam synthetase C.
Gene clusters might contain additional genes, but so far no
system was proven to be in need of an additional enzyme
to produce mature lasso peptides [100–104]. Microcin J25
produced by E. coli AY25 has served as a model for studies
of lasso peptides [105]. Known lasso peptides display anti-
microbial activity by enzyme inhibition [106, 107].
Genome mining of Bacillales indicated 48 gene clusters

of hypothetical peptides, which are likely lasso peptides in
the genomes of 20 Bacillales species (Table 1 and Fig. 2),
but these still need to be experimentally confirmed.

Class II: unmodified bacteriocins
Class II bacteriocins include small (less than 10 kDa),
ribosomally synthesized, heat-stable, membrane-active
linear peptides [4, 108, 109]. According to genome mining
results, we found in total 121 putative gene clusters of
class II bacteriocins distributed over 16 species of
Bacillales (Table 1 and Fig. 2). This class can be subdivided
into two subclasses: 1. Pediocin-like peptides; 2. Other
unmodified peptides (Additional file 2: Table S2).

Subclass 1: Pediocin-like peptides The pediocin-like
bacteriocins are antilisterial peptides that have aYGNGVXC
consensus motif [110, 111]. Coagulin produced by B. coagu-
lans I4 is a peptide of 44 residues has an amino acid se-
quence similar to that described for pediocins AcH and PA-
1 [109, 112]. Coagulin and pediocin differ only by a single
amino acid at their C-terminus (asparagine41threonine).
Gene clusters of coagulin are located on a plasmid including
the structural gene coaA, immunity gene coaB, and ABC
transporter genes coaC and coaD [113].

Subclass 2: Other unmodified peptides Subclass 2 in-
cludes other unmodified peptides, such as lichenin produced
by B. licheniformis, or cereins produced by B. cereus, which
have already been described in a previous review although
not yet detected in the reported complete genome se-
quences [4]. We found a lactobin A family protein [114] and
a lactococcin A1 family protein [115] belonging to class II
bacteriocins from Anoxybacillus flavithermus WK1. Here,
we mainly added some new members of Bacillus class II

bacteriocins detected by BAGEL3, in particular holins and
holin-like peptide BhlA, antimicrobial peptide LCI, and lead-
erless bacteriocin aureocin A53 (Additional file 2: Table S2).
Analysis of all Bacillales genome sequences revealed the

presence of a structural gene encoding a holin in Geobacil-
lus sp. WCH70 and BhlA encoding genes in most of B. sub-
tilis, B. amyloliquefaciens, B. mycoides, B. pseudomycoides,
B. licheniformis, B. pumilus and B. thuringiensis, and further
structural analysis of their sequence revealed features similar
to holin (Additional file 2: Table S2) [116, 117]. Holins are
phage-encoded proteins involved in the disruption of bac-
terial membrane to facilitate the release of progeny phage
particles [118–121]. However, the functions of these specific
ORFs have not yet been identified. The bacteriocin-related
holin-like peptide BhlA from Bacillus showed antibacterial
activity against several Gram-positive bacteria, including
MRSA and Micrococcus luteus by destroying cell mem-
branes [122]. BhlA consists of 70 amino acid residues with a
single transmembrane domain at the N-terminus, a number
of highly charged amino acid residues at the C-terminus.
The presence of hydrophilic residues and the membrane
topology of BhlA make it different from holins [122].
The lci gene encoding LCI was found in the genomes of

B. amyloliquefaciens and B. methylotrophicus strains
(Additional file 2: Table S2), sharing 98–100 % identity with
the LCI sequence of B. subtilis. The antimicrobial peptide
LCI was first identified and isolated by Liu et al. [123] from
a B. subtilis strain named A014 that possesses very strong
antagonistic activity against the Gram-negative pathogen
Xanthomonas campestris pv oryzea causing rice leaf-blight
disease, which is a serious threat to rice production and
causes great losses in yields in most rice fields annually. LCI
is a β-structure antimicrobial peptide containing 47 residues
of 5460 Da with no disulfide bridge or circular structure. It
also contains a hydrophobic core formed by valine5,
tyrosine41 and tryptophan44 as well as 23 H-bonds which
contribute to its considerable thermal stability [124, 125].
According to our BAGEL3 gene cluster mining results,
there are two genes: a structural gene lci and an immunity/
transporter-like gene which was still unknown. LCI’s
positively charged residues lead to a short-lived channel in
the bacterial membrane of sensitive strains [126].
Another new member of Bacillus class II bacteriocins

is leaderless aureocin A53, whose gene cluster was
identified in the genome sequence of B. pumilus strains
(Additional file 2: Table S2). It is active against L. mono-
cytogenes by dissipating the membrane potential and
simultaneously stopped biosynthesis of DNA, polysac-
charides, and protein [127]. Aureocin A53 is a highly
cationic 49-residue peptide containing six lysine and
four tryptophan residues. Unlike most class II bac-
teriocins, aureocin A53 is synthesized without a leader
peptide and retains a formylated N terminus. Notably,
genes for biosynthetic enzymes, immunity functions, or
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regulation of biosynthesis are not found in the vicinity
of the aureocin A53 structural gene [128].

Class III: large antimicrobial proteins
This group includes large proteins (larger than 10 kDa) with
antimicrobial activity. Gene clusters of these proteins nor-
mally include an immunity gene and a structural gene [126].
We found 24 putative gene clusters of class III bacteriocins
distributed over seven species of Bacillales (Table 1 and
Fig. 2). In a previous review, megacins produced by B. mega-
terium ATCC 19213 were reported as class III bacteriocins
[4, 129]. Here, we identified and introduced some class III
bacteriocins by BAGEL3 respresented by colicin, M23 pep-
tidase and pyocin AP41 (Additional file 2: Table S2).
Gene clusters of colicins were identified in the genomes

of B. thuringiensis, B. cereus and Bacillus sp. BH072
(Additional file 2: Table S2). Channel-forming colicins
(colicins A, B, E1, Ia, Ib, and N) are transmembrane pro-
teins that depolarize the cytoplasmic membrane, leading
to dissipation of cellular energy. Their immunity gene is
often produced constitutively, while the bacteriocin release
protein is generally produced only as a read-through of the
stop codon on the colicin structural gene. The colicin itself
is repressed by the SOS response and may be regulated in
other ways, as well [130]. Pyocin AP41 is also discovered
as a large bacteriocin from B. thuringiensis (Additional file
2: Table S2), which was first isolated from Pseudomonas
aeruginosa PAF41. According to literature, it showed a
similar mode of action to that of colicin [131]. Interest-
ingly, we found gene clusters of M23 peptidase in the
genomes of B. thuringiensis, B. coagulans and B. halodur-
ans (Additional file 2: Table S2), while M23 peptidase has
not been reported to be secreted by Bacillus before, and so
needs to be further experimentally confirmed. Over the
past years, many members of the M23 metallopeptidase
family have been identified and biochemically character-
ized. Structures have been determined for some of them,
e.g. LytM, LasA and recently lysostaphin, a prototypic
enzyme of the M23B group and the best studied bacteri-
ocin of this group [132, 133].

Non-ribosomal synthesized peptides (NRPs) and polyketides
(PKs) of Bacillales
NRPs and PKs encompass a variety of linear, cyclic and
branched structures, which are generated by complex
enzymes known as non-ribosomal peptide synthetases
(NRPS), polyketide synthetases (PKS) and hybrid NRPS/
PKS, respectively [134, 135]. Among them, NRPs produced
by Bacillales include lipopeptides (LPs) and others, with
significant antimicrobial activity [136]. Here we present an
extended collection based on members described in a previ-
ous review by Aleti et al. [136]. By use of antiSMASH, we
identified 31 types of putative NRPs, PKs and NRPS/PKS
hybrid synthesized antimicrobials, which will be described in

detail below. Characteristics of them are listed in Additional
file 3: Table S3 by displaying their chemical structures, gene
clusters and predicted producer species, respectively.

Lipopeptides (LPs)
Lipopeptides (LPs) are natural compounds of bacterial ori-
gin consisting of a hydrophobic long alkyl chain linked to
a hydrophilic polypeptide to form a cyclic or linear struc-
ture [137]. According to our mining results, B. amyloli-
quefaciens, B. methylotrophicus, B. atrophaeus, B. subtilis,
B. licheniformis, B. paralicheniformis, B. pumilus, B. lehen-
sis, B. laterosporus, Bacillus sp., P. polymyxa, P. larvae, P.
mucilaginosus, P. peoriae, P. bovis, Paenibacillus terrae
and Paenibacillus sp. are likely to be the main producers
of LPs, which are mainly known for their antifungal prop-
erties [138–140]. Based on a previous genome mining
work (see review Aleti et al. [136]), we identified locillo-
mycins as novel members of LPs in species of Bacillales
(Additional file 3: Table S3).
Traditional LPs (comprising the surfactins, iturins and

fengycins) from Bacillus are homologues differing in length,
branching, and saturation of their acyl chain. The surfactin
family (exemplified by surfactin, lichenysins and pumilaci-
dins) contain a cyclic heptapeptide that forms a lactone
bridge with ß hydroxy fatty acids [141]. The iturin group
includes A, C, D and E isoforms, bacillomycin D, F and L
and mycosubtilin. All these compounds contain a cyclic
heptapeptide acylated with ß amino fatty acids [142, 143].
The fengycin family comprises the decapeptide fengycin A
and fengycin B, which differ in a single amino acid at the
sixth position (D-alanine and D-valine, respectively) [144].
Kurstakins form another family of LPs composed of four
partially cyclic heptalipopeptides, which differ only in their
fatty acid chains [145]. The gene clusters of the Bacillus
LPs encoding the surfactin, fengycin, iturin and kurstakin
families have been described and summarized in a number
of recent reviews [6, 11, 136, 145]. Cerexins are linear LPs
with strong antimicrobial activity against S. aureus and
Streptococcus pneumoniae [146]. Kurstakins and cerexins
are isolated and identified from B. thuringiensis and B.
cereus strains before, respectively [146, 147]. Locillomycins
(locillomycin A, B, and C derivatives), a novel family of
cyclic lipopeptides active against bacteria and viruses
produced by B. subtilis 916 [148, 149], include a unique
nonapeptide sequence and macrocyclization. The locillo-
mycin biosynthetic gene cluster encodes four proteins
(LocA, LocB, LocC, and LocD) that form a hexamodular
NRPS to biosynthesize cyclic nonapeptides.
Paenibacillus now are found to produce a large number

of LPs [136]. Polymyxins are cyclic cationic LPs which con-
tain the non-proteogenic amino acid 2, 4-diaminobutyric
acid contributing to the overall positive charge of the
cationic LPs, exhibiting antibacterial activity against both
Gram-positive and Gram-negative bacteria by acting on their
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membranes. The gene cluster consists of five genes, of which
pmxA, B and E encode the polymyxin synthetase, whereas
pmxC and D are involved in transport [136, 150]. Another
cationic lipopeptide, paenibacterin is a new broad-spectrum
antimicrobial agent consisting of a cyclic 13-residue peptide
and an N-terminal C15 fatty acyl chain [151]. There are also
cyclic noncationic LPs from Paenibacillus comprising
fusaricidins containing a cyclic hexapeptide structure with
antagonistic activity against Fusarium oxysporum, tride-
captins with strong antimicrobial activity against Gram-
negative bacteria. Polypeptins, octapeptins, pelgipeptins,
gavaserin and saltavalin are LPs isolated from Paenibacillus
sp. strains, reported before by other scientists, and should
also be included in this collection [136, 152–155].

Other NRPs
By antiSMASH, we also found non-lipopeptide but NRPSs
gene clusters putatively encoding NRPs with antimicrobial
activity mainly in the species of Bacillus, Paenibacillus
and Brevibacilllus. We collected them as a group of other
NRPs, which is exemplified by the following NRPs
(Additional file 3: Table S3).
The non-ribosomal dodecapeptide bacitracin, released by

some B. licheniformis and B. subtilis strains, proved to be
an inhibitor of cell wall biosynthesis of Gram-positive
bacteria [156, 157]. Small peptide bacilysin secreted by B.
subtilis, B. amyloliquefaciens and B. pumilus contains an N-
terminal alanine residue and L-anticapsin with antibacterial
activity against S. aureus [158]. B. subtilis also produces
rhizocticins, phosphonate oligopeptide antibiotics contain-
ing the C-terminal non-proteinogenic amino acid (Z)-1-2-
amino-5-phosphono-3-pentenoic acid displaying antifungal
activity [159]. Petrobactin and bacillibactin produced by
several Bacillus strains under iron-limited conditions, are
catecholate siderophores associated with two operons, asb
(for petrobactin) and bac (for bacillibactin) [160].
Sevadicin is a tripeptide (D-phenylalanine-D-alanine-

tryptophan) produced by a NRPS encoded by a gene cluster
found in the genome of P. larvae, which was shown to have
antibacterial activity [161].
Both the cyclic peptides gramicidin S and tyrocidine, pro-

duced by Brevisbacillus, consist of 10 amino acid residues
[162]. Gramicidin S consists of two identical pentapeptides,
which are linked head to tail, and together form the stable
amphiphilic cyclic decapeptide. The first amino acid residue
of the two pentapeptides is in the D-configuration [163].
The peptide exhibits strong antibacterial and antifungal
activity [164]. Tyrocidine, actually a mixture of slightly
different decapeptides, is active against several Gram-
positive bacteria and it has been suggested that this peptide
plays a role in the regulation of sporulation of B. brevis
[162]. The gramicidin S biosynthesis operon (grs) contains
thee genes, which are grsA, encoding the gramicidin S
synthetase 1; grsB, encoding the gramicidin S synthetase 2,

and grsT, encoding a protein of unknown function. The se-
quence of the grsA gene product showed a high similarity
with the tyrocidine synthetase 1 (TycA protein) [165, 166].

Polyketides (PKs)
Polyketides represent a group of secondary metabolites,
exhibiting remarkable diversity both in terms of their struc-
ture and function. Polyketide natural products are known to
possess a wealth of pharmacologically important activities,
including antimicrobial, antifungal, antiparasitic, antitumor
and agrochemical properties (http://www.nii.ac.in/~pksdb/
polyketide.html). Novel gene clusters likely encoding similar
PKSs were identified using antiSMASH. They were most
prominent in B. subtilis, B. amyloliquefaciens, B. methylotro-
phicus, B. atrophaeus, B. laterosporus and Paenibacillus sp.
(Additional file 3: Table S3 and Fig. 2). The genus Bacillus
produces three types of PKs including bacillaene, diffi-
cidin and macrolactin; Paenibacillus produces paenima-
crolidin [6, 167]. B. laterosporus also produced the
polyketide basiliskamide with antifungal activity [168],
and it was added as novel member of PKs in species of
Bacillales (Additional file 3: Table S3).
Bacillaene was first isolated from B. subtilis strains [169],

are found to display a linear structure comprising a conju-
gated hexaene, while its gene clusters bae (baeJ, L, M, N
and R) has now been discovered in several other Bacillus
genomes, including B. amyloliquefaciens, B. atrophaeus and
P. polymyxa. It is an inhibitor of prokaryotic protein
synthesis, constituted by an open-chain enamine acid with
an extended polyene system and shows good antimicrobial
activity against human pathogens such as Serratia marces-
cens, Klebsiella pneumoniae and S. aureus [37, 169, 170].
Difficidin is known to be produced by B. amyloliquefaciens
strains, which is active against the phytopathogen Erwinia
amylovora causing fire blight, and contains a highly unsat-
urated macrocyclic polyene comprising a 22 membered
carbon skeleton with a phosphate group rarely found in
secondary metabolites [171]. Difficidin is encoded by the
gene cluster dif with 14 open reading frames from difA to
difN and difY. The contribution of the genes difJ and difK
are unclear and their potential activities are not seen in the
final product [172]. Macrolactin has also been isolated from
B. amyloliquefaciens strains [173]. Most macrolactins
consist of a 24 membered lactone ring with three diene
moieties in the carbon backbone, which is encoded by the
gene cluster mln, containing nine operons including mlnA-
I [174]. As the other Bacillus polyketides, macrolactins
show antibacterial activity and might have the potential to
be used in medical application. Moreover, they could inhibit
the proliferation of murine melanoma cancer cells and the
replication of mammalian Herpes simplex virus and HIV in
lymphoblast cells [136, 173]. Paenimacrolidin was isolated
from Paenibacillus sp. F6-B70 with a 22 membered lactone
ring showed high similarity with difficidin, which has
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antimicrobial activity against Staphylococcus [167]. The
polyketide antibiotics basiliskamides A and B, which exhibit
potentactivity against Candida albicans and Aspergillus
fumigatus, both comprise a 21 membered carbon skeleton,
structurally identical in every respect, except for the pos-
ition of the cinnamate ester: C9 in basiliskamide A and C7
in basiliskamide B [175, 176].

NRPS/PKS hybrid synthesized compounds
There are three NRPS/PKS hybrid synthesized NRPs or
PKs of Bacillales identified in this study (Additional file 3:
Table S3). Paenilarvins are iturinic LPs exhibiting strong
antifungal activities [177–180]. Paenilarvin A and B were
first isolated from P. larve strain, whose NRPS gene
clusters showed similarities with those of the iturin family
LPs [180]. Zwittermicin A is also a hybrid polyketide-
nonribosomal peptide produced by certain B. cereus group
strains, inhibiting certain Gram-positive, Gram-negative,
and eukaryotic microorganisms [181, 182]. Paenilamicin is
another hybrid NRPS/PKS synthesized peptide with
antibacterial and antifungal activity, whose encoded gene
clusters (pam) were found the genomic sequence of the
Gram-positive bacterium P. larvae [183].
In this study, 10 novel gene clusters encoding putative

NRPs, PKs or NRPS/PKS hybrids were predicted from the
genome of B. brevis NBRC 100599, B. cereus AH820, B. ce-
reus G9842, B. cereus B4264, B. cereus E33L, B. thuringien-
sis HD771, B. thuringiensis HD789, B. amyloliquefaciens
DSM7, B. amyloliquefaciens CC178, B. methylotrophicus
NAU-B3, B. anthracis str. A0248, B. anthracis str. H9401
and Bacillus sp. BH072. The identified gene clusters (un
characterized) show limited homology with gene clusters in
the integrated databases. Related genes encoding the
biosynthesis, predicted structures and antimicrobial activity
of these compounds deserve to be experimentally validated.

Discussion
An extensive investigation of 328 published whole genome
sequences of Bacillales for the presence of ribosomally
synthesized antimicrobials, NRPs or PKs encoding genes, re-
vealed that most species of the genus Bacillus, Paenibacillus
and Geobacillus have good potential to produce a wide var-
iety of antimicrobials and there is a high occurrence of puta-
tive biosynthetic gene clusters. The ability of Bacillus from
different species to produce putative antimicrobial com-
pounds relate to their phylogenetic relationship. According
to the phylogenetic tree (Fig. 1), Bacillales are divided into
several groups. Among them, the group of B. subtilis and B.
atrophaeus, the group of B. amyloliquefaciens, B. methylo-
trophicus, B. paralicheniformis, B. licheniformis, B. pumilus
and B. endophyticus are excellent producers of all the three
kinds of antimicrobials. Additionally, the B. cereus group,
Paenibacillus strains are rich sources of bacteriocins and

NRPs, while Geobacillus strains mainly produce bacteriocins
and PKs.
More than 89 % strains covering 50 species have a pre-

disposition towards producing ribosomally synthesized
peptides (Fig. 1), some gene clusters of which show
similarity with those of known bacteriocins, while some
are uncharacterized or show limited homology. When it
comes to the distribution of biosynthetic gene clusters of
ribosomally synthesized antimicrobials among different
Bacillales, lanthipeptides, head to tail cyclized peptides,
sactipeptides, lasso peptides and LAPs of Class I are the
most common types (Fig. 2), whilst glycocin and thiopep-
tide genes are present predominantly in B. subtilis and B.
cereus strains, respectively. Gene clusters of class II and III
appear to be also regularly contained within genus Bacil-
lus genomes.
Although the emphasis here is on ribosomally synthe-

sized peptide classes, several new NRPs and PKs with po-
tential antimicrobial activity were also identified. Bacillales
are potential NRPs producers, and the gene clusters are
widely spread in 40 species of the sequenced genomes in
our analysis (Fig. 1). In contrast, only half of the genomes
of these organisms appear to have PKs encoding genes.
Bacillus and Paenibacillus genera in particular are well
noted for their capability to produce structurally diverse
NRPs and PKs. Approximately 35 % strains of the Bacillale
species analyzed have the ability to produce all three types
of antimicrobial compounds simultaneously. In this study,
most of the genomes (255 of 328) were completely se-
quenced yielding one or only a few contigs, while there
are some other level sequence data (shown in Additional
file 1: Table S1) composed of relatively many single con-
tigs. Some of these contigs are not in the correct order,
which can result in higher mining counts of NRPs (caused
by duplications or multiplications) than actual correct. In
order to avoid this overestimation, the numbers of puta-
tive gene clusters of NRPs identified in Bacillales genomes,
especially for B. cereus group strains, were adjusted by re-
moving duplications or multiplications of NRPs manually.
It is valuable to take this issue into account in further and
future data mining and analyses.
The massive numbers of bacteria with whole genome se-

quence data and the development of various specific
genome mining tools have made it possible to identify an
informative set of putative antimicrobial gene clusters
across the genomes that can be developed into new antimi-
crobials. Novel information found in this genome mining
study includes three types that are novel: class I bacte-
riocins with either a new leader sequence or new core se-
quence; known antimicrobial compounds previously
produced by other microorganisms; and completely novel
gene clusters that need experimental confirmation. Another
value of this study is that the post-genome mining analysis
includes a number of potential species never considered to
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be antimicrobial producers before and provide a reference
for future Bacilli to be sequenced.

Conclusions
A multitude of antimicrobial compounds have been found
to be produced by a variety of Bacillus strains. In the past,
these compounds had to be identified by intensive screen-
ing for antimicrobial activity against appropriate targets
and subsequently purified using fastidious methods prior
to assess their potential utilization as antibacterial or anti-
fungal compound. Nowadays, gene clusters encoding for
ribosomally produced bacteriocins, NRPs and PKs can
readily be identified in the genomic sequences by genome-
mining tools that not only add missing ones, but also
predict novel ones. Notably, genomic tools like BAGEL3
and antiSMASH combined with specific BLAST searches,
makes the identification of new compounds much easier.
Although several novel gene clusters of putative antimicro-
bials were found, they are as yet uncharacterized and their
functions remain to be studied. Our extended classification
of antimicrobial compounds demonstrates that Bacillales
provides a rich source of novel antimicrobials that can now
be readily tapped experimentally, since many new gene
clusters were identified.

Methods
Genome sequences
Whole genome sequences of 328 strains of Bacillales
(Additional file 1: Table S1) were obtained from NCBI
Genome database (http://www.ncbi.nlm.nih.gov/genome).
All proteins of all genomes were compared by bi-
directional BLAST using Proteinortho and newick tree file
was generated by p02tree [184]. The newick tree file was
visualized using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/
software/figtree/).

Genome mining for gene clusters of putative
antimicrobials by BAGEL 3 and antiSMASH
Genomes were analyzed for gene clusters of putative
bacteriocins, NRPs, PKs or other antimicrobials by using
web-based genome mining tools BAGEL3 (http://bagel.-
molgenrug.nl/) [7] and antiSMASH (http://antismash.-
secondarymetabolites.org) [8–10]. Genome mining data
were collected and putative gene clusters were classified
manually. By BLAST, known and novel antimicrobials
were predicted and identified.

Additional files

Additional file 1: Table S1. Accession numbers of whole genome
sequences (reported in Genbank) of Bacillales analyzed in this study.
(XLSX 23 kb) (XLSX 23 kb)

Additional file 2: Table S2. Characteristics of ribosomally synthesized
antimicrobial peptides of Bacillales. (DOCX 201 kb)

Additional file 3: Table S3. Characteristics of NRPs, PKs and NRPS/PKS
hybrid synthesized antimicrobials of Bacillales. (DOCX 854 kb)
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