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Abstract

Background: Consumers are becoming increasingly conscientious about the nutritional value of their food.
Consumption of some fatty acids has been associated with human health traits such as blood pressure and
cardiovascular disease. Therefore, it is important to investigate genetic variation in content of fatty acids present in
meat. Previously publications reported regions of the cattle genome that are additively associated with variation in
fatty acid content. This study evaluated epistatic interactions, which could account for additional genetic variation

in fatty acid content.

Results: Epistatic interactions for 44 fatty acid traits in a population of Angus beef cattle were evaluated with
EpiSNPmpi. False discovery rate (FDR) was controlled at 5 % and was limited to well-represented genotypic
combinations. Epistatic interactions were detected for 37 triacylglyceride (TAG), 36 phospholipid (PL) fatty acid traits,
and three weight traits. A total of 6,181, 7,168, and 0 significant epistatic interactions (FDR < 0.05, 50-animals per
genotype combination) were associated with Triacylglyceride fatty acids, Phospholipid fatty acids, and weight traits
respectively and most were additive-by-additive interactions. A large number of interactions occurred in potential
regions of regulatory control along the chromosomes where genes related to fatty acid metabolism reside.

Conclusions: Many fatty acids were associated with epistatic interactions. Despite a large number of significant
interactions, there are a limited number of genomic locations that harbored these interactions. While larger
population sizes are needed to accurately validate and quantify these epistatic interactions, the current findings
point towards additional genetic variance that can be accounted for within these fatty acid traits.
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Background

Beef cattle producers must contend with the desires of
their consumers. Health consciousness amongst con-
sumers has grown as more information and misinforma-
tion is publicized about the effects of food components,
e.g., fatty acids, on human health. The health risks asso-
ciated with increased fat consumption are a consider-
ation for many consumers [1, 2] and beef is traditionally
thought of as a high fat foodstuff. Producers can select
for beef with a healthier fatty acid composition as fatty
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acid content of beef is highly heritable [3, 4] and genetic
markers account for a large amount of this genetic vari-
ation [5-9]. However, the impact of non-additive genetic
variation on fatty acid variation remains unknown. One
of these non-additive genetic factors is the presence of
epistatic interactions throughout a genome. While most
research focuses on the additive portion of genetic vari-
ation, it often cannot account for all the genetic vari-
ation predicted. This additional variation may be
explained with the identification and characterization of
epistatic interactions. Although selection on fatty acid
content in cattle with the inclusion of epistatic effects
may not be very advantageous due to the breakdown of
epistasis during selection [10], the ability to identify the
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interactions may lead to further understanding of the
molecular mechanisms underlying variation in fatty acid
content. This study aimed to identify the extent to which
epistatic interactions could account for additional gen-
etic variation in fatty acid composition of beef.

Results and Discussion
Phenotypic summary statistics for TAG and PL fatty
acids are reported in Table 1.

Phenotypic summary statistics for Weight Traits are
reported in Table 2.

A total of 6,181 and 7,168 SNP by SNP interactions
(TAG and PL respectively) had a FDR < 0.05 with data
analysis limited to pairs of loci on different chromo-
somes in which at least 50-animals were represented
for every combination of genotypes at the two loci
under consideration as in Table 3. A stricter animal
number filter was utilized to further restrict the num-
ber of identified interactions. The filter were used to
determine if increasing genotype combination fre-
quency impacted the number of significant results
identified, which may indicate that low frequency
genotype combinations were responsible for the gen-
eration of spurious significance. The filter was applied
by increasing the number of animals present within
each genotype combination to 100 animals per geno-
type combination (data not shown for 5, 10, 20 animal
filters). The numbers of significant inter-chromosomal
interactions (FDR < 0.05) with either a 50-animal filter
or 100-animal filter for both TAG and PL fatty acid
fractions are shown in Table 3. The 100-animal filter
was the strictest applied and resulted in a steep reduc-
tion in the number of significant interactions identi-
fied for every fatty acid trait analyzed. This reduction
appears to be due to fewer loci being considered as
the proportion of significant interactions among all
possible interactions were similar at both five and 100
animal filters. As shown in Figs. 1 and 2, the number
of interactions identified for a given animal filter con-
tinues to decrease as the filter became more stringent,
with the total represented by all values to the right of
the cutoff. A larger population of animals would be
needed to truly represent the real proportion of ani-
mals per genotype combination. Once a suitable popu-
lation is used, a stricter filter (such as the 100-animal
filter) could be utilized to further reduce spuriously
significant epistatic interactions.

The observed modes of inheritance of the identified epi-
static interactions included all the possible combinations,
namely additive-by-additive (AA), additive-by-dominance
or dominance-by-additive (AD), and dominance-by-
dominance (DD). The fatty acids in Table 4 are sorted by
fatty acid fraction (TAG and PL) as well as the four fatty
acid categories (SFA, MUFA, PUFA, and Ratio/Calculation)
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at a filter of FDR < 0.05 and 50-animals per genotype com-
bination. TAG and PL fatty acid fractions had similar pro-
portions of epistatic modes of inheritance (AA, AD, DD)
between the four fatty acid categories. Dominance-by-
dominance was the least commonly observed (summed
across all fatty acid traits) mode of inheritance within the
TAG fatty acids (0.06 % of total significant interactions) as
well as within PL fatty acids (0.01 % of total significant in-
teractions. For both fatty acid fractions (TAG and PL)
additive-by-additive interactions made up the largest pro-
portion of significant interactions, with 98.53 and 98.45 %
respectively (e.g,, for PL 16:1 represented in Fig. 3). Polyun-
saturated fatty acids made up the smallest proportion of
significant interactions for both the TAG (1.83 %) and PL
(343 %) fraction. Interactions by type (AA, AD, or DD)
were similar in levels and proportions between TAG and
PL fractions, although a few traits exhibited different com-
positions of interactions (e.g., 14:0 — predominantly AA in
TAG fraction while nearly non-existent in PL fraction).
Visualization of additional fatty acids in both fractions can
be found in the Additional file 1, all charted at 50-animals
per genotype combination.

The distribution of identified epistatic interactions across
fatty acid traits is of more interest. The number of interac-
tions that met our minimum filter criteria (inter-chromo-
somal, 50-animals per genotype combination, FDR < 0.05)
varied greatly between traits within each fatty acid fraction,
and even between fractions for the same trait. For example,
there were no significant (FDR < 0.05) interactions detected
for 17 TAG fatty acids at 50-animals per genotype combin-
ation, while 2,594 significant (FDR < 0.05) interactions were
associated with fatty acid 18:1t10pt11. No significant (FDR
<0.05) interactions were detected for 17 PL fatty acids at
50-animals per genotype combination, but 3,145 significant
(FDR < 0.05) interactions were associated with PL fatty acid
18:1c11. This range in number of significant interactions
identified for each trait was not confined to any specific
fatty acid isoform or category (SFA, MUFA, PUFA, Ratio/
Calculation) for either of the two fractions of fatty acids.
Many exhibited a similar number of significant interactions
in both TAG and PL fatty acid fractions, although there are
exceptions such as fatty acids 14:0 which had a greater than
10-fold difference in number of interactions between TAG
and PL fatty acids.

Polyunsaturated fatty acids had the lowest number of
significant (FDR < 0.05) interactions of all fatty acid types,
in that all 11 fatty acids had less than 100 significant (FDR
< 0.05) epistatic interactions for the TAG fraction, and 10
out of 11 fatty acids for the PL fraction. Only n6 fatty
acids (the sum of all omega-6 fatty acids) had more than
100 significant (FDR < 0.05) interactions, and this was only
in the PL fraction. Over half of the significant (FDR < 0.05)
interactions associated with polyunsaturated fatty acids
were with n6 fatty acids for both TAG and PL fractions.
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Table 1 The phenotypic summary statistics for TAG and PL fatty acid traits
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Triacylglycerol Fatty Acids

Phospholipid Fatty Acids

Trait Mean (N=1721) SD (@Y Trait Mean (N =1442) SD (@Y
Saturated Fatty Acids

SFA 458 25 0.05 SFA 3844 526 0.14
12:.0 0.13 0.19 146 12:0 14 1.8 1.28
140 3.08 051 0.16 14:0 333 455 137
16:.0 27.35 1.75 0.06 16:0 20.2 349 0.17
17:.0 142 0.39 0.28 17:0 1.75 26 148
180 13.23 19 0.14 180 9.88 251 0.25
22:0 0.02 0.06 2.73 22:0 0.85 1.07 1.26
23:0 0.01 0.06 3.84 23:.0 0.17 043 247
24:0 0.03 0.08 283 240 045 0.66 145
Monounsaturated Fatty Acids

MUFA 5157 2.56 0.05 MUFA 24.07 7.7 032 MUFA
14:1 0.7 0.21 03 14:1 0.22 0.54 243
16:1 3.82 0.61 0.16 16:1 0.72 0.83 1.15
17:1 1.01 033 032 17:1 1.21 1.02 0.84
18:1 cis-9 40.26 2.86 0.07 18:1 cis-9 19.31 6.71 035
18:1 cis-11 0.11 0.1 092 18:1 cis-11 0.08 03 391
18:1 cis-12 03 0.16 0.52 18:1 cis-12 0.04 035 9.22
18:1 cis-13 0.11 0.12 1.17 18:1 cis-13 0.09 051 597
18:1, trans-6/9 0.19 045 24 18:1, trans-6/9 0.04 033 829
181, trans-10/11 3.69 157 043 181, trans-10/11 0.59 1.18 201
18:1, trans-12 0.18 1.15 6.21 18:1, trans-12 0.03 0.19 6.48
181, trans-15 1.15 0.36 0.31 181, trans-15 1.51 1.68 1.11
Polyunsaturated Fatty Acids

PUFA 263 0.89 0.34 PUFA 3749 872 023
18:2 201 052 0.26 18:2 2567 6.72 0.26
183, n-3 0.16 0.16 0.99 183, n-3 0.12 0.71 585
20:2 0.08 0.11 14 2022 0.05 0.27 532
20:4 0.02 0.08 355 20:4 84 2.73 032
20:5 0.1 0.16 1.68 20:5 0.37 0.56 1.51
226 0.06 0.26 4.65 226 0.19 0.79 4.14
CLA cis-9 trans-11 0.04 0.09 2.08 CLA cis-9 trans-11 0.06 06 10.08
CLA trans-10 cis-12 0.12 0.12 1.03 CLA trans-10 cis-12 0.04 029 6.87
n-3 0.33 04 1.22 n-3 2.31 2.09 0.91
n-6 23 063 0.28 n-6 35.18 831 0.24
Ratio/Calculation

n-6:n-3 0.14 0.15 1.05 n-6:n-3 0.07 0.07 1.07
PUFASFA 0.06 0.02 0.36 PUFASFA 1.01 031 031
MCFA 442 08 0.18 MCFA 521 4.01 0.77
LCFA 95.58 08 0.01 LCFA 94.79 401 0.04
IA® 0.74 0.09 0.12 IA® 0.59 033 0.56

“IA: Index of Atherogenicity

Mean, Standard Deviation (SD), Coefficient of variation (CV) calculated for all 1,721 and 1,442 head of cattle used to identify significant epistatic interactions in

triacylglyceride and phospholipids fatty acid traits respectively
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Table 2 Summary statistics for weight traits (kilograms)

Trait Mean (N =2342) SD CVx 100
Hot Carcass Weight 33248 3266 9.82
Yearling Weight 43159 82.58 19.13
Weaning Weight 184.86 4297 2325

Mean, Standard Deviation (SD), Coefficient of variation (CV) calculated for
2,324 head of cattle used to identify significant epistatic interactions for
weight traits

Among 18:1-cis fatty acids, there was a large range
in the number of observed significant interactions.
Triacylglyceride fatty acids 18:1c9 and 18:1c12 were
not significantly (FDR < 0.05) associated with any epi-
static interactions while fatty acids 18:1c11 and
18:1c13 were associated with 775 and 7 significant
(FDR < 0.05) epistatic interactions, respectively. The
same trend was observed in the PL fatty acid fraction,
fatty acids 18:1c¢9 and 18:1c12 having no significant
epistatic interactions, while 18:1c11 and 18:1c13 had
3,145 and 4 significant (FDR < 0.05) epistatic interac-
tions respectively. This was also seen within the 18:1-
trans fatty acids, which had numbers of interactions
ranging from zero for 18:1t6t9 and 18:1 t12, up to
2,594 interactions for 18:1t10t11 (FDR < 0.05) for the
TAG fatty acid fraction. Within the 18:1-trans fatty
acid isoforms of PL fatty acid fraction, 18:1t6t9 was as-
sociation with zero epistatic interactions, 18:1 t15 was
significantly associated with 266 epistatic interactions
(FDR <0.05), while 18:1t10p11 was significantly associ-
ated (FDR < 0.05) with 1,466 epistatic interactions.

Variation in the number of associated significant
epistatic interactions within a single isoform suggests
that a multitude of genomic regions control some
fatty acid isoforms. Understanding exactly what con-
trols exist within these genomic regions, however,
would require a larger population of animals and is
therefore not within the bounds of this study. This
same range of significant interaction numbers can be
seen in the saturated fatty acids. In the TAG fatty
acid fraction, the number of significant interactions
(FDR<0.05) ranged from zero (eg. 16:0) up to 835
(14:0), with a range of interactions in-between for the
other fatty acid traits. In the PL fatty acid fraction,
the number of significant interactions (FDR < 0.05)
ranged from zero (eg. 16:0) to 406 (18:1c11).

In the TAG fatty acid fraction, 19 of the 37 traits ex-
amined had no significant interactions detected (FDR
<0.05, 100-animals per genotype). Polyunsaturated
fatty acid (PUFA) was the only fatty acid category (Sat-
urated: SFA; Monounsaturated: MUFA; Polyunsatur-
ated: PUFA; Ratio/calculation) which did not contain
any fatty acid traits with greater than 100 significant
interactions after application of the FDR (<0.05) and
the 100-animal filter, while the other three categories
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(SFA, MUFA, Ratio/Calculation) all contained mul-
tiple traits with over 100 significant interactions after
application of the 100 animal filter. Fatty acid
18:1t10t11 was the sole fatty acid which still had over
1,000 significant interactions after the most conserva-
tive filter was applied, with a total of 1,925 significant
interactions (FDR < 0.05). For the PL fatty acid frac-
tion, 21 of the 36 fatty acid traits had zero significant
interactions (FDR < 0.05, 100-animals per genotype),
and just like the TAG fatty acid fraction, PUFA was
the only category that did not have any traits with over
100 significant interactions. The fatty acid trait
18:1c11 had the largest number of significant epistatic
interactions at 1,861 after both FDR<0.05 and the
100-animals per genotype filter. Differences in the
number of identified significant interactions for each
fatty acid trait may be related to the biological role of
the fatty acid. Those fatty acids essential to tissues or
biological processes may have more epistatic interac-
tions (similar to the concept of genetic redundancy) to
ensure their functionality. Fatty acids with less import-
ant biological roles or more commonly available
through the environment may be under less or no
genetic control under normal conditions. The pres-
ence of few significant PUFA interactions compared to
MUFA interactions is an example of the importance of
specific fatty acids. Oleic acid (18:1) is one of the most
common MUFA found in animals, and is a building
block for the production of linoleic acid (18:2). For
this reason the production of oleic acid may be more
important to maintain due to its use in the production
of more complex fatty acids.

Due to the detection of many significant epistatic in-
teractions, other phenotypic weight traits also collected
on these cattle were analyzed utilizing the same meth-
odology to determine if the observed modes of inherit-
ance were unique to fatty acid traits. The body traits
used were hot carcass weight, yearling weight, and
weaning weight. An FDR filter of < 0.05 and a minimum
of 50-animals per genotype combination was used to
determine and identify significant SNP interactions. For
each of the weight traits, fewer than five significant in-
teractions were observed (WW — 1, YW — 3, HCW - 0)
[Table 5]. The small number of interactions identified
may be due to selection on these traits, as this would
work on additive genetic variance and break down epi-
static genetic variance [10]. Strong correlations between
fatty acid traits and carcass traits under selection may
be one explanation for the variability in number of
identified interactions, but this is beyond the scope of
the current research.

It became apparent a few regions of the genome
were potential regions of regulatory control while
visualizing the genomic regions of significant inter-
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Table 3 Number of significant interactions at 50 and 100 animals per genotype combination filters
TAG Fatty acid traits PL Fatty acid traits
Trait FDR 50-Animal Filter 100-Animal Filter Trait FDR 50-Animal Filter 100-Animal Filter

Saturated fatty acids

SFA 3671 249 179 SFA 2595 148 117
12:0 9559 6 5 12:0 1227 39 14
14:0 1017 835 511 14:0 7 7 5
16:0 9559 0 0 16:0 9563 0 0
17:0 164 160 128 17:0 426 406 296
18:0 9449 226 156 18:0 9435 156 94
220 9451 1 0 22:0 9458 3 0
230 2472 1 0 230 9483 1 0
240 9569 0 0 240 9561 0 0

Monounsaturated Fatty Acids

MUFA 1 1 1 MUFA 0 0 0
14:1 3 3 0 14:1 9512 0 0
16:1 9440 229 161 16:1 9511 43 27
17:1 265 261 215 17:1 326 315 241
18:1 cis-9 9528 0 0 18:1 cis-9 9567 0 0
18:1 cis-11 922 775 451 18:1 cis-11 3959 3145 1861
18:1 cis-12 1 0 0 18:1 cis-12 0 0 0
18:1 cis-13 9536 7 0 18:1 cis-13 9577 4 0
18:1, trans-6/9 2619 0 0 18:1, trans-6/9 9637 0 0
18:1, trans-10/11 2918 2594 1925 18:1, trans-10/11 1924 1466 933
18:1, trans-12 0 0 0 18:1, trans-12 - - -
18:1, trans-15 54 36 26 18:1, trans-15 301 266 180

Polyunsaturated Fatty Acids

PUFA 9574 0 0 PUFA 9586 0 0
18:2 1 0 0 18:2 1 0 0
183,n-3 9723 0 0 183, n-3 9622 0 0
20:2 9442 2 2 20:2 9459 0 0
20:4 9455 0 0 20:4 9489 0 0
20:5 9625 0 0 20:5 9634 0 0
22:6 9499 0 0 22:6 9546 1 0
CLA cis-9 trans-11 9559 0 0 CLA cis-9 trans-11 9536 0 0
CLA trans-10 cis-12 53 17 13 CLA trans-10 cis-12 2853 90 52
n-3 9555 0 0 n-3 9588 0 0
n-6 9433 94 58 n-6 9431 155 91
Ratio/Calculation

n-6:n-3 9556 2 2 n-6:n-3 9601 2 2
PUFASFA 9575 0 0 PUFASFA 9585 0 0

MCFA 8793 337 189 MCFA 8628 461 244
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Table 3 Number of significant interactions at 50 and 100 animals per genotype combination filters (Continued)

LCFA 8771 341 188
IA® 12 4 1
Total 212824 6181 4211

LCFA 8596 460 244
IA® 3 0 0
Total 231227 7168 4401

“IA: Index of Atherogenicity

Number of significant identified epistatic interactions are displayed from left to right as filtered by FDR < 0.05, 50-animals per genotype combination with FDR <
0.05, and 100-animals per genotype combination with FDR < 0.05 for each fatty acid trait analyzed in both the Triacylclyceride and Phospholipid fatty acid fraction.
This sum of the total significant interactions at each of these filters is then provided at the bottom of the table

chromosomal interactions. These include regions like
the beginning of chromosomes 1, 18, 20, 21, 24, 28,
the middle of chromosomes 3, 8, 10, and the end of
chromosomes 2, 4, 14, 17, 21, 28, 29. These loca-
tions tended to contain a large number of the identi-
fied epistatic interactions within relatively small
regions on their respective chromosome. These re-
gions tend to be maintained across TAG and PL
fractions of fatty acids, although there are some in-
consistencies (fatty acid 12:0 regions in TAG fraction
versus relatively low activity in the PL fraction). A
total of 206 regions were evaluated with Generic
Gene Ontology Term Finder, and terms with an
FDR < 0.05 were investigated for relevance to fatty
acids. A total of 118 Genes were found associated
with the 206 regions. Eleven genes were found asso-
ciated with GO terms related to lipid metabolism.
GO terms found included: Lipid metabolic process,
very long-chain fatty acid metabolic process, unsat-
urated fatty acid metabolic process, and membrane
lipid biosynthetic process. Of the 11 genes associated
with the GO terms, three (ALOX5, PIK3IP1, and
PLA2G2F) were found within the regions analyzed,
and also associated with regulatory processes. The
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Fig. 1 Number of Animals in Lowest Genotype Combination by
Interaction Count in TAG Fatty Acids. Histograms of number of
animals found in the smallest genotype combination for each TAG
interaction against the frequency of their occurrence. All sections left
of a given animal cut off represent the number of interactions that
would have been detected

relatively small number of genes identified may be
due to the presence of LD in the regions,

The effect size of detected significant epistatic interac-
tions were compared to the effect size of the three largest
windows identified in Saatchi et al.[6]. Three of the largest
1 mb windows had effects reported by Saatchi et al. for
fatty acid trait 14:0 which were compared to the effect
sizes of significant TAG epistatic results (Fig. 4) for the
same trait. Absolute effect values for epistatic interactions
were plotted against the three largest windows by effect
size identified in the aforementioned publication given a
minor/major allele frequency of 0.4/0.6 (to allow for con-
servative estimations of effect size). The location of these
single window markers relative to SNP interaction effect
sizes in Fig. 4 indicated that few if any of the epistatic in-
teractions were of comparable effect size to those ex-
plained by the additive effects of SNP windows. When
calculating the amount of genetic variance accounted for
by the epistatic interactions with GenSel [11], it was deter-
mined that the total variance accounted for was already
accounted for by single SNP variance. Each epistatic win-
dow included in the BayesC analysis resulted in 0.00 %
additional genetic variation accounted for with low poster-
ior probabilities of inclusion. The lack of any epistatic
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Fig. 2 Number of Animals in Lowest Genotype Combination by
Interaction Count in PL Fatty Acids. Histograms of number of
animals found in the smallest genotype combination for each PL
interaction against the frequency of their occurrence. All sections left
of a given animal cut off representing the number of interactions
that would have been detected
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Table 4 Significant interactions by epistatic type at 50-animals per genotype combination
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Triacylglycerol Fatty Acids Phospholipid Fatty Acids

Trait AA AD DD Total Interactions Trait AA AD DD Total Interactions
Saturated Fatty Acids

SFA 226 23 0 249 SFA 131 16 1 148
120 6 0 0 6 12:0 34 5 0 39
14:.0 817 16 2 835 14:0 7 0 0 7
16:.0 0 0 0 0 16:0 0 0 0 0
17:0 158 2 0 160 17:0 399 7 0 406
18.0 223 3 0 226 18:0 155 1 0 156
22:0 0 1 0 1 22:0 2 1 0 3
230 0 1 0 1 23:0 0 1 0 1
24:0 0 0 0 0 240 0 0 0 0
Monounsaturated Fatty Acids

MUFA 1 0 0 1 MUFA 0 0 0 0
14:1 3 0 0 3 14:1 0 0 0 0
16:1 224 5 0 229 16:1 43 0 0 43
17:1 260 1 0 261 17:1 313 2 0 315
18:1 cis-9 0 0 0 0 18:1 cis-9 0 0 0 0
18:1 cis-11 769 6 0 775 18:1 cis-11 3110 35 0 3145
18:1 cis-12 0 0 0 0 18:1 cis-12 0 0 0 0
18:1 cis-13 7 0 0 7 18:1 cis-13 4 0 0 4
18:1, trans-6/9 0 0 0 0 18:1, trans-6/9 0 0 0 0
18:1, trans-10/11 2569 23 2 2594 18:1, trans-10/11 1449 17 0 1466
18:1, trans-12 0 0 0 0 18:1, trans-12 - - - -
18:1, trans-15 36 0 0 36 18:1, trans-15 265 1 0 266
Polyunsaturated Fatty Acids

PUFA 0 0 0 0 PUFA 0 0 0 0
18:2 0 0 0 0 182 0 0 0 0
183,n-3 0 0 0 0 183,n-3 0 0 0 0
20:2 2 0 0 2 20:2 0 0 0 0
20:4 0 0 0 0 20:4 0 0 0 0
20:5 0 0 0 0 20:5 0 0 0 0
22:6 0 0 0 0 22:6 1 0 0 1
CLA cis-9 trans-11 0 0 0 0 CLA cis-9 trans-11 0 0 0 0
CLA trans-10 cis-12 15 2 0 17 CLA trans-10 cis-12 73 17 0 90
n-3 0 0 0 0 n-3 0 0 0 0
n-6 92 2 0 94 n-6 150 5 0 155
Ratio/Calculation

n-6:n-3 2 0 0 2 n-6:n-3 2 0 0 2
PUFASFA 0 0 0 0 PUFASFA 0 0 0 0
MCFA 336 1 0 337 MCFA 460 1 0 461
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Table 4 Significant interactions by epistatic type at 50-animals per genotype combination (Continued)

LCFA 340 1 0 341 LCFA 459 1 0 460
IA® 4 0 0 4 IA? 0 0 0 0
Total 6090 87 4 6181 Total 7057 110 1 7168

“IA: Index of Atherogenicity

Number of Additive-by-Additive (AA), Additive-by-Dominance and Dominance-by-Additive (AD), Dominance-by-Dominance (DD) significant epistatic interactions
by type for Triacylclyceride and Phospholipid fatty acid traits by trait category (Saturated Fatty Acid [SFA], Monounsaturated Fatty Acid [MUFA], Polyunsaturated
Fatty Acid [PUFA], Ratio/Calculation). All interactions are post FDR <5 % correction

interactions being included in the model is likely due to
variation from epistasis being accounted for in the single
SNP models. Based on this result it would appear that epi-
static interactions do not contribute much to additional
genomic variation for fatty acid traits. A potential reason
for this could be the fact that most of the epistatic interac-
tions can be explained as linear combinations of SNPs,
and so are already taken into account in methods such as
used by Saatchi et al. [6] that simultaneously fit the effects
of many loci. Research has found that although epistatic

interactions can be identified for various traits in beef cat-
tle, they are usually non-informative due to difficulty in
accurately estimating them, and that their effects do not
improve the accuracy of prediction [12].

Evaluation by sampling a random proportion of the total
population studied and retesting for significant interac-
tions yielded results similar to what was expected based
on other studies. As illustrated in Fig. 5, there was a rapid
decrease in total number of significant interactions identi-
fied as the population size decreases. The number of

Fig. 3 Epistatic interactions plotted for PL fatty acid 16:1 at 50-animals per genotype. 265 total interactions plotted. Black lines: Additive x Additive
interactions. Red lines: Additive x Dominance interactions. Blue lines: Dominance x Dominance interactions. Chromosomes ordered around outside
with distance ticks every 12.5 MB. Black marks represent previously discovered 1 MB regions accounting for large amounts of additive variance
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Table 5 Significant interactions by epistatic type at 50-animals
per genotype combination

Trait AA AD DD Total Interactions
Weight Traits

WwW 1 0 0 1

YW 2 1 0 3

HCW 0 0 0 0

Total 3 1 0 4

Number of Additive-by-Additive (AA), Additive-by-Dominance and Dominance-
by-Additive (AD), Dominance-by-Dominance (DD) significant epistatic interac-
tions by type for Weight traits Weaning Weight (WW), Yearling Weight (YW),
and Hot Carcass Weight (HCW). All interactions are post FDR <5 % correction

significantly identifiable interactions had dropped nearly
five-fold when 90 % of the original population was used.
Unique significant epistatic interactions were not con-
served as the proportion of individuals changed, indicating
a lack of power to identify true significant interactions.
This remained true even after repeating the 50 % propor-
tion 5 times in a row. The significant interactions at the
100-animal filter did not reappear when the subset of indi-
viduals was re-randomized. The sharp increase in number
of interactions as we approached the total number of ani-
mals used in this study indicated that the population size
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must be greater than that currently available in order to
effectively validate any results through cross validation ap-
proaches. There is no way to know the inflection point at
which additional animals yield less new information based
solely on the current results [12, 13]. An increase in the
number of animals would be required to appropriately
carry out a training-validation study, due to the number of
animals needed to have each epistatic interaction genotype
combination at a higher frequency.

Conclusions

Many epistatic interactions were identified in two fractions
of fatty acid content, triacylglyceride and phospholipid, for
more than 35 fatty acid traits within each of these fractions.
Interactions were significant if they met two filter require-
ments: a false discovery rate of <0.05, and an animal filter
of at least 50-animals per genotype combination. An add-
itional filter was applied at 100 animals per genotype com-
bination. A total of 6,181 interactions were identified as
significant for the TAG fraction, and 7,168 interactions sig-
nificant for the PL fraction at a 50-animal per genotypic
combination filter. At the 100-animal filter there were still
4,211 and 4,401 significant interactions for the TAG and PL
fractions respectively. The number of significant interac-
tions per fatty acid trait varied greatly. This may indicate

300
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Frequency of Significant Epistatic Effects
200
|

Frequency of Epistatic Interactions by Effect Size (TAG 14:0)

T T T
0.0 0.2 0.4
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Size of Identified Effects
Fig. 4 Epistatic effect size frequency compared to individual SNP window effects. The frequency of epistatic genotype combination substitution
effects by effect size is plotted for Epistatic interactions in TAG Fatty Acid 14:0. They are compared to the three largest individual SNP window
effects for Fatty Acid 14:0 with a minor/major allele frequency 0.4/0.6 represented with vertical lines red (ChrMb start — 19:51), green (Chr:Mb start
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that some fatty acid traits may need varying amounts of
genetic redundancy or control for the creation of fatty acids
critical to fitness. Visualization of significant epistatic inter-
actions revealed many regions of potential regulatory con-
trol across multiple chromosomes within both the TAG
and PL fractions. These regions did not match previously
identified windows that accounted for high-genomic vari-
ation [6], but they did map to regions that contained rele-
vant genes for fatty acid metabolism. In particular, three
genes associated with lipid metabolism GO terms (ALOX5,
PLA2G2F and PIK3IP1) were found to exist in regions with
large numbers of epistatic interactions. This likely indicates
that many interactions involved in a single region may be
picking up a single effect, with the SNPs of the region being
in LD with the causal mutation(s). Other regions may be
mapping to QTL in LD with lipid metabolic controlling
genes throughout the genome.

Although large numbers of interactions were identi-
fied, validation of these interactions proved to be a dif-
ficult task. Reducing the number of animals in order
to perform a training-validation test proved futile as
even when dropping the number of animals by 10 %,
there appeared a steep decline in the number of iden-
tifiable interactions. Accordingly, unique epistatic in-
teractions were not conserved during validation
between proportions of the population. Despite this,
the presence of so many interactions at even a filter of
100-animals per genotype combination indicates that
some of the identified interactions may be real. Never-
theless, our access to this large population of animals
provided the unique opportunity to set a higher bar

for requirements when analyzing epistatic interactions
than have been used in the past. Comparison of epi-
static interaction effect levels compared to SNP win-
dows with previously identified QTL effects helps
validate the possibility that the epistatic effects identi-
fied in this study may be real, indicating that some
have nearly as large an effect as the additive QTL ef-
fects of the SNP windows themselves. This research
has shown that while limitations still exist with identi-
fying epistatic interactions, there are ways to help
minimize these shortcomings as well as further identi-
fying what needs to be accomplished to overcome the
deficiencies.

Methods

Population

A subset (1,721 head for TAG fatty acid, 1,442 for PL
fatty acid, 2,342 for body traits) of the population de-
scribed in Garmyn et al. [14] was used in this study.

Phenotypic data

The triacylglyceride (TAG) and phospholipid (PL) fraction
of the longissimus dorsi was analyzed for fatty acid content.
Fatty acid data was collected and characterized as described
in Saatchi et al. [2]. Briefly, total lipid quantities were ex-
tracted from 1.27-cm steaks using a chloroform and metha-
nol mixture. The TAG and PL fractions were separated via
thin-layer chromatography, and individual lipid spots were
characterized via gas chromatography. The PL portion was
calculated by measuring total phosphorus amount from the
total lipid portion [15]. The index of atherogenicity was
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calculated as a ratio of C14:0 and C16:0 fatty acids over the
sum of both MUFA and PUFA [16].

4%xC14:0+C16:0

Al =
YMUFA + XPUFA

Genotype data

The BovineSNP50 BeadChip (Illumina, San Diego,
CA) was used to perform SNP genotyping at Gene-
Seek (Lincoln, NE). SNPs were curated at a call rate
of 0.95. SNP genotypes were split into individual
chromosome files, which were reformatted with in-
house R and shell scripts to calculate minor allele
frequencies (MAF) for each SNP in order to allow
for proper usage with EpiSNPmpi. All SNPs with
MAF less than or equal to 0.1 were removed from
the study due to lack of power to detect plausible
epistatic interactions, resulting in a total of 45,219
SNPs. All SNP markers were assigned a UMD3.1 bo-
vine genome build position.

Genotype DataAnalysis of pairwise SNP epistatic
interactions

EpiSNPmpi was used to statistically analyze the fatty acid
traits and identify epistatic interactions [17, 18]. Covariate
of carcass contemporary group and lab sampling contem-
porary group, as well as pedigree and sex data were used in
the model. Individuals with unknown sires were assigned a
dummy Sire ID unique to them. EpiSNPmpi took each
SNP locus in the genotype file, and compared it to every
other SNP with a statistical test for four pairwise epistatic
effects: additive-by-additive (AA), additive-by-dominance
or dominance-by-additive (AD), and dominance-by-
dominance (DD). For each fatty acid trait, the top 10,000
pairwise SNP interactions based on significance were ob-
tained. Interactions (AA, AD, and DD) between two SNP
on the same chromosome were not considered to limit the
chance that detected interactions were markers for a haplo-
type effect containing a single QTL. The remaining SNP in-
teractions were further filtered such that only those with at
least 5 animals in every genotype combination were consid-
ered. Thus, any interaction that consisted of even a single
genotype combination containing less than 50 observations
in 1,721 total (2.9E-02) for TAG and 50 in 1,442 total
(3.46E-02) for PL was removed from consideration. An
even more stringent 100 animal per genotype filter was also
applied to attempt to remove spurious epistatic associations
(Table 3). Filters based on 5, 10, and 20 animals per geno-
type combination are included in Additional file 1.

Genotype DataMultiple testing correction
A false discovery rate (FDR) correction (<0.05) was ap-
plied to each trait to correct for multiple testing. Briefly,
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interactions were sorted on their nominal p-values, and
then FDR values were calculated by the formula.

(P-value)( of total calculations)
Rank of the interaction

Only interactions that fell within FDR <0.05 were
reported.

Window analysis

A BayesC model was used in GenSel to fit SNP and epi-
static effects [19]. To calculate the amount of genetic vari-
ance that could be accounted for by epistatic interactions,
markers were created to represent the possible genotype
combinations for a given interaction. Gensel [11] was run
with each window representing an entire epistatic inter-
action (1 window = total effect of a single epistatic inter-
action). Each window was repurposed as a single marker
and added to the map file with a dummy megabase region.
GenSel was then run to compare single SNP effects to the
addition of interaction SNP effects. Total genetic variation
accounted for was compared between two models (SNPs
+ window markers vs single SNP model [6]) and used to
determine how much additional variation could be
accounted for through the addition of epistatic
interactions.

Validation

Animals were randomly sampled to obtain different pro-
portions of the total animal population, and then all
SNPs were retested with EpiSNPmpi with an FDR
(<0.05) and 50 animals per genotype combination filter
(Fig. 5). The number of identified interactions was plot-
ted against proportion of animals used to identify the
number of significantly identified epistatic interactions
within each given proportion. Identified epistatic interac-
tions were compared between each proportion to deter-
mine conserved interactions. Individuals used in the
50 % proportion were randomly divided into two groups,
with half of the remaining individuals added to each of
the two groups as well. This resulted in two groups of
50 % the total animals used. This process was repeated
five times to see if the same interactions at a 100 animal
filter would reappear in the repeated process.

Gene enrichment analysis and GO term identification

Regions of potential epistatic regulation were determined
by requiring 10 or more interactions to lie within a single
megabase region. Locations and windows were determined
from the UMD3.1 Bos taurus genome build to obtain the
chromosome positions [20]. The resulting chromosome po-
sitions were combined and a chromosomal window was ex-
amined to either side of these SNP locations. Regions were
defined as half a megabase upstream and downstream from
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the central location of the SNPs identified. Regions were
put in ENSEMBL Biomart, and the associated Gene Name
was obtained for all genes present in the regions. These
genes were then run through the Generic Gene Ontology
Term Finder [21], and GO terms were obtained by requir-
ing an FDR < 0.05. Terms associated with fatty acid meta-
bolic processes were used to identify genes associated with
fatty acid epistasis.

Additional file

Additional file 1: Supplemental Data (TAGFAinteractionsxlsx,
PLFAinteractions.xIsx, and Carcassinteractions.xIsx) and Figures (Circos
Plots). (ZIP 22719 kb)
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