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Abstract

Background: MicroRNAs (miRNAs) are critical regulators responding to acute environmental stresses in both plants
and animals. By modulating gene expression, miRNAs either restore or reconstitute a new expression program to
enhance cell tolerance to stresses. Cold shock is one of the stresses that can induce acute physiological responses
and transcriptional changes in aquatic creatures. Previous genomic studies have revealed many cold-affected genes
in fish larvae and adults, however, the role of miRNAs in acute cold response is still ambiguous. To elucidate the
regulatory roles of miRNAs in the cold-inducible responses, we performed small RNA-seq and RNA-seq analyses and
found potential cold regulatory miRNAs and genes. We further investigated their interactions and involvements in
cold tolerance.

Results: Small RNA-seq and RNA-seq identified 29 up-/26 down-regulated miRNAs and 908 up-/468 down-
regulated genes, respectively, in responding to cold shock for 4 h at 18 °C. miRNA and transcriptomic analyses
showed these miRNAs and mRNAs are involved in similar biological processes and pathways. Gene ontology
enrichment analyses revealed the cold-induced genes were enriched in pathways, including melanogenesis, GnRH
pathway, circadian rhythm, etc. We were particularly interested in the changes in circadian clock genes that affect daily
metabolism. The enrichment of circadian clock genes was also observed in previous fish cold acclimation studies, but
have not been characterized. To characterize the functional roles of circadian clock genes in cold tolerance, we
individually overexpressed selected clock genes in zebrafish larvae and found one of the core clock genes per2 resulted
in better recovery from cold shock. In addition, we validated the interaction of per2 with its associate miRNA, dre-mir-
29b, which is also cold-inducible. It suggests the transcription of per2 can be modulated by miRNA upon cold shock.

Conclusions: Collectively, our observations suggest that miRNAs are fine turners for regulating genomic plasticity
against cold shock. We further showed that the fine tuning of core clock gene per2 via its associated miRNA,
dre-mir-29b, can enhance the cold tolerance of zebrafish larvae.
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Background

The survival of aquatic fish is constantly challenged by the
changes in environmental factors, such as salinity, oxygen
concentration, pH, osmotic pressure and temperature.
The change in water temperature has a dramatic effect on
physiology and behaviors of aquatic animals that it has
been shown to be an “abiotic master factor” for fish [1, 2].
Cold shock is characterized as an acute reduction in
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ambient temperature that may cause rapid falling in body
temperature and a cascade of physiological and behavioral
responses [2]. The cold shock stress response in fish can
be broadly grouped into three categories; primary, second-
ary, and tertiary responses [2—4]. The primary responses
of cold shock rapidly change the neuroendocrine path-
ways, such as catecholamines and corticosteroids [5-7]. It
is initiated by the central nervous system sensing low tem-
peratures that stimulates the chromaffin cells to release
catecholamines. The hypothalamus-pituitary-interrenal
axis is then activated to secret corticotrophin-releasing
hormone to stimulate adrenocorticotrophic hormone and
subsequent release of cortisol [4, 8, 9]. Secondary response
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can be elicited by the primary response. The stress hor-
mones and cortisol interact to induce glucose production
in fish via glycogenolysis and glucogenesis [9, 10] that
results in changes of protein expression, molecular
responses, osmoregulatory, and immune systems [2, 11].
The tertiary responses are the global effects of cold shock
to impair development rate, respiratory function, swim-
ming behavior, and mortality [2].

Expressions of numerous genes are regulated by
stresses in fish. Transcriptome analysis has been used in
the discovery of many stress-inducible genes in cold -
acclimated [12-14] or cold-shocked fishes [15, 16].
Those genes belong to a variety of biological processes,
including chaperones, transcription factors, signal trans-
duction pathways, metabolism, responses to stress or ion
transporters like kir2.2 channel in rainbow trout [17],
heat shock protein 70 in silver sea bream [18] and gly-
cerol-3-phosphate dehydrogenase in rainbow smelt [19].
However, studies on non-model fishes have been difficult
due to the lack of whole genome sequences and inability
for genome manipulation. Zebrafish is a favorable model
fish due to the availability of whole gene sequences and
accessibility of genome manipulation. They can also be
used for genomic research using high-throughput
RNA-seq and small RNA-seq techniques. Moreover,
zebrafish is a tropical animal acclimated to extreme
temperature changes ranging from 6.2 to 39.2 °C in
certain seasons [20]. This makes it an ideal model to
investigate the regulatory mechanisms of temperature-
dependent responses.

MicroRNAs (miRNAs) are short non-coding RNAs of
around 22 nucleotides, which can modulate the stability
and silence mRNAs [21]. A miRNA typically targets
multiple mRNAs [22], which makes it a potential fine-
tuner for different situations. Studies indicate that miR-
NAs play a key role in gene regulation in stress
responses like oxidative reaction [23], temperature [24]
or DNA damage stresses [25] in different organisms [26,
27]. However, relatively less is known about the functions
of miRNA in aquatic species. miR-8 and miR-429 have
been reported to be involved in the osmotic stress re-
sponse in zebrafish [28, 29]. In contrast, high-throughput
miRNAtomes analysis revealed no significant impact by
miRNA-mediated gene regulation in the cold - acclimated
adult zebrafish brains [30]. This result is puzzling, but we
reasoned that the cold-induced responses might be differ-
ent in organisms or tissues used. For example, fish larvae
are more voluntary to environmental stresses like acute
cold shock, but their responses to the changes in miRNA
and transcriptomic profiles during acute cold shock re-
mains unexplored.

Yang et al. claimed that miRNAs may have a minor
role in regulating transcriptome plasticity in cold accli-
mated zebrafish brains based on the poor correlations
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between cold-induced transcriptomic and miRNAtome
profiles [30]. This is in clear contrast to our previous un-
derstanding observed in other organisms [31, 32]. The
discrepancy may be due to differences in organisms, tis-
sue analyzed and experimental conditions. To further
clarify this issue, we aimed to investigate the correlation
between miRNAtome and transcriptome under cold
shock in zebrafish larvae and to resolve possible cold-
dependent regulatory mechanisms of selected miRNAs
and their target genes. We discovered that similar
biological processes and pathways were affected by cold
in both miRNAtome and transcriptome analyses. In par-
ticular, we found notable correlations between circadian
rhythm-related genes (known as circadian clock genes)
[33] and their associate miRNAs. Core clock gene per2
plays a major role in regulating circadian rhythm and
daily metabolism [34]; we found that dre-mir-29b (dre
denotes Danio rerio) can target per2 in zebrafish larvae
to possibly regulate cold shock response via modulating
the expression of per2. More importantly, we demon-
strated that the overexpression of per2 in zebrafish
larvae can increase their cold tolerance. These results
indicate a pivotal role of miRNA in regulating gene
plasticity to counter cold stress.

Methods

Fish maintenance

Zebrafish, Danio rerio, wild-type AB strain, were main-
tained under a 14 h light/10 h dark cycle at 28.5 °C. Em-
bryos were collected by natural spawning and incubated
in 0.3x Danieau’s buffer (1x Danieau’s buffer: 58 mM
NaCl, 0.7 mM KCl, 0.4 mM MgSO,, 0.6 mM Ca(NO3),,
and 5.0 mM HEPES in double - distilled water, pH
adjusted at 7.6) until examination or fixation.

Cold shock and embryo collection

For cold shock experiment, 50 larvae were cultured at
28.5 °C until 96 h post fertilization (hpf), transferred
into a 250 ml beaker containing 100 ml pre-chilled 0.3x
Danieau’s buffer, and immediately incubated at desig-
nated temperatures until examination. The 96-hpf em-
bryos before cold shock were collected as the control
group. Embryos incubated at 28.5 °C or 18 °C for 4 more
hours were collected as the normal or cold shock group,
respectively. Two different batches of samples were col-
lected for further next generation sequencing (NGS)
analysis.

miRNA library construction and sequencing

RNA samples were collected from the control, normal
and cold shock groups for cDNA library construction.
RNAs of desired time points were isolated by using the
TRIzol® Reagent (Life technologies, Carlsbad, CA), and
then the amount and quality of RNAs were assessed
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using the NanoDrop® ND-1000 Spectrophotometer
(ThermoFisher, Waltham, MA), Bioanalyzer 2100, RNA
6000 Nano Kit and Small RNA Chip Kit (Agilent Tech-
nology, Santa Clara, CA). For miRNA library construc-
tion and sequencing, miRNAs were enriched using the
PureLink™ miRNA Isolation Kit (Invitrogen, Carlsbad,
CA), and then adaptors were hybridized and ligated to
the 5" and 3’ ends of these RNAs using the SOLiD™
Total RNA-Seq Kit (Applied Biosystems Inc., ABI,
Carlsbad, CA). The ligated RNAs were used as templates
for cDNA synthesis followed by c¢DNAs purification
using the MinElute® PCR Purification Kit (QIAGENE,
Valencia, CA). The ¢cDNAs at 120-130 base pair (bp)
were selected (Invitrogen, Novex® pre-cast gel products),
amplified (ABI, SOLID™ Total RNA-Seq Kit), purified
(Invitrogen, PureLink™ PCR Micro Kit), and proceeded
with SOLiD™ System template bead preparation (ABI,
SOLiD™ RNA Barcoding Kit). The libraries were se-
quenced with a read length of 35 bp using the SOLiD
5500 xI sequencer.

cDNA library construction and sequencing

RNA samples were collected as described for cDNA li-
brary construction. RNAs of desired time points were
isolated as described and used RiboMinus™ (Invitrogen)
to remove ribosomal RNAs. For the preparation of
c¢DNA libraries, the RNAs were fragmented using the
RNAase III by using the Library Builder™ Whole Tran-
scriptome Core Kit (ABI) and cleaned up by using the
Fragmented RNA Concentrator Module Kit (ABI). To
amplify and purify the cDNA libraries we used the Li-
brary Builder™ Whole Transcriptome Core Kit (ABI).
The cDNA libraries with a size between 200 and 300 bp
were proceeded with the SOLiD™ System template bead
preparation using the EZ Bead™ System (ABI). The li-
braries were sequenced with read length of 75 bp using
the SOLiID 5500 xl sequencer.

Identification of differential expressed genes and miRNAs
Raw reads from the SOLiD 5500 xl sequencing were an-
alyzed using the LifeScope™ Genomic Analysis Software.
Those reads were filtered for high quality, adaptor self-
ligation, transfer RNAs and ribosomal RNAs (http://
rfam.sanger.ac.uk/). These filtering steps resulted in high
quality filtered reads representing zebrafish RNA se-
quences. The filtered reads were mapped to the zebrafish
genome sequences (Zv9, http://www.sanger.ac.uk/re-
sources/downloads/zebrafish/) and annotated either the
miRBase v18 (http://www.mirbase.org/) for miRNAs or
the zebrafish genome annotation file (Zv9/danRer7 from
UCSC) for transcripts. Annotated reads were further
normalized to the reads per kilo base per million
(RPKM). The differentially expressed miRNA and genes
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were identified and compared using the Partek Genom-
ics Suite (http://www.partek.com/).

Quantitative PCR analysis

The total RNAs were isolated as described and genomic
DNAs were removed by using the DNA-Free kit (Life
technologies). One microgram of total RNAs was re-
versely transcribed to miRNAs and cDNAs by the miS-
cript II RT Kit (QIAGENE). The quantitative polymerase
chain reaction (qPCR) was performed using the miScript
SYBR Green PCR Kit (QIAGENE) for miRNA quantifi-
cation. The zebrafish U6 (5'-ACTAAAATTGGAACGA
TACAGAGA-3’) and efla served as the internal control
for miRNA and mRNA, respectively. qPCR analyses
were performed by using the iQ™ SYBR® Green Supermix
in a CFX96 station (Bio-Rad, Hercules, California).
Primers used are listed in the Additional file 1.

Gene cloning

Coding sequences of period 2 (per2, ENSDARG
00000034503), aryl hydrocarbon receptor nuclear
translocator-like 1a (arntlla, ENSDARG00000006791),
basic helix-loop-helix family, member e41 (bhlhedl,
ENSDARG00000041691) were amplified from the zeb-
rafish total cDNAs by reverse transcriptase PCR (RT-
PCR). Total RNAs of zebrafish embryos were isolated
as described and reversely transcribed by the MMLV
reverse transcriptase (Promega, Fitchburg, Wisconsin).
Primers were designed according to the respective ref-
erence RNA sequence. The amplicons were sub-cloned
into a pT2MUAS vector for Tol2-mediated transgenesis
[35]. The vector also contains a viral 2A peptide se-
quence for the separation of the expressed protein from
a nuclear reporter H2AmCherry used for founder fish
screening.

Ectopic expression and analysis of circadian clock genes
in zebrafish larvae

One-cell stage zebrafish embryos were injected with
25 pg Gal4 mRNAs, 25 pg Toll2 mRNA and 50 pg plas-
mids and incubated under a 14 h/10 h dark/light cycle
until examination. Embryos with H2AmCherry expres-
sion were selected for further analysis.

Swimming behavior analysis

Five days post fertilization (dpf) larvae expressing with
or without per2, arntlla or bhlhe4l were individually
distributed into each well of a 24-well plate with 1.5 ml
of 0.3x Danieau’s buffer and incubated for 4 h at 28.5 or
18 °C. Following incubation, the larvae were transferred
to 28,5 °C and videotaped in a controlled light-on
DanioVision observation chamber for 30 min. The track-
ing of swimming for each larva was analyzed during 0-
10 min, 10-20 mins and 20-30 mins using the
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EthoVision XT 8.5 software (Noldus Information
Technology, Wageningen, The Netherlands).

Measurement of glucose concentration

Control or transient expressing embryos were cultured
and cold shocked as described. Ten larvae for each treat-
ment were collected at 0, 2, and 4 h after cold-shock,
lysed in 200 pl RIPA buffer (ThermoFisher Scientific,
Waltham, MA), and the glucose concentration was mea-
sured by using the Amplite™ Fluorimetric Glucose
Quantitation Kit (AAT-bioquest, Sunnyvale, CA).

Reporter assay of dre-mir-29b

The 3’ untranslated region (UTR) of per2 containing
dre-mir-29b target site was amplified from the cDNA li-
brary by the forward (F) and reverse (R) primers of the
following sequences. F: Bgll2-Stop-per2 ATCGAGATCT
TAAAATTCCTTTCGCATTCACAA and R: Sacl-per2-
ATCGGAGCTCAGTCTGTGAGATCAGTTAAACCA.
The amplicons were cloned into the pEGFP-C1 vector
by selected restriction enzyme site Sacl and Bgll2. Plas-
mids were mixed with or without dre-mir-29b morpho-
lino (5'ACACTGATTTCAAATGGTGCTAGAT3"). The
plasmid mix was injected into 1-cell zebrafish embryos
and observed under epifluorescent microscopy at 10 hpf.

Statistical analysis

All experimental values are presented as mean * stand-
ard error and were analyzed by unpaired-sample Stu-
dent’s ¢-test and one-way ANOVA.

Results

Cold-induced responses in zebrafish larvae

To investigate cold-induced responses in zebrafish, 96 hpf
larvae were exposed to decreasing temperatures to monitor
their mobility and mortality for 10 h (Table 1). Fish were
mostly normal from 28.5 to 20 °C except for a few inactive
fish at 20 °C. In contrast, most fish became motionless after
longer incubation at 18 °C. Fish were inactive at 16 °C and
were unresponsive upon touching. Death appeared at 12 °C

Page 4 of 18

and below. The mortality increased with lower tempera-
tures and longer incubation (data not shown). Thus, we
used 18 °C to study cold shock responses to avoid mortality
and undesired health problems.

To confirm that the exposure to 18 °C is able to elicit
cold responses at the transcriptional level, we examined
the change in gene expression of cold - inducible RNA
binding protein (cirbp), a well-known cold inducible gene
[11]. qPCR analysis showed that the cirbp expression was
initially decreased at 2 h post induction (hpi), but signifi-
cantly bounced back to about 2 folds at 4 hpi and then de-
clined to normal at 10 hpi (Fig. 1a). It appeared that a 4-h
incubation at 18 °C is sufficient to induce cold-dependent
transcriptomic changes in zebrafish larvae.

qPCR analyses detected no notable change in expres-
sion of cirbp in samples before and immediately after
transferring to 18 °C (data not shown). So the only time
0 control used was samples before cold shock. Larvae
were then incubated at 28.5 °C (normal) or 18 °C (cold
shock) and samples were taken from both conditions at
4 hpi (Fig. 1b). These experiments were repeated twice
and a total of 6 different samples were subjected to small
RNA and RNA NGS.

Cold-induced miRNA sequencing profiles

To clarify the roles of miRNA on transcriptomic plasti-
city in cold responses, we performed both small RNA-
seq and RNA-seq analyses in zebrafish larvae. Six RNA
samples were extracted from three groups (control, nor-
mal and cold shock) as previously described, enriched
for 18-30 bp small RNAs for the cDNA library con-
struction and subjected to NGS using the SOLiD 5500
xl. A total of 39,560,685; 17,574,255, and 27,708,966 se-
quence reads from the first batch were obtained from
the control, normal and cold shock sample, respectively
(Fig. 2a, the total reads of the second batch were listed
in Additional file 2: Figure S2A). The sequencing data
was analyzed using the LifeScope™ Genomic Analysis
Software and normalized using the Partek Genomics
Suite. The length distribution of each library reads were

Table 1 Cold impairs swimming and causes mortality in zebrafish larvae

Incubation temperature Hours Post Treatment

°C 2 4 6

285 Normal Normal Normal
24 Normal Normal Normal
20 Normal Normal

mostly normal but few
inactive larvae

8 10
Normal Normal
Normal Normal

Mostly normal but few
inactive larvae

Mostly normal but few
inactive larvae

18 (% of inactive fish) 83 95 9% 100 100
16 All fish were inactive and showed unbalance moves when disturbed
12 (% of motility) 0 0 0 72 12

Four - day - old zebrafish larvae were incubated at decreasing temperatures from 28.5 to 12 °C. The mobility and viability were recorded every 2 h until 10 h

post treatment
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miRNA-seq analyses as described in the Methods

Control Normal
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Fig. 1 Cold shock treatment in zebrafish larvae. a Relative expression levels of cirbp gene in zebrafish larvae at 96 h post fertilization (hpf) were
determined by g PCR at different time point post transfer from 28.5 to 18 °C. * and ** indicates p < 0.05 and 0.01, respectively, comparing to the
control at 0 h post transfer. b Scheme of cold exposure. Embryos were incubated at 28.5 °C until 96 hpf then transferred to

18 or 285 °C for an additional 4 h. Larvae before (control) and after treatments (normal and cold shock) were then collected for RNA-seq and

ranged between 18 and 30 bp, and the major sizes
peaked around 21~24 bp that matched the general size
distribution of miRNAs (Additional file 2: Figure S1A,
S2B). Abundant reads were located at chromosome 4,
10, 20, and 25 in different libraries (Additional file 2:
Figure S1B, S2C). After filtering out short and adaptor-
contaminated reads, about 17-19% miRNAs were
identified. The reads and the percentage of different
RNA components (miRNA, noncoding RNA, mRNA,
novel RNA) were similar among samples (Fig. 2a). To
examine the overall effects of cold shock on miRNA-
tome, the batches of data were normalized by reads
count and subjected to principle component analysis to
perform the quality check of samples as shown in
Additional file 2: Figure S3. Then we mapped the se-
quencing reads to the miRBase v18, which contains 344
zebrafish miRNAs and found 261 known miRNAs. After
normalizing two batches of data from three groups, the
reads from different treatments were highly correlated
(Fig. 2b). It suggests that the majority of miRNAs
remained relatively constant during development and
cold shock. Figure 2c shows the log plots of the fold of
change in miRNA expression between treatments. We
considered the fold of change 1.5 folds to be significant.
Transcriptomic profiles are changing rapidly during
embryonic development. The altered miRNAs between
control and normal were thought to be development-
dependent. After taking out development-dependent
miRNAs, we identified 29 cold-induced miRNAs and 26
cold-repressed miRNAs (within the red boundary in
Fig. 2d). The heat map of miRNAs with a change >1.5
folds are shown in Fig. 2e and Additional file 3. The top
5 mRNAs affected are listed in Table 2 and the list of
affected - miRNAs can be found in Additional file 4.

Validation of miRNA-seq data with gPCR

We performed qPCR analysis to validate the changes of the
cold-affected miRNAs (dre-mir-29b, the most up-regulated
miRNA, and 9 other randomly selected miRNAs) and com-
pared them to those observed in small RNA-seq results
(Fig. 3a). The Pearson’s correlation coefficient between two
analyses is 0.87. This is relatively high and suggests the reli-
ability of small RNA-seq results (Fig. 3b).

Function annotation for target genes of the cold-
dependent miRNAs

The cold-dependent target genes of each miRNA
were predicted by TargetScanFish release 6.2 (http://
www.targetscan.org/fish_62/) with the total context+
score -0.3 as a cutoff [36]. We obtained 6263 and
5381 targets of cold-induced and -repressed miR-
NAs, respectively (Additional file 4). We then con-
ducted the target genes functional annotation using
The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) Bioinformatics Resources
6.7 (http://david.abcc.nciferf.gov/) [37]. The top 10 bio-
logical processes were ranked according to P value (Table 3
and Additional file 5). The P value is an indication of gene
enrichment in annotated biological process. The percent-
ages of affected miRNA target genes with a value < 0.005
are illustrated in pie graphs (Fig. 3c). In general, both up-
and down-regulated miRNA target genes were enriched
in processes like metabolism, transport, phosphorylation,
development, signaling transduction, sexual determin-
ation and reproduction. In contrast, transcription-
related genes were only enriched in the up-regulated
miRNA target genes, but cell movement and motility-
related genes were abundant in the down-regulated
miRNA target genes.
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Fig. 2 Analysis of cold shock - affected miRNAs by small RNA-seq in zebrafish larvae. a A pipeline is presented for small RNA identification at each
filtration step (left). The number of reads and percentage passed each filtration step of each treatment are shown on the right chart. b Scatter
plots show comparisons of RPKM between treatments. Log plots are shown in (c) for those cold-affected genes with a change in expression 22
folds. The vertical line in each graph indicates where log2 (RPKM) equal to 1.07. Only dots with values greater than 1.07 were subjected to further
analyses. d The numbers of cold shock-affected (=1.5 folds changes) miRNA are presented in Venn diagram as shown in Fig. Te. e Heat maps
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Table 2 Cold shock-induced differential expression of known

miRNAs

miRNA Mature miRNA sequence Fold change

Up-regulated miRNAs
Dre-mir-29b-1 UAGCACCAUUUGAAAUCAGUGU 3.90
Dre-mir-99-2 AACCCGUAGAUCCGAUCUUGUG 204
Dre-mir-99-1 AACCCGUAGAUCCGAUCUUGUG 1.79
Dre-mir-92a-2 UAUUGCACUUGUCCCGGCCUGU 1.75
Dre-mir-2184 AACAGUAAGAGUUUAUGUGCU 173

Down-regulated miRNAs

Dre-mir-737 AAUCAAAACCUAAAGAAAAUA =171
Dre-mir-9-2 UCUUUGGUUAUCUAGCUGUAUGA  —1.75
Dre-mir-363 AAUUGCACGGUAUCCAUCUGUA -1.79
Dre-mir-125b-2  UCCCUGAGACCCUAACUUGUGA -191
Dre-mir-199-1 CCCAGUGUUCAGACUACCUGUUC -2.79

After eliminating miRNAs whose expression might be changed due to
development process during incubation (control vs normal). The top 5 of 29
up- and 26 down-regulated known miRNAs (annotated in miRBase v18) are
shown, along with their sequences and fold changes compared to the
control groups

We also predicted the top 10 cold-induced and cold-
repressed miRNA-mediated signaling pathways by using
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database (Table 4 and Additional file 5). In the
up-regulated group, most genes were involved in metab-
olism, including cysteine and methionine metabolism,
fructose and mannose metabolism, glycerophospholipid
metabolism, inositol phosphate metabolism and
sphingolipid metabolism. One pathway was related to
extracellular matrix-receptor interaction and the other
one was related to biosynthesis of unsaturated fatty
acids. In the cold-repressed group, many target genes
were involved in biosynthesis and metabolism pathways,
including chondroitin sulfate biosynthesis, synthesis and
degradation of ketone bodies, O-Glycan biosynthesis,
glycosphingolipid biosynthesis, biosynthesis of unsatur-
ated fatty acids, sphingolipid metabolism and alanine, as-
partate and glutamate metabolism. Some cold-repressed
miRNA target genes were also found in the phos-
phatidylinositol, notch and lysozyme signaling pathways.

Cold-induced RNA sequencing profile

To validate our predicted miRNA targets, six RNA sam-
ples were extracted from zebrafish larvae, treated and
processed as described previously to perform RNA-seq
analysis using the SOLiD 5500 xl. The transcriptomic
differences between three groups of fish were similarly
analyzed as described in the miRNAtome analysis. Total
numbers of reads and mapped reads of duplicates from
three different treatments are shown in Fig. 4a. After
normalizing two batches of data from three groups, the
RPKM from different treatments (Fig. 4b) were highly
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correlated. It suggests that the majority of mRNAs
remained relatively constant during development and
cold shock. Figure 4c shows the log plots of the fold of
change in RNA expression between treatments. We set
the fold change > 2 folds and RPKM = 0.1 to be signifi-
cant. After taking out development-dependent RNAs, we
obtained 908 cold-induced genes and 463 cold-repressed
genes (within the red boundary in Fig. 4d). The list of af-
fected genes can be found in Additional file 6. The heat
map of genes with a change > 2 folds are shown in
Fig. 4e and Additional file 3. Among them, the genes re-
lated to circadian rhythm are indicated.

Validation of the cold-induced changes in circadian clock
genes with qPCR

The circadian clock genes were also shown to be af-
fected during cold acclimation in zebrafish [38]. How-
ever, their roles in the cold-induced response have not
been elucidated. We first performed qPCR analysis to
validate the changes of those circadian clock genes,
which include per2, peria, clock3, clock, arntlla, arntlib,
nrld, cryla, and bhlhe41, under cold shock or normal
conditions. The qPCR data was compared to those re-
sults by the RNA-seq (Fig. 4a). The Pearson’s correlation
coefficient between two analyses is 0.807 (Fig. 4b) that is
relatively high and suggests the reliability of RNA-seq
results.

Function annotation of cold-dependent genes in
transcriptome

To reveal the biological interpretation of cold-dependent
genes, we conducted the genes’ functional annotation
using DAVID Bioinformatics Resources 6.7 (http://davi-
d.abce.nciferf.gov/) to find the enriched biological
processes by the Gene Ontology (GO) term analysis.
The P value ranking indicates gene enrichment in
annotated biological processes. The top 10 biological
processes, such as regulation of RNA metabolic
process, are listed in Table 5 and the number of
genes belonging to each process are shown in Fig. 5c.
The percentages of affected genes with a value < 0.1
are illustrated in a pie graph (Fig. 5d). In general,
both up- and down-regulated genes were enriched in
regulation of RNA metabolic processes, regulation of
transcription, DNA-dependent and regulation of
transcription. In contrast, protein amino acid phos-
phorylation, phosphate metabolic process, calcium
ion transport, neuron differentiation and pattern spe-
cification process were only enriched in the up-
regulated genes. Response to DNA damage stimulus,
cellular response to stress, cell fate commitment,
embryonic morphogenesis, inorganic anion transport,
anion transport and DNA repair were abundant in
the down-regulated genes.
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Cold-repressed miRNA target genes

We also analyzed the cold-affected genes in the
KEGG pathway database (Table 6) [39]. In the up-
regulated groups, most of the genes were involved in
MAPK, hedgehog, GnRH and insulin signaling
pathways. Other genes were enriched in immunity-
related pathways like retinoic acid-inducible gene 1
(RIG-I)-like receptor and oligomerization domain
(NOD)-like receptor, circadian rhythm, melanogenesis
and adhesion molecule. In the cold-repressed genes,
only neuroactive ligand-receptor interaction and ster-
oid biosynthesis were significantly enriched.

Correlation of expression profiles of miRNA and mRNA

To determine the correlation between cold-affected
miRNAtome and transcriptome, we further analyzed the
expression of cold-affected miRNAs and their target
genes as shown in Additional file 7. The affected miR-
NAs should be negatively correlated with their target
mRNAs. However, it is not always the case. Only 23.8%
of up-regulated miRNAs resulted in down-regulation of
target mRNAs. On the other hand, 75.4% of down-
regulated miRNAs caused up-regulation of target
mRNAs. It appears that the release of miRNA inhibition
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Table 3 The top 10 biological processes for cold-related miRNA
target genes
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Table 4 The top 10 KEGG pathways for cold-related miRNA tar-
get genes

Biological Processes of P value* KEGG pathway of P value*

Cold-induced miRNA target genes Cold-induced miRNA target genes
Regulation of transcription, DNA-dependent 3.30E-04 Cysteine and methionine metabolism 0.0027
Polyol metabolic process 3.40E-04 ECM-receptor interaction 0.0035
Regulation of RNA metabolic process 5.20E-04 Fructose and mannose metabolism 0.005
Regulation of transcription 6.70E-04 Biosynthesis of unsaturated fatty acids 0.011
Regulation of small GTPase mediated signal transduction 1.10E-03 Glycerophospholipid metabolism 0011
lon transport 1.10E-03 Inositol phosphate metabolism 0014
Glycerol metabolic process 1.30E-03 Sphingolipid metabolism 0.022
Alditol metabolic process 1.30E-03 Melanogenesis 0.028
Organophosphate metabolic process 1.50E-03 GnRH signaling pathway 0.029
Metal ion transport 1.60E-03 Circadian rhythm 0.034

Cold-repressed miRNA target genes Cold-repressed miRNA target genes
Metal ion transport 1.60E-04 Chondroitin sulfate biosynthesis 0.00081
Protein amino acid phosphorylation 3.60E-04 Synthesis and degradation of ketone bodies 0.0092
Intracellular signaling cascade 7.60E-04 Phosphatidylinositol signaling system 0017
lon transport 8.50E-04 Sphingolipid metabolism 0.019
Cation transport 1.80E-03 Notch signaling pathway 0.023
Potassium ion transport 1.80E-03 O-Glycan biosynthesis 0.025
Regulation of small GTPase mediated signal transduction 1.80E-03 Lysosome 0.03
Organophosphate metabolic process 3.10E-03 Alanine, aspartate and glutamate metabolism 0.035
Monovalent inorganic cation transport 3.60E-03 Glycosphingolipid biosynthesis 0.036
Regulation of Ras protein signal transduction 4.70E-03 Biosynthesis of unsaturated fatty acids 0.038

*calculated by Fisher Exact which is adopted to measure the gene-enrichment
in annotation biological process

Target genes of 29 up- and 26 down-regulated known miRNAs were predicted
by TargetScan (Additional file 5). The target genes were annotated by DAVID
bioinformatics resources 6.7. The top 10 biological processes of the target
genes and P values are shown

may have a bigger impact on the expression of target
mRNAs.

Overexpression of per2 assists in cold recovery in
zebrafish larvae

Biological processes of the Gene Ontology (GO) term ana-
lysis shows that circadian rhythm is enriched at the first
category - regulation of RNA metabolic process as shown
in Additional file 8. As described previously, the roles of cir-
cadian clock genes in the cold shock responses are still
illusive. In the molecular level, the core clock genes,
CLOCK and NPAS2/BMALL, induce expression of repres-
sors, PER1-3/CRY1-2 to form an interacting feedback loop
to sustain the daily oscillation [40]. BHLHE41 plays a rela-
tive minor role that functionally resembles the inhibitor of
the core clock gene complex and oscillates similarly with
the PER1-3/CRY1-2 complex [41]. It has been reported that
the dynamics of circadian clock genes are highly correlated
with cell metabolism [42, 43]. We hypothesized that the cir-
cadian gene-dependent changes in cell metabolism may

*calculated by Fisher Exact which is adopted to measure the gene-enrichment
in annotation KEGG pathway

Target genes of 29 up- and 26 down-regulated known miRNAs were predicted
by TargetScan (Additional file 5). The targets genes were annotated by DAVID
bioinformatics resources 6.7. The top 10 KEGG pathway of the target genes
and P values are shown

help in cold resistance. To test this hypothesis, we selected
three circadian clock genes, arntlla (bmal), bhlhe41 and
per2, which had different levels of change (1.14, 2.4 and
12.6 folds, respectively) upon cold shock, to perform func-
tional assays. We designed overexpressing plasmids con-
taining Tol2, 5XUSA element, different circadian clock
gene coding region sequence and H2AmCherry indicator.
The circadian clock gene and mCherry were intervened
with a 2A peptide sequence for separation upon translation.
Different plasmids were separately injected into 1-cell em-
bryos with gal4 mRNAs (Fig. 6a). The ectopic expression of
these plasmids were screened by the H2AmCherry fluores-
cence under epifluorescent microscope as an indirect
indication of circadian clock gene overexpression (Fig. 6b).
To validate this, we performed qPCR analyses and found
that the expressions of bmal, per2 and bhlhe4l were in-
creased to 18.86+9.1, 12.85+11.17 and 5.02 + 1.88 folds,
respectively (Fig. 6¢c, N =3). These fish with transient ex-
pression of circadian clock genes were then used for the
cold tolerance assay.



Hung et al. BMC Genomics (2016) 17:922 Page 10 of 18

A Control-1 Control-2 Normal-1 Normal-2 Cold shock-1 Cold shock-2

Total reads 55,326,082 42,632,551 41,042,037 50,894,477 53,980,405 42,748,977
Mapped reads 19,471,336 25,642,124 22,123,598 27,261,039 30,732,640 17,339,740
% Mapped 35.19 60.15 53.90 53.56 56.93 40.56
Mapping QV 57.17 62.62 61.05 60.92 59.96 58.17

o
m

= o
S k=
Lo o 3
104 10+ R=0553 10¢ & et =
= = T —~ © = © g
© 100 O 108 i © 103 c e
£ £ E o © ©
— c = ©
S 102 S 102 o 104 c £ c E
£ &) (= O = =
E 101 E 101 < 10° o2 8 =
| c
g g S
o 100 0 1004 o 1004,
o [0 o
101 o 1071 ey
10 10° 10" 102 10° 10¢ 10 10° 10" 102 10° 10¢ 10 10° 10" 102 10° 1 __per2
RPKM (control) RPKM (cold shock) RPKM (cold shock) pegllobck
C cryl?’a
er
normal vs control cold shock vs control cold shock vs normal P B hihedo
total =778 total =1423 total = 476 :f{j:
—
[
<]
c
©
c
o
z
<}
L
-~
N P—
=)
o =
= : =
0 5 10 =
Logz(RPKM) =
cold shock vs normal cold shock vs normal
y 4 ~ bhihe23

1 180

*normal vs contf
A

cold shock vs gontrol

\\,{ormal Vs contre cold shock vs gontrol

Cold-induced genes Cold-repressed genes

-5 a5

Fig. 4 Transcriptomic analysis of cold shock-induced genes in zebrafish larvae. a The number of reads and percentage passed each filtration step
of each treatment are shown on the right chart. b Scatter plots show comparisons of reads per kilo base per million (RPKM) between treatments.
Log plots are shown in (c) for those cold-affected genes with a change in expression 2 2 folds and RPKM = 0.1. The total dot numbers are shown
on the right top corner of each graph. d Venn diagrams show the numbers of cold shock-induced and repressed genes between treatments. e
Heat maps profiles for mMRNA expression of selected genes with annotations of circadian - related genes




Hung et al. BMC Genomics (2016) 17:922

Table 5 The top 10 biological processes for cold-related genes

Biological Processes of P value*

Cold-induced genes
Regulation of RNA metabolic process 1.50E-03
Regulation of transcription, DNA-dependent 1.80E-03
Protein amino acid phosphorylation 1.90E-03
Phosphate metabolic process 2.10E-03
Rgulation of transcription 5.40E-03
Phosphorylation 6.80E-03
Transcription 9.50E-03
Calcium ion transport 0.01
Neuron differentiation 0.015
Pattern specification process 0.019

Cold-repressed genes
Response to DNA damage stimulus 0.01
Cellular response to stress 0018
Regulation of transcription 0.019
Cell fate commitment 0.027
Regulation of RNA metabolic process 0.03
Embryonic morphogenesis 0.033
Inorganic anion transport 0.037
Regulation of transcription, DNA-dependent 0.04
Anion transport 0.04
DNA repair 0.047

*calculated by Fisher Exact which is adopted to measure the gene-enrichment
in annotation biological process

The cold-related genes (Additional file 6) were annotated by DAVID bioinfor-
matics resources 6.7. The top 10 biological processes of the cold-related genes
and P values are shown

Zebrafish swimming behavior has been used as an in-
dicator for cold tolerance [44]. We first cultured the cir-
cadian clock gene overexpressing fish under a 14 h/10 h
dark light cycle for 5 days and incubated in 18 °C for
4 h. We then transferred fish to a 28.5 °C observation
chamber to record the spontaneous swimming behavior
from O to 30 mins after transfer (Fig. 6d). The moving
paths at different intervals after cold recovery (0-10,
10-20 and 20-30 min) were recorded and analyzed ac-
cording to the intensities of four classes of swimming ac-
tivity (Fig. 6e). The per2 and bhlhe41 overexpressing fish
had higher swimming activity than those of control and
arntlla overexpressing fish at 10-20 mins interval (% of
moving fish: Ctrl: 23 + 7%, n = 40; Bmal: 35+ 7%, n = 34;
Per2: 39+ 15%, n =35, Bhlhe4l: 42 + 15%, n =36). The
per2-overexpressing fish exhibited the most active
swimming behavior during the 20-30 min interval (%
of moving fish: Ctrl: 44 +9.2%, n = 32; Bmal: 42 + 12%,
n =36; Per2: 76 + 12%, n = 30; Bhlhe41: 53 + 10%, n = 34)
as shown in Fig. 6f.
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To examine cell metabolism, we measured the change
in glucose concentration in the circadian clock gene
overexpressing larvae. In control and bmal (arntlla)-
overexpressing fish, the glucose concentration was grad-
ually increased during cold shock. In contrast, the
bhlhe41- and per2-overexpressing fish had a higher basal
glucose level and the level was not significantly changed
during cold shock (Fig. 6g).

Dre-mir-29b targets per2 mRNA and regulates its
expression dynamically during cold treatment

The increase in cold tolerance in per2-overexpressing
fish suggests a pivotal role of circadian clock genes
against cold stress. Comparing the expression level of
miRNA-seq and mRNA-seq of gene of interest, we iden-
tified several cold-dependent miRNAs that may regulate
circadian clock genes (Tables 7 and 8). We selected dre-
miR-29b to illuminate how miRNA affect transcriptome
plasticity during cold shock (Fig. 7a). Dre-miR-29b is the
top one cold-induced miRNA with a predicted target of
per2. To address this, we injected pEGFPC1-per2 3'UTR
with or without dre-mir-29b morpholino oligonucleo-
tides (MO) (Fig. 7b). The co-injection of mir-29b MO
significantly enhanced the % of embryos showing the
fluorescence from the pEGFPCl-per2 3'UTR (51.9%, n
=95, N=3) compared to that of plasmid only embryos
(8.65%, n =49, N = 3) as shown in Fig. 7c. This data sug-
gests that dre-mir-29b MO can prohibit dre-mir-29b tar-
geting per2 mRNAs.

To further study the dynamic expression of per2 and
dre-mir-29b during cold shock, we measured their ex-
pression levels at a shorter duration (every 2—4 h) until
24 hpi (Fig. 7d). It appeared that both dre-mir-29b and
per2 expression was elevated at 4 hpi. The per2 expres-
sion declined afterward. In contrast, the dre-mir-29b ex-
pression increased afterwards, but a sudden drop was
observed at 24 hpi. These results suggested that dre-mir-
29b may act to control the per2 expression-induced by
cold shock.

Discussion

Cold shock is a general, but harmful, environmental
stress for ectothermic animals. We performed high
throughput small RNA-seq and RNA-seq experiments to
investigate potential regulatory mechanisms for cold-
inducible responses and to characterize cold-affected
miRNAs and genes in zebrafish larvae. We found 29
cold-induced miRNAs and 26 cold-repressed miRNAs in
the microRNAtome analysis. We also discovered 908
cold-induced genes and 468 cold-repressed genes in the
transcriptome analysis. Among them, circadian clock
genes and others were enriched in both analyses. Thus,
we overexpressed one of the cold-induced core clock
gene per2 and showed a notable increase in cold
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(See figure on previous page.)

Fig. 5 Validation of RNA-seq data and biological process pathways summary of the genes significantly changed upon cold shock. a Comparison
of change in relative expression of circadian clock genes determined by NGS and gPCR (N = 3). b Pearson’s correlation result between RNA-seq
and gPCR data. (Correlation coefficient = 0.807) (c) Numbers of cold-induced (left) and repressed (right) genes belong to the top 10 biological pro-
cesses. d Pie charts show the proportions of cold-induced (left) and repressed (right) genes which involve in different biological processes with a

p value <0.05

tolerance in zebrafish larvae. We further validated the
targeting of per2 by its associated miRNA, dre-mir-29b,
which was also induced by cold shock. This suggests
that miRNA can serve as a fine tuner for regulating the
transcription of cold-inducible genes during cold stress.

An acute temperature drop may result in lethality in
aquatic animals. Therefore, we first determined a per-
missible temperature (18 °C) that could induce adaptive
cold responses without deleterious effects on fish. Cirbp,
a cold shock-inducible protein, is served as a molecular
indicator for cold shock. Cirbp acts as a RNA chaperone
to unfold RNA secondary structures to facilitate transla-
tion. The elevation of cirbp expression has been known
to be a universal marker upon cold exposure [1]. We
measured the cirbp expression by qPCR and found that
4 h is the minimum duration which could cause signifi-
cant gene induction. Furthermore, transcriptome and
miRNAtome profiles change rapidly during the larvae
stage, however, it was generally ignored in previous stud-
ies [15, 38]. Therefore, we ruled out the genes, which
might be changed during development to be sure that
the up- and down- regulated genes selected are truly
cold shock induced.

Table 6 The top 10 KEGG pathways for cold-related genes

KEGG pathway of P value*

Cold-induced genes
MAPK signaling pathway 2.60E-05
Circadian rhythm 2.60E-04
RIG-I-like receptor signaling pathway 0.011
GnRH signaling pathway 0.025
Cell adhesion molecules (CAMs) 0.026
Adherens junction 0.034
Melanogenesis 0.036
Hedgehog signaling pathway 0.049
NOD-like receptor signaling pathway 0.056
Insulin signaling pathway 0.057

Cold-repressed genes
Neuroactive ligand-receptor interaction 3.90E-03
Steroid biosynthesis 6.50E-03

*calculated by Fisher Exact which is adopted to measure the gene-enrichment
in annotation KEGG pathway

The cold-related genes (Additional file 6) were annotated by DAVID bioinfor-
matics resources 6.7. The top 10 KEGG pathway of the genes and P values

are shown

The cold-affected genes and miRNAs are involved in
many crucial biological processes. The most dominate
pathways are attributed to transcription regulation, pro-
tein phosphorylation and transport. According to previ-
ous studies, both cold acclimation and cold shock could
affect RNA transcription [11, 15, 45]. In our RNA-seq
data, around 20% cold-regulated genes encode transcrip-
tion factors such as her, hsf2, hsfl, dmrt3a, poulfi, atf3,
gatala, cebpb, fosll, bhlhe41, bhlhe40, nrid4b, nrid4a,
nrldl and nrid2a. Among these genes, bhlhedl,
bhlhe40, nrid4b, nrid4a, nridl, nrld2a have been re-
ported to be enriched in cold-induced carp larvae [11],
suggesting transcription of certain genes should be in-
duced by the cold in the fish larvae stage. The protein
phosphorylation landscape is changed during cold treat-
ment in aquatic creatures [46]. In the same token, we
also observed the up-regulation of many kinase proteins
such as MAP kinase interacting serine/threonine kinase
1 cascades, calcium/calmodulin-dependent protein kin-
ase, protein kinase C and casein kinase 1. Furthermore,
we found the changes in expression of multiple ion
transporters (atp2a2a, atp2a2b, atp2b3a, cacnba, cac-
nalc, ryrlb, and slc8a2b). It implies that cold shock may
inhibit ion pumps and channels that results in imbalance
of osmoregulation in fish [47, 48]. Studies also revealed
that cold can affect the oxidation reduction processes
[15, 45]. However, these processes were not significantly
changed in our analyses, which may reflect different cold
treatment regime or animals used. In general, our results
are in good agreement with previous reports.

Circadian clock genes, including bhlhe40, npas2,
nrldl, nrld4, perla, perlb and per2, are under the regu-
lation of RNA metabolic process. The RNA metabolic
process is the No. 3 and No. 1 in the cold-induced
miRNA target genes (Table 3) and the cold-induced genes
(Table 5), respectively. We analyzed genes belonging to
the regulation of RNA metabolic process by using the
KEGG pathway analysis and found that circadian rhythm
is one of two most enriched pathways as shown in the
second worksheet of Additional file 8. It gains further
proof that circadian rhythm is listed as the No. 2 path-
way for all cold-induced genes analyzed as shown in
Table 6. Collectively, these results indicate circadian
clock genes are notably affected by cold shock.

A group of circadian clock genes, and their associated
miRNAs were upregulated upon cold shock (Tables 7
and 8). Similar upregulation of circadian clock genes by
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(See figure on previous page.)

Fig. 6 Overexpression of core clock gene per2 or bhlhe41 increases cold tolerance. a The design of the Gal-UAS driven circadian clock gene ex-
pression construct is shown. H2AmCherry (red) is placed upstream of clock gene (green) that will be cleaved by a 2A peptide (yellow). b 1-Cell em-
bryos were injected with indicated plasmids and examined under bright (upper row) and dark filed (bottom row through a rhodamine filter cube).
Mosaic expression of mcherry indicates the expression of bmal, per2, or bhlhe41 in 48 hpf embryos. ¢ Normalized expression level of clock genes
compared to control embryos at 5 days post fertilization by gPCR (N = 3). d Scheme of cold recovery assay at 5 days post fertilization fish. e
Classifications of swimming track recorded for 10 mins. f Quantitative analysis of swimming patterns for zebrafish larva transient expressed
without (control) and with designated circadian clock gene at different time periods after recording. g Glucose concentration were measured in
4 dpf zebrafish larval lysate collected at different time point after cold shock. *P < 0.05, **p < 0.01

A

cold stress have also been observed in previous studies
[15, 38]. It suggests a possible involvement of circadian
associated regulation during cold acclimation and cold
shock. However, direct evidence for a role of circadian
clock genes in cold responses is still lacking. Circadian
rhythm controls the daily rhythm for an organism in be-
havior, physiology and biochemistry [40]. The molecular
basis of this oscillation consists of interaction between
positive and negative feedback loops. At the molecular
level, the circadian rhythm is governed by a set of tran-
scription activators, CLOCK and NPAS2/BMAL1, which
induce expression of repressors, PER1-3/CRY1-2, to
form an interacting feedback loop [49]. BHLHE41 func-
tions to inhibit CLOCK:BMALI1 transactivation of the
clock gene Perl to resembles the negative feedback loop
of PER/CRY complex [41]. In addition to light, circadian
rhythm could also be entrained by temperature and
feeding behavior [50]. Zebrafish core clock genes, in-
cluding cry2a, cry3 and per4, can be entrained by lower
temperature but not per2 [51]. This implies the elevation
of per2 in our study may play a novel biological function
in the cold stress response. Here, we successfully dem-
onstrate that overexpression of core clock gene per2 can
increase cold tolerance in zebrafish larvae upon cold
shock, but not bmal. Previous studies showed that

Table 7 Cold-affected circadian clock genes and associated
miRNAs

Circadian rhythm mMiRNA

Basic helix-loop-helix domain containing, Dre-mir-92, dre-mir-107,
class B, 3 like dre-mir-103
Cryptochrome 3 (cry3) Dre-mir-29

Aryl hydrocarbon receptor nuclear Dre-mir-99

translocator-like 1b (arntl1b)

Clock homolog 3 (clock3) Dre-mir-29, dre-mir-96,

dre-mir-499
Period homolog 2 (per2) Dre-mir-29,dre-mir-18
Period homolog 1a (peria) Dre-mir-135
Nuclear receptor subfamily 1 (nrid1) Dre-mir-204

Basic helix-loop-helix family,
member e40 (bhlhe40)

Dre-mir-128, dre-mir-181

Casein kinase 1, epsilon Dre-mir-130, dre-mir-301

Casein kinase 1, delta a Dre-mir-29

knockout per2 impairs gluconeogenesis [52] but bmal
null mice increased gluconeogenesis [53], suggesting two
proteins may play opposite role in glucose metabolism.
The per2 gene may have a glucocorticoid response elem-
ent that responds to glucocorticoid hormones to in-
crease blood glucose [54]. The elevation in plasma
glucose is enhanced by the glucocorticoid/cortisol-medi-
ated gluconeogenesis, which is a common stress re-
sponse in aquatic creatures in response to cold [55]. We
observed the basal glucose level remains high in trans-
genic zebrafish larvae overexpressing per2, which sug-
gests that the elevation of per2 expression level may
counter cold stress by maintaining a higher gluconeo-
genesis. Per2 is also known to control lipid metabolism
by direct regulation of PPARy [56]. Whether Per2 also
exerts its cold-defending function via enhanced lipid
metabolism still awaits further investigation. Further-
more, bhlhe41-overexpressing fish also showed better

Table 8 Cold-affected miRNAs and corresponding circadian

clock genes

MicroRNA Up/Down Target
Dre-mir-29b Up Per2, Per3, Cry3, CkI,Clock3
Dre-mir-135 Up Perla, Nrid4a
Dre-mir-99 Up Arntl1b
Dre-mir-92a Up Bhlhe41
Dre-mir-96 Up Clock3
Dre-mir-204 Up Nrid1
Dre-mir-128 Up Bhlhe40
Dre-mir-107 Up Bhlhe41
Dre-mir-2192 Down Clock

Dre-mir-18 Down Per2, Per3,Bhlhe41
Dre-mir-202 Down Nrid2b
Dre-mir-181 Down Bhlhe40, Nridi2a
Dre-mir-363 Down Nrid2a, Bhihe41
Dre-mir-130 Down Ckie, Nridi2a
Dre-mir-301 Down Ckle

Dre-mir-184 Down Crylb
Dre-mir-499 Down Clock3, Nr1d14b

Up/Down: Significantly up-regulated or down-regulated miRNAs are listed, the
comprehensive Targeting clock genes are listed at the right column
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cold tolerance in locomotor activity and retain higher
glucose level. It will be interesting to study whether the
inhibition of CLOCK/BMAL complex would enhance
cold tolerance.

miRNAs play a key role in cellular responses to the
changing environment. Upon stress, cells also tend to re-
store or reprogram their transcriptomes to counter the
changes modulated by miRNAs [27]. It implies a
plausible role of miRNAs in mediating cold responses.
However, Yang et al. previously reported that cold accli-
mation trigger changes in some miRNA profiles in adult
zebrafish brains and those miRNAs have poor associa-
tions to the affected genes. They concluded that micro-
RNAs play a minor role in mediating transcriptome
plasticity during cold stress [30]. It appears to be contra-
dictory to our finding that the affected miRNAs have
predicted target genes involved in cold-inducible bio-
logical processes, including melanogenesis, GnRH sig-
naling pathway and circadian rhythm.

To clarify the interaction between per2 and associated
dre-mir-29b, we examined their dynamic expression
during cold shock and found good correlations for dre-
mir-29b to serve as an inhibitor of per2 expression. The
dynamic pattern between miRNAs and target genes
nicely matches the “pulse model” as described by Leung
et al. [27]. As miRNAs accumulate over time, miRNAs
exert their suppressive effect on the mRNA targets,
causing a decrease in mRNA target expression. The poor
correlation between cold-affected miRNAs and mRNAs
observed previously [30] might be due to the time of
sample collection or the use of different tissues (brain
tissue vs. whole larvae used here). The duration of
stress also determines if cells can re-establish homeo-
stasis or initiate the mechanism to acclimate to the
new environment [57]. The discrepancy between two
studies may also be resulted from different machiner-
ies used in two different stress levels (cold acclima-
tion v.s. cold shock).
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Conclusions

Here, we demonstrate for the first time that miRNAs
can be fine turners for regulating genomic plasticity
against cold shock. We further showed that the fine tun-
ing of core clock gene per2 via its associated miRNA,
dre-mir-29b, can enhance the cold tolerance of zebrafish
larvae. The circadian clock genes may thus serve as tar-
gets for designing novel strategies to face cold challenges
in aquaculture.
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