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Abstract

Background: Coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are two of the major causes of hand, foot and
mouth disease (HFMD) world-wide. Although many studies have focused on infection and pathogenic mechanisms,
the transcriptome profile of the host cell upon CVA16 infection is still largely unknown.

Results: In this study, we compared the mRNA and miRNA expression profiles of human embryonic kidney 293T
cells infected and non-infected with CVA16. We highlighted that the transcription of SCARB2, a cellular receptor for
both CVA16 and EV71, was up-regulated by nearly 10-fold in infected cells compared to non-infected cells. The
up-regulation of SCARB2 transcription induced by CVA16 may increase the possibility of subsequent infection of
CVA16/EV71, resulting in the co-infection with two viruses in a single cell. This explanation would partly account for
the co-circulation and genetic recombination of a great number of EV71 and CVA16 viruses. Based on correlation
analysis of miRNAs and genes, we speculated that the high expression of SCARB2 is modulated by down-regulation
of miRNA has-miR-3605-5p. At the same time, we found that differentially expressed miRNA target genes were
mainly reflected in the extracellular membrane (ECM)-receptor interaction and circadian rhythm pathways, which
may be related to clinical symptoms of patients infected with CVA16, such as aphthous ulcers, cough, myocarditis,
somnolence and potentially meningoencephalitis. The miRNAs hsa-miR-149-3p and hsa-miR-5001-5p may result in
up-regulation of genes in these morbigenous pathways related to CVA16 and further cause clinical symptoms.

Conclusions: The present study elucidated the changes in 293T cells upon CVA16 infection at transcriptome level,
containing highly up-regulated SCARB2 and genes in ECM-receptor interaction and circadian rhythm pathways, and
key miRNAs in gene expression regulation. These results provided novel insight into the pathogenesis of HFMD
induced by CVA16 infection.
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Background

Hand, foot and mouth disease (HFMD) threatens infants
and children globally [1] and is caused by two main
pathogens, CVA16 and EV71, both of which are mem-
bers of the Enterovirus genus in the Picornaviridae
family. Infection with EV71 commonly causes HFMD
cases with severe symptoms, such as aseptic meningo-
encephalitis, brainstem encephalitis, myelitis, myocardi-
tis and pulmonary edema [2]. By contrast, infection with
CVA16 generally induces mild and self-limiting clinical
symptoms, such as vesicular maculopapular rash, ulcers
and pharyngitis [3], and only occasionally results in
severe and fatal cases with central nervous system
inflammation [4—8]. CVA16 infections have contributed
to the majority of HFMD cases for decades, and co-
infection and genetic recombination between CVA16
and EV71 have occurred frequently, likely leading to
large disease breakouts and evolution of both viruses
[9-13]. Therefore, greater attention should be paid to
investigations of CVA16 infection mechanisms.

CVA16/EV71 infections begin with the binding of
cellular receptors of the host cell, which were demon-
strated to be human scavenger receptor class B member
2 (SCARB?2) expressed extensively in tissues and human
P-selectin glycoprotein ligand-1 (PSGL-1) expressed
primarily in lymphocytes [14, 15]. The receptors mediate
entry and subsequent replication of viruses. Our group
described that SCARB2-overexpressing cell lines signifi-
cantly increase their susceptibility to CVA16/EV71 of
various genotypes [16], similar susceptibility increasing
effect was also proved in PSGL-1 overexpressing cells
[15, 17]. The infection of these viruses causes the disrup-
tion of cellular pathways and events. Host cell molecular
alterations include relocalization of far upstream element
binding protein 2 (FBP2), heterogeneous nuclear ribonu-
cleoprotein A1 (hnRNP A1) and hnRNP K, phosphoryl-
ation of MAPK/ERK and PI3K/Akt pathways to assist
virus replication [18-21], and cleavage of eukaryotic
translation initiation factor 4G (eIF4G) by virus protease
to inhibit the synthesis of host proteins and induce
apoptosis [22]. Cell death and apoptosis in tissues subse-
quently result in HEFMD symptoms.

In recent years, many studies on HFMD have been con-
ducted at the transcriptome level, most of which use assay
technologies to identify markers (genes or miRNAs) of
EV71-related clinical symptoms in different tissues or cells
[23—27]. However, the molecular mechanisms underlying
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vesicular rash formation caused by CVA16 infection and
the potential central nervous system inflammation caused
by enterovirus are still largely unknown. In this study,
RNA-seq and miRNA-seq technologies were used to
profile the transcriptome alterations in CVA1l6-infected
and non-infected (CVA1l6-non-infected) cells, with the
aim of gaining greater insight into the underlying mecha-
nisms of CVA16-host interactions which may be highly
relevant to disease pathogenesis in vivo.

Results and discussion

mRNA and miRNA expression profiles

We analyzed mRNA and miRNA expression profiles
based on mRNA-seq and miRNA-seq for CVA16-infected
as well as CVAl6-non-infected cells to determine how
CVA16 infection affects the function of a cell and the
related regulatory mechanisms. In total, 88.1 M and
724 M mRNA-seq reads were generated for CVA16-
infected and CVA16-non-infected cells, respectively. After
trimming low quality bases, uniquely mapped rates of
reads of these groups were both about 67% (Table 1). The
saturation evaluation (Additional file 1) showed that the
sequencing data were sufficient for analysis of gene
expression. For CVA16-infected and CVA16-non-infected
cells, 15.1 M and 7.5 M short reads of miRNA sequences
were generated, respectively. We mapped miRNA clean
short reads to a human pre-miRNA database and obtained
20.39 and 23.97% mapped rates and detected 447 and 446
miRNAs for CVAl6-infected and CVA1l6-non-infected
cells, respectively (Table 2).

Among the identified 1954 differentially expressed
genes, 1825 genes were up-regulated genes and 129 were
down-regulated genes in CVAl6-infected relative to
CVAl6-non-infected samples ((Differentially expressed
genes are listed in Additional file 2, and the top 10 are
shown in Fig. la). The 1954 differentially expressed
genes were enriched in 822 third-level Gene Ontology
(GO) terms (Additional file 3), mainly those involved in
the regulation of cellular processes, cellular macromol-
ecule metabolic processes and regulation of metabolic
processes. The 51 differentially expressed miRNAs iden-
tified included 29 up-regulated miRNAs and 22 down-
regulated miRNAs in CVAl6-infected cells relative to
CVAl6-non-infected cells (Differentially expressed miR-
NAs are listed in Additional file 4, and the top 10 are
shown in Fig. 1b). Therefore, 1323 differentially
expressed target genes were predicted between CVA16-

Table 1 Mapping results of RNA-seq data for CVA16-infected and CVA16-non-infected cell samples

Sample ID Number of reads

Raw data After filtering Mapped to genome Uniquely mapped to genome
CVA16-infected 88,142,534 81,487,235 (9245 %) 59,431,177 (72.93 %) 54,745,431 (67.18 %)
CVA16-non-infected 72,363,686 62,166,217 (85.91 %) 45,873,597 (73.79 %) 41,727,976 (67.12 %)
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Table 2 Results of MIRNA sequencing reads mapped to mirBase
for CVAT16-infected and CVA16-non-infected cell samples

Number of reads

Raw data  After filtering Mapped to miRBase
CVA16-infected 15,113,429 12,066,297 (79.84 %) 2,460,634 (20.39 %)
CVA16-non- 7457128 6,011,597 (80.62 %) 1,441,053 (23.97 %)
infected

infected and CVAl6-non-infected cells (Differentially
expressed target genes are listed in Additional file 5, and
the top 10 are shown in Fig. 1c).

The expression regulation of SCARB2 in CVA16-infected
cells

Virus infection is generally known to alter the expres-
sion of host genes and affect protein function. Thus,
studying expression patterns of host genes may facilitate
their use as diagnostic markers and therapeutic targets
for diseases. CVA16 infection can cause clinical symp-
toms of HFMD, such as aphthous ulcers, cough and
central nervous system dysfunctions. We found that the
SCARB?2 gene was the most differentially expressed, as
its level in CVAl6-infected cells was 10 times higher
than that of CVAl6-non-infected cells (Fig. la). By
quantitative RT-PCR (qRT-PCR) analysis, the copy
number of SCARB2 mRNA in CVA1l6-infected cells also
was confirmed to be increased compared to that of the
control (Fig. 2a). Furthermore, levels of the SCARB2
protein in CVAl6-infected cells were shown to be
increased in a dose-dependent pattern (Fig. 2b). SCARB2
is the cell membrane receptor for CVA16/EV71, and the
up-regulation of its expression may increase the chance
of co-infection with two viruses in a single cell. This
finding would partly explain the large number of cases
of EV71 and CVA16 co-circulation and genetic recom-
bination. We also found that the miRNA hsa-miR-3605-
5p, which targets the SCARB2 gene, was down-regulated
in CVAl6-infected cells. The miRNA hsa-miR-3605-5p
plays an important role in the processes of metal ion
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transport, monovalent inorganic cation transport, intra-
cellular transport and transmembrane transport. Simi-
larly, the major function of SCARB2 in the cell is
membrane transport [28]. Therefore, we inferred that
the down-regulation of hsa-miR-3605-5p mediates the
high expression of SCARB2.

Function enrichment analysis of differentially expressed
genes

These differentially expressed target genes between
CVAl6-infected and CVA1l6-non-infected cells were
clustered into four functional pathways: ECM-receptor
interaction, circadian rhythm, ABC transporters and ly-
sine degradation (Table 3). We found that all of the
differentially expressed target genes clustered in these
four KEGG functional pathways were up-regulated
(Fig. 3a-d). Some differentially expressed genes, regulated
by miRNA, clustered in the ECM-receptor interaction
pathway, which may be closely related to symptoms
caused by CVA16 infection: aphthous ulcers, cough and
myocarditis. Bakir-Gungor et al. [29] recently discovered
that oral aphthous ulcers of Behcet’s disease may be corre-
lated with the ECM-receptor interaction. Gunawardhana
et al. [30] also found that inflammation of the airway is af-
fected by the ECM-receptor interaction. The ECM in the
heart and vascular wall consists of fibrous proteins and
proteoglycans [31], which are important for maintenance
of both the structure and function of the heart and vascu-
lar tissues [32]. Excessive deposition of ECM proteins has
also been associated with many cardiac pathological
entities such as myocardial fibrosis after myocardial
infarction [33]. Therefore, we had reason to believe that
the ECM-receptor interaction may be involved with
symptoms of myocarditis, such as aphthous ulcers and
cough, in some patients infected with CVA16. At the same
time, we found that most of the differently expressed
genes (9 out of 14) in the ECM-receptor interaction were
modulated by the down-regulation of miRNAs hsa-miR-
149-3p and hsa-miR-5001-5p (Fig. 4a). These genes regu-
lated by hsa-miR-149-3p or hsa-miR-5001-5p, including
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ITGA3, AGRN, COLS5AI, HSPG2, LAMA3, LAMAS,
COL11A2, ITGA7 and ITGA?2, are all related to diseases.
Another observed enrichment pathway was the circa-
dian rhythm pathway. Differentially expressed genes
associated with the circadian rhythm pathway included
NRIDI, CSNKID, CLOCK, PERI and PER2. These genes
were all up-regulated and related to the sleep phase
syndrome and circadian clock. In other words, somno-
lence caused by CVA16 infection was correlated with
the circadian rhythm pathway. Radomski et al. found
that patients suffering from meningoencephalitis dem-
onstrated circadian disruptions in cortisol, prolactin and
sleep-wake rhythms. Sleeping sickness at the stage of
meningoencephalitis manifests itself as a significant
disturbance in the circadian rhythm of sleep-wakefulness
[34]. Buguet et al. also found that the stage of meningo-
encephalitis in patients suffering from human African
trypanosomiasis (HAT, sleeping sickness) represented a
dysregulation of the sleep-wake cycle and sleep struc-
ture, rather than hypersomnia, and this dysregulation
was accompanied by a circadian dysrhythmia of hormo-
nal secretions. This finding shown that the meningo-
encephalitis is related to the circadian rhythm [35].
Other reports have shown that meningoencephalitis is one
of the typical symptoms after EV71 infection [36-38].
Meningoencephalitis has also frequently appeared as one

Table 3 Clustering functional pathways of differentially expressed
miRNA target genes

KEGG single pathway Gene number P-value
hsa04512:ECM-receptor interaction 14 0.00132
hsa04710Circadian rhythm 5 0.005889
hsa02010:ABC transporters 8 0.014675
hsa00310:Lysine degradation 7 0.045685

of the symptoms of Coxsackie B virus infection [38, 39].
As CV infection has been reported to cause lethargic
encephalitis and mild paralysis in children [40, 41], we
deduced that CVA16 interferes with intracellular circadian
rhythms leading to somnolence with meningoencephalitis.
Here, we found that 80% (4 out of 5) of the differentially
expressed target genes clustered in the circadian rhythm
pathway also are regulated by down-regulation of the
miRNAs hsa-miR-149-3p and hsa-miR-5001-5p (Fig. 4b).
Therefore, we deduced that the down-regulation of these
two miRNAs may result in up-regulation of genes in
morbigenous pathways related with CVA16 and further
cause clinical symptoms.

Conclusions

We examined the impact of infection with CVA16, a
major causative pathogen of HFMD, using RNA-seq and
miRNA-seq technologies to reveal the associated patho-
genic mechanisms at the transcriptome level. We
highlighted that the SCARB2 gene was up-regulated by
nearly 10-fold in infected cells compared to non-infected
293T cells at the transcriptional and translational levels.
SCABR?2 serving as a cellular receptor plays an import-
ant role in co-infections of EV71 and CVA16, and has-
miR-3605-5p regulates the high expression of SCARB2.
We found that differentially expressed miRNA target
genes were mainly concentrated in the ECM-receptor
interaction and circadian rhythm pathways, which may
be related to clinical symptoms of patients infected with
CVAL1S6, such as aphthous ulcers, cough, myocarditis and
somnolence of meningoencephalitis. Down-regulation of
miRNAs hsa-miR-149-3p and hsa-miR-5001-5p may
result in up-regulation of genes in these morbigenous
pathways related to CVA16 infection, which further
leads to clinical phenotypes.
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Methods

Cells and viruses

293T cells (derived from human embryonic kidney cells)
were cultured as monolayers in Dulbecco’s modified
Eagle medium (DMEM) supplemented with 10% fetal
calf serum (FCS). The CVA16 strain HN1129/CHN/
2010 (B1b genotype, a gift kindly provided by the Henan
Provincial Center for Disease Control and Prevention,
China) was used for infection.

CVA16 infections

Ninety percent confluent monolayers of 293T cells were
infected with CVA16 at 1 TCIDs, per cell. Two hours
later, cells were washed twice with PBS and cultured in
fresh DMEM (10% FCS). Fifteen hours later, the cells were
harvested for transcriptome and qRT-PCR analyses.

Next-generation sequencing of mRNA and miRNA and
data processing

Sequence data were generated using Illuminna Hiseq 2000
following the manufacturer’s instructions for mRNA-seq
and miRNA-seq. For mRNA-seq data, Fastx-toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/) was used to re-
move low quality reads and adapter sequences. Evaluation
of mRNA-seq sequencing data showed that the sequen-
cing quality was high (mean quality value was greater than
34). Reads (after removal of low quality reads and adapter

sequences) were mapped to the human reference genome
sequences (ENSEMBL62/GRCh37) with the Burrows-
Wheeler Aligner (BWA) [42]. Only reads that were
uniquely mapped to the reference genome sequences or
were uniquely mapped to the junctions were chosen for
subsequent analysis. Read densities for each gene were
calculated by the number of uniquely mapped reads per
kilobase per million mapped reads (RPKM). Differentially
expressed genes were identified by DEGseq [43], which is
an R-package available in Bioconductor (www.bioconduc-
tor.org/packages/2.7). A gene was considered to be signifi-
cantly differentially expressed if the p-value and g-value
were both less than 0.05.

For miRNA-seq data, if miRNA clean short reads (after
removing low quality reads and adaptor sequences) were
mapped to the whole human genome, both known
miRNA and new miRNA could be obtained. However, the
specificity of mapping short reads to the genome was very
low due to the very short clean reads (<25 nt) and the
complexity of the reference genome sequences. Therefore,
in order to accurately observe known miRNA expression,
we mapped clean short miRNA reads to human pre-
miRNAs from the mirBase database (http://www.mirba
se.org/) using SHRiIMP2 software [44]. RPKM were com-
puted to normalize the miRNA expression, and miRNAs
were ignored when the number of mapped reads was less
than 5. Differentially expressed genes were identified by
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DEGseq [43] using the same parameters as that for RNA--
seq. To predict the gene target by miRNAs, two computa-
tional target prediction algorithms (RNAhybrid 2.1 [45]
and miRanda 3.3 [46]) were used. The results predicted by
both algorithms were combined, and the overlapping se-
quences were determined.

Functional profiling of differentially expressed genes

The Database for Annotation, Visualization and Integrated
Discovery (DAVID) (http://david.abcc.nciferf.gov/) was
used to identify functional categories of differentially
expressed genes. Following the instructions of the DAVID
manual, differentially expressed genes in each sample were
uploaded, and the function charts were generated. The
functional groups with a P-value less than 0.05 and gene
count greater than two were examined.

qRT-PCR

Total RNA was extracted from cells using TRIzol
reagent (Invitrogen). Target genes were amplified from
100 ng total RNA using a One Step SYBR Prime Script
RT-PCR Kit (TaKaRa) and CFX96 real-time PCR detec-
tion instrument (Bio-Rad). SCARB2 mRNA levels were

analyzed with fS-actin as the internal control. SCARB2
primer: sense, 5'-GTACTGAGGCATTTGACTCCT-3';
antisense, 5'-AGTTCCCTGTAGGTGTATGGC-3". S-ac
tin primer: sense, 5-CCACCATGTACCCAGGCATT-
3’; antisense, 5'-CCGGACTCATCGTACTCCTG-3".

Western blot

293T cells were infected with CVA16 at 0, 107, 1072, 10
72,107 and 1 TCIDs, per cell. After 2 h, the cells were
washed twice with PBS and then cultured in fresh
DMEM (10% FCS) and harvested after 15 h. The expres-
sion levels of SCARB2 in 293T cells were detected by
Western blot with pB-actin as the internal control. After
treatment with lysis buffer, proteins were subjected to
10% SDS-PAGE, and transferred to nitrocellulose mem-
branes. After blocking with 5% nonfat milk and washing
in Tris-buffered saline-Tween solution, membranes
were incubated with goat anti-SCARB2 primary antibody
(1:2000, R&D Systems), followed by incubation with an
alkaline phosphatase-conjugated rabbit anti-goat second-
ary antibody (1:5000, Sigma). The staining was carried
out with NBT and BCIP solutions.
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Additional files

Additional file 1: RNA-Seq saturation curves. The horizontal axis
represents number of reads. The left vertical axis represents the number
of genes, and the right vertical axis represents the correlation coefficient.
Saturation test results showed that the sequencing data were sufficient
for analysis of differences in gene expression. (PPTX 49 kb)

Additional file 2: Differently expressed genes between CVA16-infected
and CVA16-non-infected cell samples. (XLS 584 kb)

Additional file 3: GO functional enrichment of differentially expressed genes
between CVAT16-infected and CVAT16-non-infected cell samples. (PPTX 68 kb)

Additional file 4: Differently expressed miRNA between CVA16-infected
and CVA16-non-infected cell samples. (XLS 38 kb)

Additional file 5: Differently expressed target genes between CVA16-
infected and CVA16-non-infected cell samples. (XLS 403 kb)
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