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Abstract

Background: With the current microarray and RNA-seq technologies, two-sample genome-wide expression data
have been widely collected in biological and medical studies. The related differential expression analysis and gene set
enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets
are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical
interest.

Methods: In this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method
is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter
space when the number of data sets is increased. The model-based probability of discordance enrichment can be
calculated for gene set detection.

Results: We apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor
pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets
according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it
association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor
tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets
are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive).
We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene
PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor
interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is
well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g.
more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the
microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis,
we observed overall similar results and the above two pathways are still the most significant detections. More
interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway
analysis of genome-wide association study (GWAS) data.
(Continued on next page)
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Conclusions: This study illustrates that some disease-related pathways can be enriched in discordant molecular
behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful
in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data
collected by the recent RNA-seq technology.

Keywords: Discordance, Gene set enrichment, Mixture models

Background
Genome-wide expression data have been widely collected
by the recent microarray [1–3] or RNA-seq technologies
[4, 5]. In addition to the differential expression analysis
for the identification of potential study-related biomark-
ers [6], gene set enrichment analysis (or gene set analysis)
for the identification of study-related pathways (or gene
sets) has received a considerable attention in the recent
literature [7, 8]. It enables us to detect weak but coherent
changes in individual genes through aggregating informa-
tion from a specific group of genes.
In the current public databases, large genome-wide

expression data sets or multiple genome-wide expression
data sets have been made available [3, 9]. For a large
data set, multiple subsets can be generated according to
different stages of an important feature. Integrative anal-
ysis enables us to detect weak but coherent changes in
individual datasets through aggregating information from
different datasets [10–12].
Integrative gene set enrichment is an approach that

aggregates information from a specific group of genes
among different datasets [13–15]. Due to the afore-
mentioned complex analysis scenario, different analysis
methods are needed to address different study pur-
poses. For example, the study purpose can be to iden-
tify gene sets with statistical significance after data
integration (without considering whether changes are
positive or negative) and an extension of traditional
meta-analysis method can be used, or the study pur-
pose can be to identify gene sets with concordance
enrichment and a mixture model based approach can be
used.
In this study, we consider a series of related genome-

wide expression data sets collected at different stages of
an important feature. For an illustrative example, RNA-
seq data can be collected at many different growth time
points and we are interested in the following study pur-
pose. The gene expression in some pathways may be
overall high at early time points and overall low at later
time points. It is biologically interesting to identify these
pathways with clearly discordant behaviors. Pang and
Zhao [16] have recently suggested a stratified gene set
enrichment analysis. (Jones et al. [17] also recently con-
ducted a stratified gene expression analysis.) The analysis
purpose in this study is different from theirs. As we have

explained, to achieve an efficient analysis for the detection
of discordance among a series of related genome-wide
expression data sets, we need a specific statistical method.
In a differential expression analysis and/or gene set

enrichment analysis, it is usually unknown whether a
gene is truly differentially expressed (up-regulated or
down-regulated) or non-differentially expressed (null).
Statistically, we can conduct a test (e.g. t-test) for the
observations from each gene and obtain a p-value to eval-
uate how likely the gene is differentially expressed. False
discovery rate [6, 18] can be used to evaluate the propor-
tion of false positives among claimed positives. Another
approach can also be considered. It is based on the well-
known finite normal-distribution mixture model [19].
Signed z-scores can be obtained from one-sided p-values
[15, 20]. The assumption is that all the z-scores are a sam-
ple of a mixture model with three components: one with
zero population mean representing non-differentially
expressed genes and the other two with positive and neg-
ative population means representing up-regulated and
down-regulated genes, respectively. The false discovery
rate (FDR) can be conveniently calculated under this
framework.
In the mixture model approach, although the compo-

nent information is still unknown, it can be estimated by
the well-established E-M algorithm [19]. This information
has been used to address the enrichment in concordance
among different data sets [15]. In this study, our inter-
est is to detect enrichment in discordance among a series
of related genome-wide expression data sets collected at
different stages of an important feature. The estimated
component information can be useful in the calculation
of discordance enrichment probability (see “Methods” for
details). Therefore, our method is developed based on a
mixture model.
In the “Methods” section, we will review the back-

ground for our mixture model based approach. Without
a structure consideration, the model parameter space
increases exponentially with the increase of number
of data sets. Therefore, a novel statistical contribu-
tion of this study is that we propose a two-level mix-
ture model to achieve a linearly increased parameter
space with the increase of number data sets. The model
parameters can be estimated by the well-established E-
M algorithm and the model-based probability of dis-
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cordance enrichment can be calculated for gene set
detection.

Motivation
Table 1 gives an artificial example to illustrate discordance
enrichment. Assume there are six two-sample genome-
wide expression data sets, and z-scores (see “Methods” for
details) for all genes are calculated. Assume there is an
important molecular pathway with nine genes, and their
z-scores are shown in Table 1. A positive or negative z-
score implies a possible up-regulation or down-regulation,
respectively. In Table 1, there are several genes with some
clearly positive and some clearly negative z-scores (like
absolute value greater than 4). For examples, z-scores
7.7, 4.8, -4.9 and -7.6 are observed for gene G4; z-scores
6.5 and -8.1 are observed for gene G5; z-scores 7.9, 5.0,
4, -8.6 and -8.9 are observed for gene G6; z-scores 4.6,
-5.6 and -9.0 are observed for gene G7, and z-scores 5.3,
-4.1 and -4.8 are observed for G8. These observations
of clear discordance suggest that, in this pathway, some
genes may behave clearly differently among different data
sets. Furthermore, there are five out of nine genes with
these clear discordant behaviors. If we only expect about
30% of genes with such behaviors, then this proportion is
obviously large (> 50%). An exploration of pathways (or
gene sets) enriched in clear discordance will enable us to
further understand themolecular mechanisms of complex
diseases.
Pancreatic cancer related studies are important in pub-

lic health [21]. Recently, gene PNLIP (pancreatic lipase)
has been shown its association with the pancreatic can-
cer survival rate [22]. A paired two-sample microarray
genome-wide expression data set has been collected for
studying pancreatic cancer [23]. One advantage of this
paired design is that we can focus on the expression
ratio between tumor and non-tumor tissues for each
gene. One related biological motivation is to use the

Table 1 An artificial example for discordance illustration

z-Score

Gene z1 z2 z3 z4 z5 z6

G1 6.4 8.8 6.8 8.4 10.4 1.2

G2 5.2 4.5 7.0 5.5 3.3 6.3

G3 -0.3 -1.9 1.8 2.9 6.7 1.5

G4 4.8 7.7 2.3 -4.9 -7.6 2.2

G5 1.9 6.5 -1.2 0.9 -8.1 2.1

G6 4.0 -8.9 -1.1 5.0 -8.6 7.9

G7 3.7 -5.6 -1.6 -0.6 -9.0 4.6

G8 -3.1 -4.8 -1.6 5.3 -2.9 -4.1

G9 -6.3 -9.7 -1.1 -6.4 -8.4 -7.1

genome-wide expression data set to understand molecu-
lar changes related to the change of expression ratio of
gene PNLIP. In this study, more specifically, our interest
is to identify pathways or gene sets showing clearly
discordant behavior when the expression ratio of gene
PNLIP changes. Understanding these molecular changes
can help us further investigate the role of gene PNLIP and
even the general disease mechanism of pancreatic cancer.
Gene expression profiles are measured as continuous

variables. However, if we can perform this analysis with
a relatively simple method, then the results can be more
interpretable. Therefore, our approach is to divide the
microarray data set into a series of non-overlapping sub-
sets according to the tumor/non-tumor paired expression
ratio of gene PNLIP. The log-ratio ranges from a nega-
tive value (e.g. more expressed in non-tumor tissue) to
a positive value (e.g. more expressed in tumor tissue).
Our purpose is to understand whether any gene sets are
enriched in discordant behaviors among these subsets
(when the log-ratio is increased from negative to posi-
tive). Notice that we only use the expression ratio of gene
PNLIP to divide the study data set. We do not consider
the expression profiles of other genes for data division.
There is no analysis optimization in data division and this
strategy avoids the selection bias towards our analysis.
The number of study subjects in the microarray data

set is adequate so that we can divide the data set into
many subsets (e.g. greater than five) so that the biological
changes can be better explored. After dividing the study
data set into K non-overlapping subsets, we can perform
genome-wide differential expression analysis for each sub-
set. Genes can be generally categorized as up-regulated
(positively differentially expressed), down-regulated (neg-
atively differentially expressed) or null (non-differentially
expressed). Genes may show concordant behaviors or dis-
cordant behaviors among different subsets. For examples,
showing positive differential expression in all K subsets is
clearly a concordant behavior and showing negative dif-
ferential expression in the first subset but positive differ-
ential expression in the last subset is clearly a discordant
behavior.
In a genome-wide differential expression analysis, we

usually calculate the test scores based on a chosen statis-
tic (e.g. t-test) to evaluate whether genes are differen-
tially expressed or not. For simplicity, we choose the
well-known two-sample t-test. A strong positive or neg-
ative differential expression would result in clearly posi-
tive or negative test score. A non-differential expression
would result in a test score close to zero and the test
score could be either positive or negative (but rarely zero
exactly). Therefore, if a gene is concordantly differen-
tially expressed (e.g. all up-regulated with clearly positive
test scores) in some subsets but it is not differentially
expressed (e.g. all null with slightly positive test scores)
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in the other subsets, then it can be statistically difficult
to evaluate whether the gene has an overall discordant
behavior.
Therefore, in this study, we focus on genes with some

clearly discordant behaviors: up-regulated in at least one
subset and down-regulated in at least one subset (to avoid
the statistical difficulty mentioned above). We are inter-
ested in identifying pathways or gene sets enriched in
clearly discordant behaviors. We focus on KEGG path-
ways. The detected pathways will be useful for our further
understanding of the role of gene PNLIP in pancreatic
cancer research.
Gene TP53 is well-known for its role as tumor sup-

pressor in general cancer studies. Its log-ratio in the
microarray data set also ranges from a negative value (e.g.
more expressed in non-tumor tissue) to a positive value
(e.g. more expressed in tumor tissue). We also divide the
microarray data set according to the expression ratio of
gene TP53 and repeat the discordance enrichment analy-
sis. We consider the analysis result based on gene TP53 a
useful comparison with the analysis result based on gene
PNLIP.

Methods
Multiple data sets
In this study, we consider a detection of gene set enrich-
ment in discordant behaviors (or discordance gene set
enrichment) for a series of two-sample genome-wide
expression data sets. The term “enrichment in discordant
behaviors" will be mathematically defined later. Let K be
the number of data sets and let m be the number of com-
mon genes among this series of data sets. Each data set is
collected for two given groups (same for all K data sets).
In general, one group represents a normal status and the
other group represents an abnormal status.
For a single two-sample genome-wide expression data

set, differential expression analysis and gene set enrich-
ment analysis are usually conducted. The purpose of anal-
ysis of differential expression is to identify genes showing
significantly up-regulation or down-regulation when two
sample groups are compared. The purpose of gene set
enrichment analysis is to identify pathways (or gene sets)
showing coordinate up-regulation or down-regulation,
which may be considered as an extension of differential
expression analysis.
Therefore, the following gene behaviors are usually of

our research interest in two-sample expression data anal-
ysis: positive change (or up-regulation), negative change
(or down-regulation) and null (or non-differentially
expressed). However, these underlying behaviors are usu-
ally not observed and expression data are collected to
make statistical inference about them.
Data pre-processing is important for both microarray

and RNA-seq data and it has been well discussed in the

literature [24–26]. In our study, the data can be down-
loaded from a well-known public database. We assume
that the gene expression profiles have been appropriately
pre-processed. In an analysis of multiple expression data
sets, it is usually necessary to focus on common genes
and gene identifiers can be useful for this purpose. In our
study, we divide a relatively large data set into a series of
non-overlapping subsets. Therefore, all the genes in the
downloaded data are common.

z-Score
Many statistical tests have been proposed for analyzing
a two-sample genome-wide expression data set [27, 28].
In this study, the traditional paired-two-sample t-test is
chosen for its simplicity (although other statistics could
be certainly considered, see below). For each gene in each
data set (or subset), we perform the t-test to obtain a t-
score. Its p-value is evaluated based on the permutation
procedure (randomly switch the tumor/non-tumor labels
for each pair of tissues) so that the normal distribution
assumption is not assumed for the paired-difference data.
All the permuted t-scores are pooled together so that tiny
p-values can be calculated [29].
One-sided upper-tailed p-values are calculated so that

the direction of change can be distinguished for each gene
in each data set. Let pi,k be the p-value for the i-th gene
in the k-th data set. z-scores are obtained by an inverse
normal transformation

zi,k = �−1(pi,k),

where �(·) is the cumulative distribution function (c.d.f.)
of the standard normal distribution (mean zero and vari-
ance one). This transformation has been widely used [20]
and our proposed multivariate normal mixture model will
be applied to the transformed z-scores.

Discordance enrichment
Our proposed method is a type of gene set enrichment
analysis. As it has been discussed by Lai et al. [15], we
defined “enrichment” as “the number of events of interest
is larger than expected” and our “event of interest” in this
study is “a list of clearly discordant behaviors” from a gene.
If we know whether the expression profile of a gene is
up-regulated (simplified as “up”), down-regulated (simpli-
fied as “down”) or non-differentially expressed (simplified
as “null”) in a data set, then a list of concordant behav-
iors among K data sets for this gene could be (up, up,
. . . , up), (down, down, . . . , down) or (null, null, . . . , null).
In this study, we focused on a list with at least one “up”
and at least one “down” among K data sets. For example,
a list like (down, up, up, . . . , up) is an event of interest
but a list like (null, up, up, . . . , up) is not. The reason is
“down” and “up” can be visually distinguished by the neg-
ative (“-") and positive (“+”) signs in z-scores, respectively.
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However, zero z-scores are rarely observed. Therefore, it
is less clear to distinguish “null” from “up” (or “null” from
“down”).
Based on the expression profiles, we obtain z-scores

to make statistical inference about genes’ behaviors in
each data set. To evaluate “discordance enrichment" as
defined above, we considered a mixture model approach
that allows us to estimate the probability of a behavior
(“up”, “down” or “null”) and the expected number of events
of interest (notice that these are not directly observed in
the data sets). Let S be the set of genes for a pathway (or
gene set in general) andmS the number of genes in S. If the
i-th gene in S is showing a list of clearly discordant behav-
iors, then we set an indicator variableUS,i = 1; Otherwise,
we set US,i = 0. Then, we can calculate the discordance
enrichment score (DES) for gene set S that is a probability
defined as

DESS = Pr
( mS∑

i=1
US,i > mSθ

)
,

in which θ is the proportion of genes with clearly discor-
dant behaviors.
In our mixture model, we used normal distributions

to model the z-scores. A novel contribution is that the
parameter space of our model increases linearly when
the number of data sets is increased. This is due to the
two-level structure of our model. (The parameter space
of a general model for this analysis increases exponen-
tially when the number of data sets is increased). For
each gene in each data set, we considered three nor-
mal distribution components that represent up-regulation
(positive distribution mean), down-regulation (negative
distribution mean) and null (zero mean). (Theoretically,
p-values under the null hypothesis are uniformly dis-
tributed. Therefore, z-scores under the null hypothesis are
normally distributed with mean zero and variance one).
The mathematical details are described below.

A two-level mixture model
First, we described the basic model structure for just one
data set. Then, we introduced our novel two-level mixture
model. A simple three-component normal distribution
mixture model [30, 31] is considered for each z-score zi,k
(the i-th gene in the k-th data set, i = 1, 2, . . . ,m and
k = 1, 2, . . . ,K ):

f (zi,k) =
2∑

jk=0
ρjk ,kφμjk ,k ,σ

2
jk ,k

(zi,k).

In the above model, φμ,σ 2(·) is the probability density
function (p.d.f.) of a normal distribution with mean μ and
variance σ 2. Three components represent up-regulation
with μ1,k > 0, down-regulation with μ2,k < 0 and null
with μ0,k = 0 (also recall that σ 2

0,k = 1). For this model, an

assumption is that the p.d.f. of zi,k is simply φμjk ,k ,σ
2
jk ,k

(zi,k)
if we know the underlying component information jk for
the i-th gene in the k-th data set. However, the com-
ponent information is usually not observed in practice.
Then, we have this one-dimensional mixture model after
the introduction of component proportion parameters{
ρjk ,k , jk = 0, 1, 2

}
for the k-th data set.

When we extend the above mixture model to a higher
dimension (i.e. K data sets), without a structure consid-
eration, the parameter space increases exponentially due
to the 3K different component combinations (3 compo-
nents in each of K data sets). Therefore, when K is not
a small number (i.e. K > 4), we need a more efficient
model [15]. Biologically, when different data sets are col-
lected for the same or similar research purpose, some
genes are likely to show consistent behaviors across differ-
ent data sets and some genes are likely to show different
behaviors. For genes likely showing consistent behaviors
across K data sets, we consider a complete concordance
(CC) multivariate model to approximate the distribution
of {zi,k , k = 1, 2, . . . ,K}. For genes likely showing differ-
ent behaviors across K data sets, we consider a complete
independence (CI) multivariate model to approximate the
distribution of {zi,k , k = 1, 2, . . . ,K}. (Notice that there
is no overlap among multiple data sets. If the component
information among these data sets is known, then z-scores
are independent.) We first describe the CI model and CC
model as below.
The CI model assumes that the behaviors of the i-th

gene are independent across different data sets. Therefore,
we have the following mixture model:

fCI(zi,1, zi,2, . . . , zi,K ) =
K∏

k=1

⎡
⎣ 2∑
jk=0

ρjk ,kφμjk ,k ,σ
2
jk ,k

(zi,k)

⎤
⎦ .

This model is simply a product of K one-dimensional
three-component mixture-models.
The CC model assumes that the behaviors of the i-th

gene are the same across different data sets. Although the
component information is unknown, the components for
different data sets must be consistent. Therefore, we have
the following mixture model:

fCC(zi,1, zi,2, . . . , zi,K ) =
2∑

j=0

[
πj

K∏
k=1

φμj,k ,σ 2
j,k

(zi,k)
]
.

This model has three components and each component
is a product of K normal probability density functions.
In practice, it is unknown whether the i-th gene is

showing independent or consistent behaviors. There-
fore, we consider CI and CC as two high-level com-
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ponents and propose the following two-level model for{
zi,k , k = 1, 2, . . . ,K

}
:

f (zi,1, zi,2, . . . , zi,K ) = λfCC(zi,1, zi,2, . . . , zi,K )

+ (1 − λ)fCI(zi,1, zi,2, . . . , zi,K ).
Notice that this two-level model is still a mixture model.

We further assume that {μjk ,k , σ
2
jk ,k , jk = 0, 1, 2, k =

1, 2, . . . ,K} are shared by both CI and CC models. It is
evident that the model parameter space increases linearly
when the number of data sets (K ) increases.
We can use the well-established Expectation-

Maximization (E-M) algorithm [19] for parameter
estimation. First, it is necessary to introduce some indica-
tor variables (for component information) for the z-scores
{zi,k , k = 1, 2, . . . ,K} of the i-th gene. Then, we describe
the E-step and M-step.
For high-level component information,

ωi=
{
1 if gene’s behaviors are consistent with CC model;
0 if gene’s behaviors are consistent with CI model.

For CI model component information,

ηi,jk ,k =
{
1 if zi,k is sampled from the jk-th component;
0 otherwise.

For CC model component information,

ξi,j =
{
1 if all {zi,k , k = 1, 2, . . . ,K} are sampled from the j-th component;
0 otherwise.

The E-step is the calculation of the following expected
values when all the parameter values are given.

E(ωi) = λfCC(zi,1, zi,2, . . . , zi,K )

λfCC(zi,1, zi,2, . . . , zi,K ) + (1 − λ)fCI(zi,1, zi,2, . . . , zi,K )
,

E((1 − ωi)ηi,jk ,k)

=
(1 − λ)ρjk ,kφμjk ,k ,σ

2
jk ,k

(zi,k)
∏K

h=1,h�=k
∑2

jh=0 ρjh ,hφμjh ,h ,σ
2
jh ,h

(zi,h)

λfCC(zi,1, zi,2, . . . , zi,K ) + (1 − λ)fCI (zi,1, zi,2, . . . , zi,K )
.

E(ωiξi,j)

=
λπj

∏K
k=1 φμj,k ,σ 2

j,k
(zi,k)

λfCC(zi,1, zi,2, . . . , zi,K )+(1 − λ)fCI(zi,1, zi,2, . . . , zi,K )
,

TheM-step is the calculation of the following parameter
values when all the component information is given:

λ̂ = 1
m

m∑
i=1

E(ωi),

ρ̂jk ,k =
∑m

i=1 E
(
(1 − ωi)ηi,jk ,k

)
∑m

i=1
∑2

jh=0 E
(
(1 − ωi)ηi,jh,k

) ,

π̂j =
∑m

i=1 E(ωiξi,j)∑m
i=1

∑2
h=0 E(ωiξi,h)

,

μ̂jk ,k =
∑m

i=1
[
E(ωiξi,jk ) + E((1 − ωi)ηi,jk ,k)

]
zi,k∑m

i=1[ E(ωiξi,jk ) + E((1 − ωi)ηi,jk ,k)]
,

σ̂ 2
jk ,k =

∑m
i=1[ E(ωiξi,jk ) + E((1 − ωi)ηi,jk ,k)] ] (zi,k − μ̂jk ,k)

2∑m
i=1[ E(ωiξi,jk ) + E((1 − ωi)ηi,jk ,k)]

.

E-step and M-step are iterated until a numerical con-
vergence is achieved. In this study, the numerical con-
vergence is defined as that the difference between the
current log-likelihood and the previous one is within a
given tolerance value (e.g. 10−4).

Enrichment score
As we have discussed in Discordance enrichment, in this
study, we focus on genes’ behaviors with at least one up-
regulation and at least one down-regulation amongK data
sets (our event of interest: a gene with clearly discor-
dant behaviors). However, we do not need to enumerate
all these combinations (among 3K in total). The related
computing can be simplified if we enumerate the com-
pliment events instead. There are three combinations for
complete concordance: (up, up, ..., up), (down, down, ...,
down) and (null, null, ..., null). They will be excluded.
There are

∑K−1
l=1

(K
l
)
combinations with both “null" and

“up" (without “down") and there are
∑K−1

l=1
(K
l
)
combina-

tions with both “null" and “down" (without “up"). They will
also be excluded. Then, the remaining combinations are
our events of interest (at least one “up" and at least one
“down").
According to the above computing strategy, based on

the two-level mixture model, the related proportion (θ ) of
genes with clearly discordant behaviors (also see “Discor-
dance enrichment” for more details) can be calculated as
follows.

θ =(1−λ)

⎛
⎝1−

2∑
j=0

K∏
k=1

ρj,k−
∑

{jk}∈A

K∏
k=1

ρjk ,k −
∑

{jk}∈B

K∏
k=1

ρjk ,k

⎞
⎠,

where A is the set of lists with a mix of 0’s and 2’s, and B is
the set of lists with a mix of 0’s and 1’s.
Let S be a gene set withmS genes. As defined in Discor-

dance enrichment, let the indicator variable US,i = 1 if the
i-th gene in S is showing a list of clearly discordant behav-
iors, andUS,i = 0 otherwise. Then, based on the two-level
mixture model, the related probability can be calculated
as follows.

Pr(US,i = 1) = (1 − λ)[ fCI(zS,i,1, zS,i,2, . . . , zS,i,K )

−
2∑

j=0

K∏
k=1

ρj,kφμj,k ,σ 2
j,k

(zS,i,k)

−
∑

{jk}∈A∪B

K∏
k=1

ρjk ,kφμjk ,k ,σ
2
jk ,k

(zS,i,k)]

/f (zS,i,1, zS,i,2, . . . , zS,i,K ),
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where (zS,i,1, zS,i,2, . . . , zS,i,K ) are the related z-scores. Let
ζS,i = Pr(US,i = 1), which is a conditional probability
according to the given model and observed data.
Under the assumption that z-scores from different genes

are independent, the discordance enrichment score (DES)
for gene set S, which has been defined in Discordance
enrichment as DESS = Pr

(∑mS
i=1US,i > mSθ ]

)
, can be

calculated as follows.

DESS =
1∑

US,1=0

1∑
US,2=0

· · ·
1∑

US,mS=0

[
I
( mS∑

i=1
US,i

> mSθ

) mS∏
i=1

ζ
US,i
S,i (1 − ζS,i)

1−US,i

]
,

where I(true statement) = 1 and I(false statement) =
0 (indicator function). Since {ζS,i, i = 1, 2, . . . ,mS} are
usually different for different genes, the above formula
is a calculation of a tail probability for a heterogeneous
Bernoulli process. The related computing issue and the
related false discovery rate have already been discussed
by Lai et al. [15]. Therefore, we described them briefly as
below.

False discovery rate
As discussed in the literature [15, 20], the above enrich-
ment score is a conditional probability and a true positive
proportion for gene set S. Therefore, the related false dis-
covery rate [6, 18] for the top T gene sets {S1, S2, . . . , ST }
identified by the above DES can be conveniently derived
as below.

FDR = 1 −
T∑
t=1

DESSt/T .

Computational approximation
As discussed in Lai et al. [15], the exact calculation ofDES
can be difficult due to the complexity of heterogeneous
Bernoulli process. AMonte Carlo approximation has been
suggested as follows. First, set an integer variable X = 0.
For the i-th gene in S, simulate a Bernoulli random vari-
able with probability of event ζS,i. Then, count the number
of events from all genes in S, and increase X by one if
this number is larger thanmSθ . Repeat the simulation and
counting B times and report X/B as the approximated
DES. B = 2000 was suggested by Lai et al. [15].

Results and discussion
Genome-wide expression data and KEGG pathway
collection
Zhang et al. [23] recently conducted a genome-wide
expression study for forty-five matched pairs of pancre-
atic tumor and adjacent non-tumor tissues. The data
were collected by the microarray technology (Affymetrix

GeneChip Human Gene 1.0 ST arrays) and were made
publicly available in the NCBI GEO database [23]. The
collections of gene sets or pathways can be downloaded
from the Molecular Signature Database [7, 8]. At the time
of study, the collections have been updated to version 4.0.
In this study, we focus on 186 KEGG pathways for our
data analysis. There are 28677 genes available for our dis-
cordance enrichment analysis. As we have explained in
the Methods, we expect to identify pathways with enrich-
ment in clearly discordant gene behaviors among a series
of pre-defined genome-wide expression data sets. (Notice
that a pathway with DES ∼ 1 is significantly enriched
in clearly discordant behaviors; and a pathway with
DES ∼ 0 is evidently not enriched in clearly discordant
behaviors).

Data division based on gene PNLIP
The hierarchical clustering tree (with Euclidean distance
and the “median” agglomeration method) for the log2-
transformed ratio values of gene PNLIP is included in
Fig. 1a. Several major clusters of subjects can be gen-
erated if we cut the tree at 0.15. After including these
isolated subjects into their nearby clusters, we can obtain
seven clusters (subgroups of tumor/non-tumor pairs).
Therefore, seven subsets of genome-wide expression data
were defined accordingly with sample size 7+7, 7+7,
6+6, 4+4, 6+6, 9+9, or 6+6 (see Fig. 2a). Figure 3b
shows the paired expression ratio values of gene PNLIP
[log2-transformation applied here for the convenience of
visualization of up-regulation (positive sign) or down-
regulation (negative sign)]. Figure 3a shows the indi-
vidual expression values for gene PNLIP in different
subsets. Notice that, from Fig. 3b, subsets 1 represents
a clear down-regulation of gene PNLIP, and subsets 6
and 7 represents null and up-regulation of gene PNLIP,
respectively.

z-Scores based on gene PNLIP
Figure 4 shows pair-wise scatterplot for comparing z-
scores from the seven subsets defined by the paired-
ratio of gene PNLIP. Most scatterplots for adjacent or
close-to-adjacent subsets are showing a relatively regular
positive correlation pattern (implying overall consistent
gene behaviors). The scatterplots for far-from-adjacent
subsets are mostly showing an irregular weak correla-
tion pattern (implying a considerable amount of incon-
sistent gene behaviors). As mentioned above, subsets
1, 6 and 7 are representative for down-regulation, null
and up-regulation of gene PNLIP, respectively. It is
clear that the scatterplot for subsets 7 vs. 1 is show-
ing the most irregular pattern, which implies that many
genes have clearly discordant behaviors when gene
PNLIP changes its behavior from down-regulation to up-
regulation.
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(a) (b)

Fig. 1 Hierarchical clustering for data division. a Tree of paired-ratio values (log2-transformed) of gene PNLIP. b Tree of paired-ratio values
(log2-transformed) of gene TP53

Significant pathways based on gene PNLIP
Table 2 lists the significant KEGG pathways identified by
the discordance enrichment analysis (with DES > 0.80,
also the related maximum FDR <0.05). Among these
eleven pathways, there are neuroactive ligand receptor
interaction, olfactory transduction, alpha-linolenic-acid
metabolism and linoleic-acid metabolism pathways. The
literature support for the association between pancreatic
cancer and each of these pathways will be discussed
later. For the olfactory transduction and neuroactive lig-
and receptor interaction pathways, Fig. 5 shows their
z-score pattern changes when all the adjacent sub-
sets are pair-wisely compared and three representative

subsets (1, 6, 7, see above for their details) are also
pair-wisely compared. For the pairs of subsets 2 vs. 1,
3 vs. 2, concordant behaviors can be overall observed
for the genes in these two pathways. Discordant behav-
iors can be overall observed for the pairs 6 vs. 5, 7
vs. 6, 6 vs. 1 and 7 vs. 1. Particularly for the pair
7 vs. 1 (up-regulation vs. down-regulation for gene
PNLIP), the genes in olfactory transduction pathway
are mostly down-regulated in subset 1 but evenly up-
regulated or down-regulated in subset 7, and the genes
in neuroactive ligand receptor interaction pathway are
almost evenly up-regulated or down-regulated in both
subsets.

(a) (b) (c)

Fig. 2 Comparison of expression and paired-ratio between gene TP53 vs. gene PNLIP. a Comparison of paired-ratio values (log2-transformed). Gray
dotted lines represent the cutoff values for defining subsets. b Comparison of expression values for non-tumor tissues. c Comparison of expression
values for tumor tissues
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Fig. 3 Expression and paired-ratio of gene PNLIP. a Expression values for tissues in seven subsets (gray color represents non-tumor and dark color
represents tumor). b Paired-ratio values (log2-transformed) in seven subsets (gray dotted vertical lines for their separation)

Data division based on gene TP53
The hierarchical clustering tree (with Euclidean distance
and the “median" agglomeration method) for the log2-
transformed ratios values of gene TP53 is included in
Fig. 1b. Several major clusters of subjects can be generated
if we cut the tree at 0.03. After including these isolated
subjects into their nearest clusters, we can obtain six clus-
ters (subgroups of tumor/non-tumor pairs). Therefore,
six subsets of genome-wide expression data were defined
accordingly with sample size 4+4, 7+7, 6+6, 13+13,
10+10, or 5+5 (see Fig. 2a). Figure 6b shows the paired
expression ratio values of gene TP53 [log2-transformation
applied here for the convenience of visualization of up-
regulation (positive sign) or down-regulation (negative
sign)]. Figure 6a shows the individual expression values
for gene TP53 in different subsets. Notice that, from
Fig. 6b, subsets 1 represents a clear down-regulation of
gene TP53, and subsets 3 and 6 represents null and up-
regulation of gene TP53, respectively.

z-Scores based on gene TP53
Figure 7 shows pair-wise scatterplot for comparing
z-scores from the six subsets defined by the paired-ratio
of gene TP53. Many scatterplots for adjacent or close-
to-adjacent subsets are still showing a relatively regular
positive correlation pattern (implying overall consistent

gene behaviors). Almost all the scatterplots for far-from-
adjacent subsets are showing an irregular weak correlation
pattern (implying a considerable amount of inconsistent
gene behaviors). As mentioned above, subsets 1, 3 and
6 are representative for down-regulation, null and up-
regulation of gene TP53, respectively. All the pair-wise
scatterplots for these three subsets are showing irreg-
ular patterns (with the scatterplot for subsets 6 vs. 1
the most irregular), which implies that many genes have
clearly discordant behaviors when gene TP53 change
its behavior from down-regulation to null, and then to
up-regulation.

Significant pathways based on gene TP53
Table 2 list the significant KEGG pathways identified by
the discordance enrichment analysis (with DES >0.80,
also the related maximum FDR <0.10). Among these
five pathways, there are neuroactive ligand recep-
tor interaction, olfactory transduction, alpha-linolenic-
acid metabolism and linoleic-acid metabolism pathways
(which have been identified above by the analysis based
on gene PNLIP). For the olfactory transduction and neu-
ractive ligand receptor interaction pathways, Fig. 8 shows
their z-score pattern changes when all the adjacent subsets
are pair-wisely compared and three representative subsets
(1, 3, 6, see above for their details) are also pair-wisely
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Fig. 4 z-score comparison (gene PNLIP). Pair-wise scatterplots for comparing z-scores from seven subsets defined by the paired-ratio of gene PNLIP

compared. For the pairs of subsets 6 vs. 5, 5 vs. 4 and
4 vs. 3, concordant behaviors can be overall observed
for the genes in these two pathways. Discordant behav-
iors can be overall observed for the pairs 2 vs. 1, 3 vs.
2, 3 vs. 1, 6 vs. 1 and 6 vs. 3. Particularly for the pair 6
vs. 1 (up-regulation vs. down-regulation for gene TP53),
the genes in olfactory transduction pathway are mostly
down-regulated in subset 6 but evenly up-regulated or
down-regulated in subset 1, and the genes in neuractive
ligand receptor interaction pathways are somewhat evenly
up-regulated or down-regulated in both subsets.

Literature support
We have conducted a discordance enrichment analy-
sis based on gene PNLIP and a discordance enrichment
analysis based on gene TP53. Among two lists of iden-
tified pathways, there are four in common: neuroactive
ligand receptor interaction, olfactory transduction, alpha-
linolenic-acid metabolism and linoleic-acid metabolism
pathways (see Table 2). To further understand these path-
ways, we have checked the related biomedical literature.
The genome-wide expression data analyzed in this study

were collected based on the microarray technology for
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Table 2 Pathways identified by the discordance enrichment
analysis

KEGG pathway DES FDR

Gene PNLIP based analysis

Neuroactive ligand receptor interaction >0.99 <0.01

Olfactory transduction >0.99 <0.01

Ribosome >0.99 <0.01

Maturity onset diabetes of the young >0.99 <0.01

alpha-Linolenic acid metabolism >0.99 <0.01

Glycine serine and threonine metabolism 0.98 <0.01

Steroid hormone biosynthesis 0.97 <0.01

Pentose and glucuronate interconversions 0.96 0.01

Ascorbate and aldarate metabolism 0.95 0.02

Linoleic acid metabolism 0.84 0.03

Proximal tubule bicarbonate reclamation 0.81 0.04

Gene TP53 based analysis

Neuroactive ligand receptor interaction >0.99 <0.01

Olfactory transduction >0.99 <0.01

Cardiac muscle contraction 0.89 0.04

alpha-Linolenic acid metabolism 0.85 0.07

Linoleic acid metabolism 0.80 0.09

KEGG pathways with DES>0.80 are listed by decreasing order of DES with related
FDR. KEGG pathways in bold font are identified by both analysis (one based on gene
PNLIP and the other based on gene TP53)

RNA profiling. Genome-wide association study (GWAS)
data have also been collected for pancreatic cancer
research based on the microarray technology for DNA
profiling (single nucleotide polymorphism, or SNP). Wei
et al. [32] recently conducted a pathway analysis for a large
GWAS data on pancreatic cancer research. They reported
only two pathways. Interestingly, these two pathways
are neuroactive ligand receptor interaction and olfactory
transduction pathways (top two identified from both of
our analysis results, see above for details). Notice that
their findings were based on a different type of molecular
data. This is a strong support for the discordance enrich-
ment analysis results.
We also found at least one support for both alpha-

linolenic-acid metabolism and linoleic-acid metabolism
pathways. Wenger et al. [33] conducted a study on the
roles of alpha-linolenic acid (ALA) and linoleic acid (LA)
on pancreatic cancer and they observed an association
between the disease and these two fatty acids.

Insignificant pathways
Figure 9 shows 186 DES based on PNLIP vs. DES
based on TP53. These two lists of DES’s are highly
correlated (Spearman’s rand correlation 0.642), although
some pathways identified in the analysis results based on

PNLIP are not significant in the analysis results based on
TP53. (Notice that a pathway with DES ∼1 is significantly
enriched in clearly discordant behaviors; and a pathway
with DES ∼0 is evidently not enriched in clearly dis-
cordant behaviors.) Only a small number of pathways
were identified by the discordance enrichment analysis.
The histograms in the figure show that most pathways
are showing insignificant DES’s. For each of two analysis
results, there are more than 140 pathways (among 186)
with DES <0.05. The number of pathways with both
DES <0.01 or both DES <0.05 is 111 (60%) or 138 (74%),
respectively. For both DES <0.25, 0.5 or 0.75, there are
154 (83%), 164 (88%) or 173 (93%) pathways, respectively.
Therefore, most pathways are evidently not enriched in
clearly discordant behaviors among the series of subsets
defined by the paired expression ratio of gene PNLIP;
neither are they among the series of subsets defined by
the paired expression ratio of gene TP53. Many disease
related pathways have been listed by KEGG (http://www.
genome.jp/kegg/pathway.html). The collection of pancre-
atic cancer related pathways (or KEGG pancreatic can-
cer) and the collection of cancer related pathways (or
KEGG pathways in cancer) are not enriched from both
analysis results (DES <0.001). Among the pathway com-
ponents of these two collections (e.g. cell cycle path-
way, apoptosis pathway, etc.), the highest DES value is
<0.01 for the PPAR signaling pathway from the analy-
sis results based on PNLIP, and the highest DES value
is <0.05 for the cytokine-cytokine receptor interaction
pathway from the analysis results based on TP53. Path-
ways like hedgehog signaling, proteasome, and primary
immunodeficiency are also showing low DES values
(all <0.05).

Expression profiles of PNLIP vs. TP53
PNLIP is a gene shown recently its association with
pancreatic cancer [22]. TP53 is a well-known tumor sup-
pressor gene. From the above comparison, it is interesting
that the discordance enrichment analysis results based on
PNLIP are highly correlated with the discordance enrich-
ment analysis results based on TP53. To further under-
stand this correlation, we compared the expression profile
of PNLIP with the expression profile of TP53. Figure 2a
shows a relatively weak negative correlation (Spearman’s
rank correlation -0.250) between two lists of paired-
ratios but the correlation is not statistically significant
(p-value=0.098). In the non-tumor group (Fig. 2b), the
negative correlation (Spearman’s rank correlation -0.318)
achieves a p-vlaue 0.033. In the tumor group (Fig. 2c), the
negative correlation (Spearman’s rank correlation -0.276)
is again not statistically significant (p-value=0.066). Fur-
thermore, the ratio cutoff values for defining subsets were
added to Fig. 2a. A contingency table can be generated
according to these grids (for example, the cell number

http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
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Fig. 5 z-score comparison (gene TP53). Pair-wise scatterplots for comparing z-scores from six subsets defined by the paired-ratio of gene TP53

is one for row one and column one in the table). The
chi-square test for this sparse contingency table is not
statistically significant (simulation based p-value>0.3).
Therefore, in summary, gene PNLIP may be negatively
associated with gene TP53 but no clear statistical signifi-
cance has been observed in this study.

Comparison to gene set analysis
Efron and Tibshirani [34] have proposed a gene set anal-
ysis (GSA) method for analyzing enrichment in pathways
(or gene sets). It was suggested by Maciejewski [35] that

this method is preferred in a gene set enrichment analysis.
In some situations of integrative data analysis, different
data sets cannot be simply pooled together. For each
data set, the p-value of enrichment in up-regulation can
be obtained for each gene set. To integrate the p-values
from multiple data sets (for the same gene set), we can
consider Fisher’s method (Fisher’s combined probabil-
ity test). log-Transformed p-values are summed up and
then multiplied by -2, which is well-known to follow
a chi-squared distribution under the null hypotheses.
In this way, we can perform an integrative gene set
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Fig. 6 Expression and paired-ratio of gene TP53. a Expression values for tissues in six subsets (gray color represents non-tumor and dark color
represents tumor). b Paired-ratio values (log2-transformed) in six subsets (gray dotted vertical lines for their separation)

enrichment analysis of multiple data sets (when dif-
ferent data sets cannot be pooled together). Gene
sets (or pathways) can be ranked by their chi-squared
p-values. (Similarly, the p-value of enrichment in down-
regulation can also be obtained by GSA for each gene set
and each data set. Then, the related chi-squared p-values
can be calculated by Fisher’s method.) Notice that, our
analysis purpose is to detect discordance enrichment
among multiple data sets. However, the discordance fea-
ture is usually not considered in a traditional integrative
analysis.
In this study, our analysis results were based on several

subsets divided from a genome-wide expression data set
with a relatively large sample size. These subsets could be
pooled back (to be the original large data set). Therefore,
we applied GSA to the original data (so that we could take
the advantage of its relatively large sample size). However,
after considering the adjustment for multiple hypothesis
testing, no pathways (or gene sets) could be identified even
at the false discovery rate 0.3 (or FDR < 30%). (Therefore,
the detail of GSA results is not reported).

An application to The Cancer Genome Atlas (TCGA)
data sets
For a further illustration of our method, we performed a
discordance enrichment analysis of the RNA sequencing

(RNA-seq) data collected by The Cancer Genome Atlas
(TCGA) project [3]. At the time of study, with the
consideration of adequate numbers of normal/tumor
subjects, we selected the RNA-seq data for studying
prostate adenocarcinoma (PRAD), colon adenocarci-
noma (COAD), stomach adenocarcinoma (STAD), head
and neck squamous cell carcinoma (HNSC), thyroid
carcinoma (THCA) and liver hepatocellular carcinoma
(LIHC). Among these different types of diseases, we
expected a certain level of dissimilarity in genome-wide
expression profiles. Therefore, we applied our method
to these six TCGA RNA-seq data sets (and our pro-
posed two-level mixture model was useful to reduce the
number of model parameters). Gene expression profiles
for more than 20,000 common genes were available for
our analysis.
Among 186 KEGG pathways, we report the anal-

ysis results for a collection of cancer related path-
ways. There are sixteen of these pathways in KEGG
but fourteen of them are available in the Molecu-
lar Signatures Database [7, 8]. In Table 3, the discor-
dance enrichment analysis results are also compared to
the results based on GSA-based Fisher’s method (see
Comparison to Gene Set Analysis for details). How-
ever, it is important to emphasize that the detection
of discordance enrichment is our focus in this study
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Fig. 7 z-scores in two most significantly detected pathways (gene PNLIP). Pair-wise scatterplots for comparing z-scores in the given pathway (dark
color) and out of the given pathway (gray color). All the adjacent subsets are pair-wisely compared (e.g. 2 vs. 1, 3 vs. 2, 4 vs. 3, 5 vs. 4, 6 vs. 5 and 7 vs.
6) and three representative subsets (1 for down-regulation, 6 for null, and 7 for up-regulation) are also pair-wisely compared (7 vs. 6 already shown,
then 6 vs. 1 and 7 vs. 1). The order of scatterplots is shown as (a-p)

and the feature of discordance is usually not consid-
ered in a traditional integrative analysis (e.g. Fisher’s
method).
Table 3 shows the comparison of our discordance

enrichment scores (DES) to the p-values calculated by
GSA-based Fisher’s method (up-regulation or down-
regulation). (Lower p-value for more significant result but
higher DES for more significant result.) The p53 signaling
pathway, cell cycle pathway, and PPAR signaling pathway

are three pathways with significant GSA-Fisher p-values.
For the p53 signaling pathway and cell cycle pathway,
their DES suggest low discordance among different types
of diseases for these two well-known pathways. For the
PPAR signaling pathway, its DES is also highly signifi-
cant. Figure 10 shows a considerable amount of concor-
dance as well as a considerable amount of discordance
among different types of diseases for this pathway. With
the consideration of either Bonferroni-type adjustment
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Fig. 8 z-scores in two most significantly detected pathways (gene TP53). Pair-wise scatterplots for comparing z-scores in the given pathway (dark
color) and out of the given pathway (gray color). All the adjacent subsets are pair-wisely compared (e.g. 2 vs. 1, 3 vs. 2, 4 vs. 3, 5 vs. 4, and 6 vs. 5) and
three representative subsets (1 for down-regulation, 3 for null, and 6 for up-regulation) are also pair-wisely compared (3 vs. 1, 6 vs. 1 and 6 vs. 3). The
order of scatterplots is shown as (a-p)

or FDR-type adjustment, no detection can be further
observed based on GSA-based Fisher’s method. However,
our method identified a few pathways with significant dis-
cordance enrichment (DES >0.999) including the focal
adhesion, MAPK signaling, VEGF signaling and apop-
tosis pathways. Figure 11 shows a considerable amount
of discordance among different types of diseases for the
well-known apoptosis pathway. Furthermore, the WNT
signaling, adherens junction, MTOR signaling and TGF-

beta signaling pathways are also showing high DES, which
suggest possible discordance enrichments for these path-
ways.

Conclusions
In this study, we suggested a discordance gene set enrich-
ment analysis for a series of two-sample genome-wide
expression data sets. To reduce the parameter space, we
proposed a two-level multivariate normal distribution
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Fig. 9 Comparison of DES between gene TP53 vs. gene PNLIP. (left, lower) Scatterplot of DES based on gene TP53 vs. DES based on gene PNLIP, notice
that there are overlapped dots in the scatterplot. (left, upper) Histogram of DES based on gene TP53. (right, lower) Histogram of DES based on gene
PNLIP

mixture model. Our model is statistically efficient with
linearly increased parameter space when the number
of data sets is increased. Then, gene sets can be
detected by the model-based probability of discordance
enrichment.

Based on our two-level model, if the proportion of com-
plete concordance component is high, then more genes
behave concordantly among different data sets. Similarly,
if the proportion of complete independence component
is high, then more genes behave discordantly among

Table 3 A comparison study

KEGG pathway p-value (GSA-Fisher, up) p-value (GSA-Fisher, down) DES

ECM RECEPTOR INTERACTION 0.099 0.843 0.256

CYTOKINE CYTOKINE RECEPTOR INTERACTION 0.774 0.708 0.954

FOCAL ADHESION 0.239 0.432 >0.999

WNT SIGNALING PATHWAY 0.873 0.119 0.995

ADHERENS JUNCTION 0.674 0.454 0.999

JAK STAT SIGNALING PATHWAY 0.696 0.701 0.723

MAPK SIGNALING PATHWAY 0.980 0.130 >0.999

MTOR SIGNALING PATHWAY 0.434 0.475 0.999

PPAR SIGNALING PATHWAY 0.997 <0.001 >0.999

VEGF SIGNALING PATHWAY 0.293 0.868 >0.999

APOPTOSIS 0.399 0.388 >0.999

P53 SIGNALING PATHWAY <0.001 >0.999 0.104

CELL CYCLE <0.001 >0.999 <0.001

TGF BETA SIGNALING PATHWAY 0.970 0.090 0.976

For significant detections, check pathways with low p-values or pathways with high DES
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Fig. 10 z-scores in PPAR signaling pathway (TCGA data). Pair-wise scatterplots for comparing z-scores in the given pathway (dark color) and out of
the given pathway (gray color). x-Axis and y-axis represent z-scores for different types of diseases. The order of scatterplots is shown as (a-o)

different data sets. In the complete concordance com-
ponent (model), only complete concordant behaviors are
considered: all “up," all “down" or all “null." Therefore,
there are only three items j = 0, 1, 2 for the outer sum-
mation term. For each complete concordant behavior, we
have independence among different data sets. Statistically,
conditional on a underlying complete concordant behav-
ior (with probability πj), we have an inner product term of
probability density functions calculated based on different
data sets. In the complete independence component
(model), genes behave completely independent among

different data sets, which is reflected in the outer product
term. For each data set, the underlying behavior for each
gene can be “up," “down" or “null." However, the behav-
ior cannot be directly observed and the related proba-
bility density function is calculated based on a mixture
model.
Our method was applied to a microarray expression

data set collected for pancreatic cancer research. The data
were collected for forty-five matched tumor/non-tumor
pairs of tissues. These pairs were first divided into seven
subgroups for defining seven subsets of genome-wide
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Fig. 11 z-scores in apoptosis pathway (TCGA data). Pair-wise scatterplots for comparing z-scores in the given pathway (dark color) and out of the
given pathway (gray color). x-Axis and y-axis represent z-scores for different types of diseases. The order of scatterplots is shown as (a-o)

expression data, according to the paired expression
ratio of gene PNLIP. This gene was recently shown its
association with pancreatic cancer. Our purpose was to
understand discordance gene set enrichment when gene
PNLIP changes its behavior from down-regulation to
up-regulation. Among a few identified pathways, the
neuroactive ligand receptor interaction, olfactory
transduction pathways were the most significant two.
The alpha-linolenic-acid metabolism and linoleic-acid
metabolism pathways were also among the list. To better

understand these results, we divided again the original
data with forty-five pairs of tumor/non-tumor tissues
into six subsets, according to the paired expression
ratio of gene TP53 (a well-known tumor suppressor
gene). The above four pathways were also identified by
the discordance gene set enrichment analysis, with the
neuroactive ligand receptor interaction, olfactory trans-
duction pathways still the most significant two. After
our literature search, we found that these two pathways
were the only two identified for their association with
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pancreatic cancer in a recent independent pathway analy-
sis of genome-wide association study (GWAS) data. For
the alpha-linolenic-acid metabolism and linoleic-acid
metabolism pathways, we found a previous study that
the association between pancreatic cancer and these two
fatty acids (alpha-linolenic acid and linoleic acid) was
observed.
A few discordant behaviors from individual genes can

be observed from Figs. 7 and 8. In Fig. 7p, among genes
in the neuroactive ligand receptor interaction pathway
(black dots), a gene with the most negative z-score in sub-
set 1 has the most positive z-score in subset 7. This is a
clear change from down-regulation to up-regulation. In
Fig. 8a-b, among genes in the olfactory transduction path-
way (black dots), a gene with the most positive z-score in
subset 2 has a moderately positive z-score in subset 1, but
its z-score in subset 3 is clearly negative. This is a clear
change from up-regulation to down-regulation.
We conducted a discordance gene set enrichment anal-

ysis based on gene PNLIP and a discordance gene set
enrichment analysis based on gene TP53. Only a few
among 186 KEGG pathways were identified. Most path-
ways (like cancer and pancreatic cancer related pathways)
were evidently not enriched in discordant gene behav-
iors. This suggest unique molecular roles of both genes
PNLIP andTP53 in pancreatic cancer development. There
were four pathways identified from both analysis results
and we found biomedical literature to support the associa-
tion between pancreatic cancer and these pathways. Some
pathways identified in one analysis were not identified
in the other analysis. It is also biologically interesting to
understand these pathways.
It was biologically interesting to observe pathways

with clearly discordant gene behaviors when the paired
expression ratio of an important disease-related gene was
changing. The analysis results in this study illustrated
the usefulness of our proposed statistical method. Our
method was developed based on z-scores that are statisti-
cal measures of differential expression, and many existing
two-sample statistical tests could be used for generating
z-scores. Therefore, in this study, we demonstrated our
method based on a partition of a relatively large two-
sample microarray data set as well as several two-sample
genome-wide expression data sets collected by the recent
RNA-seq technology.
Our method is statistically novel for its two-level struc-

ture, which is developed based on a biological motivation
(genes’ behaviors among different data sets). Due to this
two-level structure, the parameter space of our model
is increased linearly when the number of data sets is
increased. Then, the parameter estimates can be statisti-
cally efficient. In our mixture model, conditional indepen-
dence is the key to reduce the complexity of multivariate
data analysis. For each gene, when themixture component

information is given for all the data sets, its z-scores
are independent. (Notice that there is no overlap among
multiple data sets). Mathematical and computational con-
venience is achieved for our statistical model due to this
unique feature.
Our method is based on the well-established mix-

turemodel framework and the Expectation-Maximization
(EM) algorithm for parameter estimation. One limita-
tion is that the proposed three-component mixture model
may not fit z-scores well for some data. This can be
improved by consideringmore components in themixture
model. For example, instead of a simple consideration of
down-regulation, null and up-regulation, wemay consider
more components like strong-down-regulation, weak-
down-regulation, null, weak-up-regulation and strong-
up-regulation. This will only proportionally increase the
parameter space (still linear with the number of data sets
for our two-level mixture model).
It is also interesting to extend our method for more

complicated analysis purpose. For example, we may be
interested in identifying trend changes (monotonically
increasing or decreasing) instead of general changes. Also,
for example, we may have multiple data sets collected
for different disease stages, but the data set for nor-
mal/reference/control stage is not large enough to be
divided and it has to be used repeatedly in two-sample
comparisons (then z-scores are not even conditionally
independent). For these situations, the extension of our
method would require a considerable amount of research
effort.
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