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associated with gut microbiota
composition in 1,500 twins
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Abstract

Background: Host genetics is one of several factors known to shape human gut microbiome composition, however,
the physiological processes underlying the heritability are largely unknown. Inter-individual differences in host factors
secreted into the gut lumen may lead to variation in microbiome composition. One such factor is the ABO antigen.
This molecule is not only expressed on the surface of red blood cells, but is also secreted from mucosal surfaces in
individuals containing an intact FUT2 gene (secretors). Previous studies report differences in microbiome composition
across ABO and secretor genotypes. However, due to methodological limitations, the specific bacterial taxa involved
remain unknown.

Results: Here, we sought to determine the relationship of the microbiota to ABO blood group and secretor status in a
large panel of 1503 individuals from a cohort of twins from the United Kingdom. Contrary to previous reports, robust
associations between either ABO or secretor phenotypes and gut microbiome composition were not detected. Overall
community structure, diversity, and the relative abundances of individual taxa were not significantly associated with
ABO or secretor status. Additionally, joint-modeling approaches were unsuccessful in identifying combinations of taxa
that were predictive of ABO or secretor status.

Conclusions: Despite previous reports, the taxonomic composition of the microbiota does not appear to be strongly

associated with ABO or secretor status in 1503 individuals from the United Kingdom. These results highlight the
importance of replicating microbiome-associated traits in large, well-powered cohorts to ensure results are robust.
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Background

Host genetics shapes the composition of the gut micro-
biome [1-4]. The mechanisms by which this occurs are
not completely understood, but could include immune
regulation, host digestive enzyme production, and cell
surface antigen presentation. One such antigen that may
play a role is encoded by ABO and is classically known
as the major red blood cell histocompatibility molecule
for blood transfusions. ABO and other blood group anti-
gens are not only found on the surface of red blood cells,
but are also secreted from mucosal tissues in individuals
with an intact FUT?2 gene (secretors). In secretors, blood
group antigens expressed in the gut interact with certain
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members of the microbiota. For example, H. pylori
tethers itself to the mucosal lining using blood group an-
tigens [5] and bacteria from stool express enzymes that
degrade ABO to provide an energy source [6—8]. There-
fore, host genetic variation in both ABO and FUT2 may
have broad effects on microbiome composition.
Additionally, ABO and FUT2 variants are risk factors
for a number of different diseases, including Crohn’s dis-
ease [9, 10], AIDs [11], Type 1 diabetes [12], and infec-
tious diseases [13—15]. The etiology underlying many of
these associations is unknown, but evidence points to-
wards a role of the gut microbiome. For example, the in-
testinal microbiome was found to vary by both Crohn’s
disease status and FUT2 genotype [16]. Furthermore,
metagenomes from individuals discordant for FUT2
genotype revealed differences in gene content related to
energy metabolism [17]. Disease status for both AIDS
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[18-20] and Type 1 diabetes [21-23] are associated with
gut microbial composition differences between cases and
controls. Finally, microbiome composition affects sus-
ceptibility and disease progression for infectious dis-
eases, including norovirus infection [24], influenza [25],
and cholera [26] — all diseases for which ABO or secre-
tor status are risk factors. Therefore, an open question is
whether host genetic variation in ABO and FUT2 medi-
ates disease risk through the gut microbiome and which
taxa are key players in this process.

Results from two recent studies lend support to this
hypothesis. Microbiome composition differed according
to secretor status in a cohort of 71 individuals from
Finland [27]. The microbiomes of non-secretors were
more diverse overall; however, non-secretors contained
significantly more species of bifidobacteria than secre-
tors. In a follow up study examining ABO status only in
secretors, B and AB individuals clustered separately from
A and O individuals in ordination analysis of total
microbiome composition [28]. While these studies pro-
vide proof of principle that genetic variation in ABO and
FUT2 can be associated with microbiome composition,
the methods employed in these studies have limited
resolution. It is unclear which bacteria drive the ob-
served patterns and whether those are the same taxa
that are associated with risk for diseases linked to ABO
or FUT2 variation.

Here, we sought to determine if ABO antigen and se-
cretor phenotypes were associated with gut microbiome
composition in a panel of 1503 individuals as part of the
United Kingdom adult Twin Health Registry (TwinsUK)
cohort, where comprehensive microbiome, disease, and
genotype data are available [1, 29, 30]. We examined
broad community composition using ordination tech-
niques and diversity measurements, presence/absence or
relative abundance of individual bacterial taxa using lin-
ear mixed models, and we applied classification tech-
niques to jointly model taxa in relation to ABO or
secretor status. Contrary to previous findings, we do not
observe robust associations of the gut microbiome to
ABO or secretor status.

Results

Community composition not significantly associated to
ABO or secretor status

We first sought to determine whether there were broad
compositional differences in the microbiome associated
either with ABO status, secretor status, or ABO status in
secreting individuals only (Table 1, Additional file 1:
Table S1). In a recent study, individuals with B alleles
clustered separately from A and O individuals in redun-
dancy analysis of microbiome composition, as determined
by denaturing gradient gel electrophoresis (DGGE) [28].
We applied several ordination approaches, but were
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Table 1 ABO and secretor phenotypes in the TwinsUK dataset

Total  Secretors Non-secretors Unknown
Female Male Female Male Female Male
A 606 405 35 137 14 12 3
AB 40 20 6 9 3 2 0
B 140 96 7 30 3 2 2
O 717 449 41 175 22 27 3
Total 1503 970 89 351 42 43 8

unable to recapitulate those findings. First, we ran princi-
pal coordinate analysis using three beta-diversity metrics:
unweighted UniFrac distance (Fig. 1), weighted UniFrac
distance, and Bray-Curtis dissimilarity (Additional file 2:
Figure S1). None of the top 100 principal coordinates
(PCs) from any diversity metric tested were significantly
associated with either ABO status or secretor status (linear
model, g > 0.05, Additional file 3: Table S2).

Additionally, we applied principal components analysis
(PCA) to both i) covariate-corrected, transformed rela-
tive abundance data for 835 operational taxonomic units
(OTUs) present in at least 50% of individuals and ii)
presence/absence data for all OTUs. Again, none of the
top 100 principal components for each analysis were sig-
nificantly associated with either ABO status or secretor
status (linear model g > 0.05, Additional file 3: Table S2,
Additional file 4: Figure S2).

Finally, we applied discriminant analysis of principal
components (DAPC) to microbiome data [31]. This
method was originally designed for analyzing structure
in large genotype datasets, where PCA reduces data di-
mensionality and then discriminant analysis identifies
the components that have high inter-group variability.
Here, we use it to determine if microbiome compos-
ition can reliably distinguish individuals based on of
their secretor or ABO status (in all individuals and se-
cretors only). We ran DAPC using a 5-fold cross valid-
ation scheme to determine the accuracy of group
classification. To assess significance, 1000 permutations
of ABO or secretor status across individuals were run
to generate a distribution of accuracies expected by
chance, while controlling for twin relationships in the
data (see methods). DAPC was not successful at
predicting either secretor status (median accuracy =
67%, P>0.05) or ABO status in secretors (median ac-
curacy = 45%, P> 0.05, Fig. 1). Prediction for ABO sta-
tus in all individuals was marginally significant when
compared to permuted data (P = 0.035); however, accur-
acy was low (median accuracy = 46%). Through PCoA,
PCA, and DAPC we fail to find evidence that there are
broad compositional differences between individuals
based on ABO status, secretor status, or ABO status in
only secreting individuals.
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Fig. 1 Neither ABO or secretor status associated with broad compositional differences of the gut microbiota in the TwinsUK. None of the top 100
principal coordinates (PCs) from principal coordinate analysis of unweighted UniFrac distance are significantly associated with either ABO or secretor
status. The first two PCs are shown, colored by ABO status (a) and secretor status (b). ¢ Discriminant analysis of PCA (DAPQ) is largely unsuccessful at
predicting ABO or secretor status from microbiome data. The mean accuracy from 5-fold cross validation is plotted for ABO status, secretor status, and
ABO status only in secreting individuals (yellow). Significance was determined by comparing the accuracy of each test to the accuracies of permuted
data, which took into account twin relationships (gray). Significance codes: P < 0.05 =*, not significant = NS

Microbiome diversity not associated with ABO or
secretor status

While ABO or secretor status may not determine overall
microbiome composition consistently across individuals,
they may be associated with differences in microbial di-
versity. A previous study reported evidence of this,

where non-secreting individuals had higher species rich-
ness than secreting individuals [27]. In the TwinsUK
dataset, linear mixed models were employed to model
alpha diversity as a function of ABO status, secretor sta-
tus, or ABO status in secreting individuals only (see
methods) considering five different diversity metrics:
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Fig. 2 Microbiome diversity does not significantly differ by ABO or secretor status. Within sample diversity (Faith’s phylogenic diversity) is not
significantly different (P > 0.05) across the ABO groups in all individuals (a), secretors versus non-secretors (b), or across ABO groups in only secreting
individuals (c). d Microbiomes are more similar for siblings versus pairs of unrelated individuals, as measured by unweighted UniFrac

distance. Additionally, pairs of monozygotic twins have significantly more similar microbiomes than dizygotic twins. However, microbiomes
of pairs of individuals concordant for either ABO or secretor status are not more similar than for pairs of individuals who are discordant.
This holds true when all individuals in the dataset are considered (“all individuals”) or when only one individual from each twin pair is
examined (“one twin per family”). The total number of pairs of individual within each boxplot is indicated with “n=". Significance codes:
P<005=% P<0.01=%% P<0.001=** P<00001=**** not significant =NS
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Faith’s phylogenic diversity, number of observed OTUs,
the Chaol richness estimator, the Gini index, and the
Shannon diversity index. No alpha diversity metric sig-
nificantly differed by ABO status, secretor status, or by
ABO status only in secretor, even before applying a
correction for multiple testing (linear mixed model,
P> 0.05, Fig. 2, Additional file 5: Figure S3).

When the effect of secretor status on diversity is examined
within each ABO class individually, non-secreting AB indi-
viduals generally have higher diversity and evenness than se-
creting individuals, but non-secreting B individuals have
lower diversity and evenness than secretors (linear mixed
model, P < 0.05, Additional file 6: Figure S4). All of the signifi-
cant within class comparisons involve expression of at least
one B allele; however, the direction of effect differs between
secretors and non-secretors across comparisons. It is also im-
portant to note that the AB and B classes represent the two
smallest ABO blood groups in the dataset, and therefore may
be more susceptible to noise (145 = 38, ng = 136 vs. np = 687,
n4 = 591). Therefore, while there may be differences in diver-
sity of the gut microbiome by secretor status in individuals
that express B alleles, we do not find evidence to suggest that
diversity differs consistently either due to secretor status or
by an individual’s ABO antigen expression.

If ABO or secretor status influences the composition of
the microbiome, we might expect that individuals concord-
ant for either status would have more similar microbiomes
than discordant individuals. To determine if this was the
case, we compared average pairwise beta-diversity stratified
by concordance for ABO or secretor status using three dif-
ferent diversity metrics. We considered two beta-diversity
metrics that incorporate bacterial phylogenic information
(weighted and unweighted UniFrac distance [32]) and one
that does not (Bray Curtis dissimilarity [33]). A previous
study using twins from the same cohort demonstrated that
pairs of twins have more similar microbiomes than pairs of
unrelated individuals on average [1]. Additionally, monozy-
gotic twins have more similar microbiomes than dizygotic
twins, pointing to a role for host genetics in determining
gut microbiome composition. First, we recapitulate these
results in this expanded dataset, which includes 629 pairs of
twins. Pairs of twins have significantly lower beta-diversity
than pairs of unrelated individuals for all beta-diversity met-
rics considered (permutation P < 0.0001, Fig. 2, Additional
file 7: Figure S5). Additionally, pairs of monozygotic (MZ)
twins have significantly lower beta-diversity than
pairs of dizygotic (DZ) twins (permutation P < 0.001
unweighted UniFrac distance, P <0.01 weighted Uni-
Frac distance, P <0.05 Bray Curtis dissimilarity).

Next, we stratified beta-diversity by concordance for
either ABO or secretor status. No significant differences
exist for any metric examined (permutation P> 0.05,
Fig. 2, Additional file 7: Figure S5). First, we categorized
all pairs of individuals as either concordant or discordant
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for ABO or secretor status, including all twin pairs.
However, twins on average have more similar micro-
biomes due to shared environment and genetics, and are
more likely to have concordant ABO or FUT2 genotypes.
To ensure that including twin pairs did not introduce
bias, one twin from each twin pair was eliminated and
the analysis was repeated. Again, no significant differ-
ences in beta-diversity were evident between individuals
either concordant or discordant for ABO or secretor sta-
tus. Therefore, not only do we fail to find evidence that
overall microbiome diversity differs by ABO or secretor
status, but we also do not find evidence that individuals
who share the same genotypes at these loci have more
similar microbiomes than individuals who do not.

Relative abundance or presence/absence of individual
bacterial taxa not associated with ABO or secretor status
The above analyses aimed to identify fairly broad com-
positional changes in the microbiome. While these are
not apparent in our dataset, relative abundances of indi-
vidual bacterial taxa may differ according to ABO or se-
cretor status. Bifidobacteria species in particular have
been observed to differ in individuals according to their
secretor status [27] and also in breast-fed infants accord-
ing to their mother’s secretor status [34]. We set out to
test whether we could identify whether bifidobacteria or
other bacterial taxa differ in relative abundance or pres-
ence/absence according to ABO or secretor status.

To identify common taxa that are differentially
abundant according to ABO or secretor status, we im-
plemented linear mixed models that include terms to ac-
count for the relatedness of twin pairs (see methods).
We considered nine different models in total. We started
with models that included terms for either ABO status
or secretor status. Additionally, we considered models
where individuals possessing B alleles were contrasted to
other ABO groups, as previous studies observed broad
microbial composition differences between B individuals
and others [28]. Finally, we also tested for association
using models that only consider ABO status in secretors
or that include an interaction term between ABO and
secretor status.

Three OTUs were differentially abundant across ABO
groups, according to two of the nine models tested at a
moderate g-value threshold (linear mixed model ¢ <0.1,
Fig. 3, Additional file 8: Table S3, Additional file 9:
Figure S6). OTU 187404, which is from the family Rumi-
nococcaceae, has higher relative abundance in A and B
secreting individuals than AB or O secretors (model 6).
This same OTU is also differentially abundant in the
model considering an interaction effect between ABO
and secretor status (model 8). Two additional OTUs
were differentially abundant according to model 8, in-
cluding another OTU from the family Ruminococcaceae
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(g<0.1) and one from the family Lachnospiraceae
(¢ <0.05). In the models above, q-values were calcu-
lated across all taxa tested within each model separ-
ately. If all comparisons are considered, no q-value
surpasses a lenient g <0.1 threshold. Therefore, there
is not strong evidence to support the hypothesis that
relative abundances of common bacterial taxa are as-
sociated with either ABO or secretor status.

Additionally, we modified this analysis in order to con-
trol for ancestry by including the top five principal com-
ponents (PCs) computed using genome-wide single
nucleotide polymorphism (SNP) data as covariates in
each of the nine models (see methods, Additional file 10:
Figure S7, Additional file 11: Table S4). Results were
largely robust with respect to the inclusion of PCs, with
high correlation of P-values between analyses for each of
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the nine models (+* for models 1-9: 0.95, 0.93, 0.94, 0.93,
0.96, 0.97, 0.98, 0.94, 0.98). This was to be expected, as
self-reported ancestry for a subset of the cohort revealed
a largely homogenous population (# = 890: “White” = 97%,
“Black” =0.7%, “Mixed”=0.7%, “Asian”=0.3%, and
“Other” = 0.3%). Therefore, differences in ancestry within
the population are not masking more subtle genetic
effects.

In addition to testing relative abundance differences
across ABO or secretor groups, we also tested whether
certain OTUs were more commonly observed in some
ABO or secretor groups than others by examining pres-
ence/absence across individuals. To do so, Chi-squared
tests of independence were applied to any OTU that was
present in at least 10% of individuals (1692 OTUs), con-
sidering ABO status, secretor status, or ABO status in
only secreting individuals. Presence/absence was not
significantly different across ABO status groups for any
of the 1692 OTUs tested at a lenient q-value threshold
(¢ <0.1, Additional file 12: Table S5). The presence and
absence of two OTUs varied significantly according to
secretor status (permutation P <0.001), including OTU
195548 from order Clostridiales and OTU 365385 from
genus Bifidobacterium, which were both more common
in non-secretors than secretors. Additionally, presence
of OTUs 4443846 (family Lachnospiraceae) and 592616
(family Erysipelotrichaceae) varied by ABO status in se-
creting individuals. However, relative abundances of
these four OTUs are very low in the dataset (maximum
relative abundance across all individuals varies from 0.04
- 5%), calling into question whether these are true bio-
logical results or if they are spurious results due to low
sampling of rare species during sequencing.

In previous studies, Bifidobacterium species varied ac-
cording to secretor status. Abundance varied in stool
not only in accordance with an individual’s secretor sta-
tus [27], but also in breastfed infants, when stratified by
their mother’s secretor status [34]. We did not observe
significant associations of any OTUs belonging to the
genus Bifidobacterium or the collapsed genus Bifidobac-
terium (Additional file 8: Table S3); however, recent
studies suggest a potential confounder may exist. Bifido-
bacterium relative abundance has been associated with
variants near the lactase gene (LCT) [2, 35], which en-
codes for an enzyme that breaks down lactose to galactose
and glucose in the small intestine. Derived mutations in
enhancer regions near the lactase gene confer a lactase
persistence phenotype, where individuals are able to de-
grade lactose into adulthood [36, 37]. The mechanism
underlying the association between host variation near
LCT and Bifidobacterium relative abundance is not under-
stood, however, this association is evident in the TwinsUK
cohort [35]. Therefore, it may be important to account for
this confounder in analysis in order to identify differences
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in bifidobacterial content across ABO or secretor status
groups. Unlike many other studies involving microbiome
cohorts, the individuals in this study have genome-wide
variant data available and we can take this potential con-
founder into account.

To take variation near LCT into account, the relative
abundances of bifidobacterial taxa were modeled includ-
ing a fixed effect term for rs1446585, a SNP near LCT
that was associated with bifidobacterial relative abun-
dance in a larger cohort of the UK twins [35]. Linear
mixed models were used to examine whether bifidobac-
terial relative abundance varied by ABO status, secretor
status, or ABO status in secretors while taking into
account host genetic variation at this locus. Significant
associations of bacterial relative abundance with ABO or
secretor status were not detected for any of the common
taxa examined, which included 6 OTUs belonging to
genus Bifidobacterium and the collapsed taxonomic
relative abundances for genus Bifidobacterium, family
Bifidobacteriaceae, and order Bifidobacteriales (adjusted
P >0.05, Additional file 13: Table S6). Therefore, we find
no evidence that bifidobacterial relative abundance dif-
fers according to ABO or secretor status in our dataset,
even after taking into account the potential confounding
effect of host genetic variation in LCT.

Joint modeling approaches fail to identify bacteria
predictive of ABO or secretor status

Large-scale microbiome composition, diversity, and rela-
tive abundance differences between ABO or secretor
classes are not apparent in our dataset. However, there
may be subtle differences across multiple bacterial taxa
that are predictive of ABO or secretor status. These dif-
ferences may be dwarfed by broader compositional pat-
terns in PCoA and their effect sizes may be too small to
detect via linear models with our sample size. However,
machine-learning techniques may be able to identify
these predictive taxa in combination. Therefore, we ran
two different machine-learning techniques to identify
bacterial taxa predictive of ABO or secretor status.

First, we applied random forests to the microbiome
data. The random forest approach identifies collections
of variables (taxa) that accurately predict classes of a
dependent variable (ABO status, secretor status, or ABO
status only in secretors). The random forests algorithm
was benchmarked as achieving the best performance of
several classifiers when applied to microbiome data [38],
and it has been used successfully to identify gut taxa
predictive age [39], individuals within a family [40], and
future Crohn’s disease severity [41]. Here, we applied
random forests to all the relative abundances of OTUs
present in at least 50% of individuals using two strat-
egies. First, trees were built using data from all individ-
uals. For all models, the out-of-bag (OOB) error rates
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were high (OOB error: ABO status = 52-55%, secretor
status = 27%, Additional file 14: Figure S8), and individ-
uals classified consistently to the most common classes
in the dataset (A or O for ABO status, and as secretors
for secretor status). Uneven group sizes can lead to ran-
dom forests favoring the majority classes [42], and this is
potentially an issue in our dataset, where there are many
more A and O individuals than AB or B (606 A and 717
O vs. 140 B and 40 AB individuals) and many more se-
cretors than non-secretors (1059 S vs. 393 NS).

To combat this issue we employed a second strategy.
Group sizes were down-sampled during random forests to
the smallest group size, so that each class was equally rep-
resented during model building. Although classification
was less skewed towards the common groups using this
procedure, the error rates remained high (OOB error: ABO
status = 62—66%, secretor status =29%, Additional file 14:
Figure S8). Therefore, the random forests method was un-
able to identify sets of bacterial taxa that in combination
could predict ABO or secretor status in our dataset.

Our random forests models only included the relative
abundances of OTUs present in at least half of the individ-
uals in our dataset. However, methodology has recently
been developed for multi-group classification of sparse
data, of which gut microbiome data is a prime example.
Multi-group sparse discriminant analysis (MGSDA) esti-
mates canonical vectors directly from sparse data in the
case where there are many more variables than subjects
[43]. Here we use it to identify taxa in the gut microbiome
predictive of ABO status, secretor status, or ABO status in
secreting individuals only. We applied the algorithm to
two different bacterial datasets for each ABO/secretor sta-
tus comparison. First, we input all common bacterial
OTUs and collapsed taxa to build the model. In addition,
we built models that included all OTUs that were present
in at least 10% of individuals in the study. In all cases, the
accuracy of classification was poor, similar to the accur-
acies observed for the random forests method (accuracy
ABO status = 45-47%, secretor status =73%, ABO in se-
cretors = 43—-49%, Additional file 15: Table S7). MGSDA
identified features predictive of ABO status for certain
models (Additional file 16: Table S8). For example, the
same three OTUs showing differential relative abundance
according to ABO and secretor phenotypes through linear
mixed model 8 were predictive of ABO status in secreting
individuals through MGSDA (OTUs 187404, 4449427,
and 195294). That being said, the low overall classification
accuracy of these models indicates that these bacteria are
not strongly predictive of ABO or secretor status, either
individually or when considered in combination.

Results recapitulated in “healthy” individuals
ABO antigen and secretor status are known risk factors
for a number of diseases, many of which have also been
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associated with microbiome composition in the gut.
Therefore, the inclusion of both healthy and potentially
diseased individuals may pose a problem, as purely gen-
etic associations between the microbiome and ABO or
secretor status may be masked by larger microbiome
shifts due to disease. Full medical histories are unavail-
able for our subjects; therefore we used body mass index
(BMI) as a proxy for health, as obesity has comorbidities
with a number of other diseases. We repeated the fol-
lowing analyses using a “healthy” subset of our cohort
(consisting of individuals whose BMIs were less than 25
(n=679)), and found our results from the full dataset
were recapitulated: principal coordinates analysis, dis-
criminant analysis of PCA, alpha diversity characteriza-
tions, beta-diversity characterizations, and linear mixed
models of common taxa (Additional file 17: Figure S9,
Additional file 18: Table S9).

Discussion

In this study, we do not find evidence that either ABO
antigen or secretor phenotypes are associated with over-
all fecal microbial community composition, diversity, or
the relative abundances of individual bacterial taxa in a
large panel of 1503 individuals from the UK. We aimed
to be exhaustive in our methodology, ensuring that our
results were not driven by choice of one particular statis-
tical approach or metric. To that end, we examined mul-
tiple different ordination methods, diversity metrics, tests
of differential relative abundance, and machine learning
algorithms. Additionally, one strength of the TwinsUK co-
hort is the availability of genome-wide genotype data,
which allowed us to adjust for genetic confounders that
might obscure our ability to detect associations. Even
when lenient multiple testing thresholds are applied, we
are unable to replicate previous findings linking host gen-
etic variation in ABO and FUT2 to gut microbial compos-
ition [27, 28].

While associations between ABO and FUT2 with the
microbiome were not apparent in our dataset, there are a
number of caveats that are important to consider. First, al-
though our sample size is more than 20 times larger than
previous studies [27, 28], we cannot exclude minor effects
and may have insufficient power to detect taxa that show
only slight differential relative abundances between groups.
Additionally, when examining the relative abundances of
individual bacteria, we eliminated any taxa present in
fewer than 10% of individuals in our cohort. It is possible
that very rare taxa may be able to distinguish ABO or se-
cretor status, particularly if they are more abundant in
classes for which we had smaller sample size (AB or B in-
dividuals and non-secretors). Whether taxa with small
relative abundance differences between classes or that are
very rare have broader biological implications remains an
open question.
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Additionally, environmental context may prove to be
important in determining whether an individual’s ABO
or secretor status influences microbiome composition.
The individuals included in our study consist of mostly
adult, female twins living in UK (average age = 61 years,
91% female). The gut microbiome changes with age
[44, 45], and the average age of our dataset is older
than the previous studies (average age: 61 vs. 45 years)
[27, 28]. Differences in physiology, diet, or activity level
between age groups may lead to microbiome compos-
ition differences that swamp out signals of association
with ABO or FUT?2.

Another environmental variable that may be important
to consider is diet. Inter-individual differences in diet
profoundly influence gut microbiome composition [46].
Individuals in our study provided samples without any
dietary restriction or guidelines, and diet likely varied
widely across the cohort. Notably, a strong diet by geno-
type interaction has been observed in humanized mouse
models examining the effect of secretor status on gut
microbial composition [47]. In this model, both micro-
bial evenness and the relative abundances of several taxa
differed between secreting and non-secreting mice on a
standard chow diet. However, those differences were
eliminated when mice were switched to a diet low in
complex polysaccharides but high in simple glucose.
Therefore, dietary variation in our study potentially
masks the effect secretor status may play in determining
gut microbiome composition.

Finally, the effects of ABO or secretor status may be
more prominent in a disease context, where host physi-
ology and overall microbiome composition is altered.
For example, a genotype by disease interaction was ob-
served for the association of secretor status and Crohn’s
disease to gut microbial composition in a panel of both
healthy and diseased individuals [16]. In general, disease
status appeared to play a larger role in determining gut
microbial composition than FUT2 genotype, however,
modeling both disease and secretor status together ex-
plained a larger proportion of inter-individual variation
than either alone. This suggests that secretor status plays
a role in determining microbiome in certain contexts.
Our results were robust when considering only individ-
uals within a healthy BMI range (a proxy for overall
health) and when factoring in ancestry. However, our
dataset included individuals of a wide range of ages,
eating uncontrolled diets, and who may not all be
healthy — all of which may mask any association of
ABO and secretor status to gut microbial composition.

Conclusions

Caveats aside, it is clear from our analysis of this large
cohort that ABO and secretor status do not appear to be
major drivers of microbiome composition differences
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across individuals. Bacterial relative abundance may dif-
fer between these groups to a small degree or may be-
come more apparent when environmental factors such
as age and diet are controlled. In addition, microbiome
perturbation in disease may reveal an effect of ABO or
secretor status. Regardless, these results do not support
previous observations of the role of ABO or secretor sta-
tus in determining microbiome composition in the gut
outside of disease contexts. As the field moves forward
identifying more diseases, anthropomorphic traits, and
genotypes as being associated with microbiome compos-
ition, it will be important to ensure previous observa-
tions are robust by validating in large, well-powered
cohorts. By doing so, the microbiome field can avoid
some of the pitfalls observed from early candidate gene
studies, where a myriad of associations were published
that were never replicated.

Methods

ABO and secretor status assignment

ABO blood type data was available for 890 individuals
included in the study from the TwinsUK. To increase
sample size, ABO phenotype was inferred for individ-
uals where single nucleotide polymorphism (SNP) chip
genotype data was available and had been quality con-
trolled as previously described (n=1850) [29]. First,
impute2 was used to phase genotypes in the region sur-
rounding the ABO locus on chromosome 9 (positions
135000000 — 136000000, hg18), using the “-phase” option,
reference mapping files from 1000 Genomes pilot + Hap-
Map 3 release #2 (https://mathgen.stats.ox.ac.uk/impute/
data_download_1000G_pilot_plus_hapmap3.html), and an
effective population size of 20,000 [48]. Genotypes for
three of the four SNPs described by Paré et al. were used
to call ABO allele status for each phased chromosome per
individual [49]. rs507666 was not genotyped in our
samples and instead rs651007 was used (~4500 bp away,
¥ =0.955 in CEU, see Additional file 19: Table $10). Only
samples with haplotypes matching those in Additional file
19: Table S10 were retained (Al, A2, B, or O; n =1503).
Of these remaining samples, 763 individuals had both
typed ABO status as well as genotype-inferred ABO
status, and high concordance of ABO status calls were
observed between the two methodologies (98% concord-
ant). The genotype-inferred ABO status was used for
those individuals who were discordant.

Secretor status was inferred for individuals with ge-
notypes called for rs601338 in FUT2 (n = 1452), where
homozygosity for a G to A nonsense mutation leads to
the non-secretor phenotype. Previous studies saw
100% concordance between variation in rs601338 and
secretor status, as measured by a hemagglutination
assay [27].
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Microbiome data collection and processing

~2000 fecal samples have been collected from the TwinsUK
cohort and processed as described previously [1, 50].
Briefly, the V4 hypervariable region of the 16S gene was
amplified (using primers 515F and 806R), purified, and
pooled before being sequenced using the Illumina Miseq
platform (2x250 paired-end sequencing). QIIME 1.8.0 [51]
was used for demultiplexing, paired-end merging using
fastq-join (minimum overlap 200 base pairs) [52], and qual-
ity filtering of sequence reads, including removing se-
quences containing uncorrectable barcodes, any ambiguous
bases, or low quality reads (Phred quality scores < 25).
Open reference OTU clustering to Greengenes v13_8 tax-
onomy was performed via UCLUST at 97% sequence simi-
larity [53]. In addition to OTU level relative abundances,
read counts were collapsed by taxonomy to generate rela-
tive abundance measurements along the phylogenic tree,
from genus to phylum. Unweighted UniFrac, weighted
UniFrac [54], and Bray-Curtis dissimilarity [33] were calcu-
lated using an OTU table rarefied to 10,000 sequences
per sample. Alpha diversity metrics (Faith’s phylogen-
etic diversity [55], number of observed species, Gini
index [56], Chaol richness estimator [57], and Shannon
diversity [58]) were calculated from 100 rarefactions to
10,000 sequences per sample.

All OTU data

For analyses where all OTUs are considered, OTU rela-
tive abundances were determined by rarifying sequence
data to 10,000 sequences per sample. Any OTUs not ob-
served with at least one count across the 1503 individ-
uals considered within this study were eliminated,
leaving 88,166 OTUs. Further filtering of this OTU table
was done for each analysis, as described below.

Common OTUs and collapsed taxa

For analyses where common taxa were considered, any
OTU or collapsed taxonomic group that was not repre-
sented by at least one count across 50% of individuals
the larger set of ~2000 samples was eliminated. Counts
were then Box-Cox transformed using the equation:

A was optimized using the PowerTransform command
implemented in the R package ‘car’ and an offset of one
was added to handle zero counts. Relevant technical co-
variates (including number of 16S rRNA gene sequences
per sample, age, sex, shipment date, and technician per-
forming DNA extraction) were regressed out of trans-
formed relative abundances. The resulting table was
then trimmed to include only individuals for which
inferred ABO data was available and contained information
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for 13 phyla, 16 classes, 20 orders, 44 families, 73 genera,
and 865 OTUs — for a total of 1031 taxa considered.

Ordination

Principal coordinates analysis (PCoA) was performed on
beta-diversity metrics using the cmdscale function in R,
specifying n — 1 dimensions (where n is the number of
individuals for each analysis). Principal components ana-
lysis (PCA) on i) relative abundance data (residuals) of
the 865 OTUs from the “common OTUs and collapsed
taxa” table and ii) presence/absence calls for the OTUs
represented in “all OTU data” was performed using the
prcomp function in R. The top 100 PCs for all PCA and
PCoA analyses were regressed against ABO status, se-
cretor status, or ABO status only in secretors using a lin-
ear model to identify associated PCs (Additional file 3:
Table S2).

Discriminant analysis of principal components (DAPC)
was run using the dapc function of adegenet package in R
[31] considering groups based on ABO status (all individ-
uals), secretor status, and ABO status only in secretor in-
dividuals. For each analysis, the number of axes retained
in the discriminant analysis was set to 100 and the num-
ber of axes retained in the PCA was initially set to the
maximum number of possible PCs to retain (n — 1, where
n is the number of individuals for each analysis). Then,
the optimum number of PCs to retain was determined by
the function optim.a.score and DAPC was rerun using the
optimum number of PCs. A 5-fold cross-validation
approach was used to assess the accuracy of DAPC to
predict ABO/secretor status given input microbiome data.
To determine if this cross-validation accuracy was higher
than random chance, ABO/secretor status labels were per-
muted 100 times while maintaining twin-relationships
(see below) and 5-fold cross validation run on each set of
permuted data. The average accuracy across the 5 folds
for each of the 100 permutations was used to determine a
null distribution of accuracies. An empirical p-value was
calculated by dividing the number of permutations with
mean accuracies as high or higher than the actual mean
accuracy by the total number of permutations.

Permuting phenotype data while maintaining twin
relationships

For several analyses, permutations were performed to
determine empirical p-values, which take into account
the twin status of individuals in the study. To do so, the
full dataset was divided into groups of monozygotic twin
pairs, dizygotic twin pairs, and unrelated individuals. For
each permutation, phenotypes of unrelated individuals
were randomly re-assigned within the list of unrelated
individuals. For MZ and DZ twins, family IDs were
randomly shuffled for each pair of twins within the two
groups separately. Phenotypes were then reassigned
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based on family ID, so that twin structure was main-
tained (for example: ABO phenotypes for one pair of
monozygotic twins were randomly assigned to another
pair of monozygotic twins).

Bacterial associations to ABO or secretor status

Linear mixed models

To determine whether the relative abundances of the
1031 common OTUs and collapsed taxa were associated
with ABO or secretor status, nine different linear mixed
models were run using Ime4 in R [59]. Each model [1-9]
below included specified fixed effects for ABO and/or
secretor status and random effects for family and twin
structure. Significance was assessed by comparing a full
model that incorporated the model-specific fixed effects
to a reduced model, which only included the random ef-
fects using the anova function in R. g-values were used
to account for multiple testing within each model separ-
ately [60]. The models, specified in R/lme4 notation,
included:

[m1] y; = Bo+ BiA; + 52AB; + B3B; + (1|/FAM,)

+ (1|MZIDy) + ¢

[m2] y; = o+ B,0; + (1{FAM)) + (1|MZID;) + &

[m3] y;= o + 5B + (1|FAM;) + (1| MZID;) + ¢

[m4] y; = o+ B:(B or AB); + (1|FAM;) + (1|MZIDy) + ¢
[m5] y; = o+ B:SS; + (1|FAM;) + (1|MZID;) + €

[m6] same as model 1, but in secretor individuals only
[m7] same as model 3, but in secretor individuals only
[(m8] y; = o+ B1Ai + f2AB; + BB + B4SS; + BsSS*A;

+ BsSSi*AB; + 5,585B; + (1|FAM)) + (1|MZID)) + ¢
[m9] y; = Bo+ iBi + 52SS; + B3SSi*B; + (1|/FAM,)

+ (1|MZIDy) + ¢

where y; is the residual relative abundance of one of the
common OTUs or collapse taxa, fixed effects for ABO
status (A; takes the value 1 if individual i is A, AB; take
the value 1 if individual i is AB, B; takes the value 1 if in-
dividual i is B, O; takes the value 1 if individual i is O)
and secretor status (SS; takes the value 1 if an individual
is a secretor) are specific to the given model, random ef-
fects account for family (1|FAM;) and increased genetic
sharing of monozygotic twins (1|MZID;), and residual
error ¢ is assumed N(0,62) (Additional file 8: Table S3).
Variants in the lactase gene (LCT) have been associ-
ated with relative abundance of Bifidobacteria in the gut
[2, 35]. To account for this potential confounder, models
[m1-m9] listed above were rerun for the 6 common
OTUs that classify to the Bifidobacterium genus and the
collapsed taxonomies for genus Bifidobacterium, family
Bifidobacteriaceae, and order Bifidobacteriales, incorpor-
ating an additional fixed effect for rs1446585, a SNP in
the LCT gene that is associated with Bifidobacterium
relative abundance in the TwinsUK cohort. P-values
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were determined as stated above and g-values were used
to take into account multiple tests (Additional file 13:
Table S6).

Presence/absence associations

In addition to testing whether relative abundances of the
common OTUs and collapsed taxonomic groups were as-
sociated to ABO or secretor status, the presence/absence
of a wider range of OTUs was also examined. To do so,
any OTUs from the rarefied OTU table (described above)
that were not observed in at least 10% of individuals were
discarded, leaving 1692 OTUs. Relative abundances of
these OTUs were transformed into 1/0 for presence or ab-
sence for each individual, and Chi-squared tests of inde-
pendence were run using the chisq.test in R for each OTU
for ABO status, secretor status, and ABO status in secre-
tors only. P-values were determined by a permutation
scheme with 1000 permutations that took twin status into
account (see above). g-values were used to correct for
multiple testing (Additional file 12: Table S5) [60].

Correcting for ancestry using principal component analysis
Both genetic and cultural factors related to ancestry
could potentially influence microbial composition in the
gut, masking associations of the microbiota with ABO
or secretor status. To take ancestry into account, models
1-9 above were rerun including genetic principal
components as fixed effects. First, genome-wide SNP
data (as described in Goodrich et al. [35]) were filtered
to remove any variants with a minor allele frequency
less than 5% or Hardy-Weinberg equilibrium P-values
less than 0.001 in the individuals included in this
study (7 = 1493). Then, SNPs were pruned for linkage
disequilibrium using a window of 1000 kb, a step size
of 50 SNPs, and a pairwise 7° threshold of 0.2 in plink1.9
[61]. Finally, smartpca [62] was used to perform principal
components analysis on the remaining 74,418 SNPs. The
top five principal components explain 95.1% of the genetic
variation in the dataset and were included as fixed effect
terms in linear models 1-9 to control for ancestry.

Diversity analyses

ABO/secretor status associations with alpha diversity metrics
Linear mixed models were used to assess whether there
were significant diversity differences according to ABO
or secretor status. First, relevant covariates were
regressed out of alpha diversity metrics (including num-
ber of 16S rRNA gene sequences per sample, age, sex,
shipment date, and technician performing DNA extrac-
tion). Then, association of the residuals to ABO, secretor
status, and ABO status in secretors only were assessed
by linear mixed models parameterized as described in
models [m1], [m5], and [m6] (Fig. 2, Additional file 5:
Figure S3). Additionally, within each ABO class (A, B,
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AB, and O individuals), alpha diversity metric differences
were compared between secretors and non-secretors
using linear mixed models with a fixed effect term for
secretor status and random effect terms for family and
zygosity as described above (Additional file 6: Figure S4).

Beta-diversity comparisons between concordant and
discordant individuals

To assess whether individuals who shared the same
ABO or secretor status also tended to have more similar
microbiomes, average beta diversity (unweighted Uni-
Frac, weighted UniFrac, and Bray Curtis dissimilarity)
was compared between sets of individuals concordant
and discordant for the phenotype of interest. Compari-
sons were made using i) all individuals and ii) one twin
per family to eliminate the potential bias of shared gen-
etics and environment expected between sets of twins.
Significance was assessed using a permutation strategy
(1000 permutations) that took into account the twin re-
lationships in the data, as described above. Additionally,
permutation analyses confirmed that pairs of twins in
general have more similar microbiomes than pairs of un-
related individuals (family ID was permuted across all
individuals 1000 times to generate null distribution) and
that pairs of MZ twins have more similar microbiomes
that DZ twins (the zygosity labels were permuted 1000
times across all twin pairs to generate null distribution).

Joint modeling approaches

In addition to identifying individual taxa that may be
associated with ABO or secretor status, two separate ap-
proaches were used to jointly model the relative abun-
dances of multiple taxa simultaneously.

Random forests

This method was implemented using the randomForest
package with R, setting the number of trees to grow to
500. Imbalanced group sizes reduce effectiveness of ran-
dom forests [42]. To compensate for this potential issue
in the data, the random forests analysis was rerun, but
groups were down-sampled to the smallest group size
within each analysis by setting the sampsize parameter
in the randomForest function.

MGSDA

In addition to random forests, multi-group sparse dis-
criminant analysis (MGSDA) methodology was ap-
plied to identify bacterial taxa that in combination
can predict ABO or secretor status [43]. Variable se-
lection and classification was performed using the
MGSDA package in R and 5-fold cross-validation was
applied to assess classification accuracy for three dif-
ferent models using two datasets. The three models
included dependent variables for i) ABO status, ii)

Page 11 of 14

secretor status, and iii) ABO status only in secretors.
The first data set included all common OTUs and
taxa, while the second included the rarefied relative
abundances of all OTUs present in at least 10% of in-
dividuals (7 = 1692 OTUs).

Additional files

Additional file 1: Table S1. Cohort characteristics in the full and
‘healthy’ datasets. The total nubmer (n) or percent of total (%) for each
category is listed for either the full or ‘healthy’ datasets, along with the
standard deviation for each measure. (XLSX 36 kb)

Additional file 2: Figure S1. ABO and secretor statuses are not
associated with broad compositional differences through PCoA. In
addition to examining PCoA of unweighted UniFrac distance (Fig. 1), Bray
Curtis dissimilarity and weighted UniFrac distance was used to determine
if there were broad compositional differences in the microbiome
between ABO or secretor groups. The first two principal coordinates are
displayed for Bray Curtis dissimilarity (A, C, E) and weighted UniFrac
distance (B, D, F) along the x- and y-axes. Points are colored by ABO status
(A, B), secretor status (C, D), and ABO status in secreting individuals only (E, F).
None of the top 100 principal coordinates are significantly associated with
ABO or secretor status for any beta-diversity metric examined. (PDF 135 kb)

Additional file 3: Table S2. P- and g-values for PCA. This spreadsheet
contains the p-values and g-values for associations of the top 100 PCs to ABO
and secretor status consider 5 different ordination techniques (a separate tab
for each). The ordination method for each table and the column description
within each table are described in the document. (XLSX 57 kb)

Additional file 4: Figure S2. ABO and secretor phenotypes are not
associated with broad compositional differences through PCA. Principal
components analysis of the presence/absence of all OTUs in at least
10% of individuals in the TwinsUK dataset does not reveal any significant
associations between the top 100 PCs and ABO or secretor status. The
first two principal components (PCs) are displayed along the x- and
y-axes. Points are colored by ABO status (A), secretor status (B), or ABO
status in secreting individuals only (C). (PDF 102 kb)

Additional file 5: Figure S3. Alpha diversity does not significantly differ
according to ABO or secretor status. In addition to Faith's phylogenic
diversity (Fig. 2), other alpha diversity metrics do not significantly differ
according to ABO status (A-D), secretor status (E-H), or ABO status in
secreting individuals only (I-L) as determined by linear mixed models
(P> 0.05). Alpha metrics considered included: (A, E, I) The number of
observed species; (B, F, J) the Chao 1 richness estimator, which estimates
the actual number of species in a community, as doing a microbial census
through sequencing will likely not sample all rare members; (C, G, K) the
Gini coefficient, which measures community evenness; (D, H, L) the
Shannon diversity index, which accounts or both the number of taxa as
well as their abundance within a sample. (PDF 182 kb)

Additional file 6: Figure S4. Alpha diversity differs significantly
between secretors and non-secretors for AB and B individuals. While
there are no significant differences between secretors and non-secretors
overall, secreting AB individuals have more diverse microbiomes and
secreting B individuals have less diverse microbiomes than non-secreting
AB or B individuals, respectively (for all alpha diversity metrics except
Shannon diversity (E)). It is important to note that the AB (n =40) and B
(n=140) groups of individuals are smaller than the A (n=606) and O
(n=717) groups. Significance codes: not significant = NS, P < 0.05 =*.
x-axis abbreviations: non-secretor = NS, secretor =S. (PDF 99 kb)

Additional file 7: Figure S5. Microbiomes are not more similar for pairs
of individuals concordant for either ABO or secretor status compared to
discordant pairs. In addition to unweighted UniFrac distance, pairwise
similarity of the microbiome was assessed using weighted UniFrac distance (A)
and Bray Curtis dissimilarity (B). As in Fig. 2, pairs of related individuals in general
have more similar microbiomes than pairs of unrelated individuals, and
monozygotic twins have more similar microbiomes than dizygotic twins,

pointing to host genetic control of the microbiome. However, when
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beta-diversity is stratified by either ABO or secretor status, no significant
differences are observed between pairs of individuals concordant for status
compared to individuals discordant for status. “All individuals” includes all pairs
of individuals in the dataset, including pairs of twins. To ensure family
relationships did not lead to bias in beta-diversity, one twin from each twin pair
was removed for “one twin per family”. The number of pairwise comparisons in
each category is displayed (‘n ="). Significance codes: not significant = NS,
P<005=%P<001="P<0001=* P<00001 =*** (PDF 34 kb)

Additional file 8: Table S3. P- and g-values for linear mixed models.
This table contains the p-values and g-values for the linear mixed models
relating the abundances of the common OTUs and collapsed taxa to
ABO and secretor status. Models 1-9 are described fully in the methods
section, but a brief description of each is included in the document.
P-values were calculated by comparing a full model to a reduced model,
which consisted of only the random effects for family and twin status.
Q-values were calculated within each model separately. (XLSX 236 kb)

Additional file 9: Figure S6. QQ-plot of the 9 linear mixed models
comparing ABO and secretor phenotypes to taxon relative abundance.
Expected —log;o(P-values) are plotted (x-axis) compared to the observed —
log;g(P-values) along the y-axis. Tests significant at g < 0.1 and g < 0.05
thresholds are indicated with larger point sizes for linear mixed models 1-9
(A-E). Model descriptions can be found in the methods section. (PDF 103 kb)

Additional file 10: Figure S7. QQ-plot of the 9 linear mixed models
comparing ABO and secretor phenotypes to taxon relative abundance,
including genetic ancestry in the model. Expected —log;o(P-values) are
plotted (x-axis) compared to the observed —log;q(P-values) along the y-axis.
Tests significant at g < 0.1 and g < 0.05 thresholds are indicated with larger
point sizes for linear mixed models 1-9 (A-E). Model descriptions can be
found in the methods section. (PDF 103 kb)

Additional file 11: Table S4. P- and g-values for linear mixed models,
controlling for ancestry. This table contains the p-values and g-values for the
linear mixed models relating the abundances of the common OTUs and
collapsed taxa to ABO and secretor status. Models 1-9 are described fully in
the methods section, but a brief description of each is included below. These
models also include the top 5 principal component loadings as fixed effects to
control for ancestry. P-values were calculated by comparing a full model to a
reduced model, which consisted of only the top 5 PC loadings (as fixed
effects) and the random effects for family and twin status. Q-values were
calculated within each model separately. (XLSX 237 kb)

Additional file 12: Table S5. P- and g-values for Chi-squared tests of
independence. This supplemental file contains the p-values and g-values for
Chi-squared tests of independence according to ABO status, secretor status, or
ABO status in secreting individuals only. Tests were conducted for the presence/
absence of any OTU that had at least one count in 10% of individuals after
rarifying total sequencing depth to 10,000 reads. Explanations for each tab and
column in each tab are listed in the document. (XLSX 299 kb)

Additional file 13: Table S6. P- and g-values for linear mixed models
for Bifidobacteria, including LCT allele status in the model. This table
contains the p-values and Benjamini-Hochberg adjusted p-values for
the linear mixed models relating the abundances of the common
Bifidobacterium OTUs and collapsed taxa to ABO and secretor status,
while including LCT variation in the model (rs1446585 genotype).
Models 1-9 are described fully in the methods section, but a brief
description of each is included below. P-values were calculated by
comparing a full model to a reduced model, which consisted of only
the random effects for family and twin status and a fixed effect for LCT allele
status. P-values were adjusted within each model separately. Descriptions of
each column are included in the document. (XLSX 29 kb)

Additional file 14: Figure S8. The microbiome is not able to classify
ABO or secretor status with high accuracy through random forests.
Confusion matrices list the total number samples from a given sample
class (x-axis) classified into each predicted class (y-axes) from six random
forests models. The total out-of-bag (OOB) error is indicated above each
confusion matrix. The total number of individuals (“n=") and the error of
classification (as a %) for each class are listed below the x-axis. Random
forests was run to classify samples based on ABO status (A, B), secretor
status (C, D), and ABO status in secretors (E, F). Two implementation
methodologies were considered: first, all samples were included for the

tree building process (A, C, E — unbalanced model). Uneven group sizes
can lead to the majority group being overrepresented in predictions in
random forests, as is observed in our data. To address this issue, a second
implementation down-sampled groups to the smallest group size in
each test (B, D, F — balanced model). Error rates of all models were high
27-66%), therefore, relative abundances of the most common microbiota
are not able to predict ABO or secretor status accurately. (PDF 126 kb)

Additional file 15: Table S7. MGSDA classification accuracy. This table
contains tables of accuracy as determined by 5-fold cross validation for
MGSDA. MGSDA was run using the covariate-corrected, transformed
abundances of all common OTUs and taxa (table “common_taxa”).
Additionally, MGSDA was run on the abundances of OTUs present in at
least 10% of individuals in the dataset (table “OTUs_in_10_percent”). The
groups considered in MGSDA with each data set were ABO status,
secretor status, and ABO status in secreting individuals only, which are
indicated as columns in each tab. A description of what is represented in
each row is included in the document. (XLSX 30 kb)

Additional file 16: Table S8. Featured identified by MGSDA. This
supplemental file contains the features identified by MGSDA as being
predictive of ABO status, secretor status, or ABO status in secretors. Each
tab contains the feature identified (may be an OTU or collapsed
taxonomic identification) as well as the taxonomy (relevant for OTUs).
Each tab contains the results for a different implementation of MGSDA,
described further in the document. (XLSX 44 kb)

Additional file 17: Figure S9. Analyses using only individuals with BMI
< 25 recapitulate results. A-C) Neither ABO or secretor status associated
with broad compositional differences of the gut microbiota in the
TwinsUK. None of the top 100 principal coordinates (PCs) from principal
coordinate analysis of unweighted UniFrac distance are significantly
associated with either ABO or secretor status. The first two PCs are
shown, colored by ABO status (A) and secretor status (B). (C) Discriminant
analysis of PCA (DAPC) is largely unsuccessful at predicting ABO or secretor
status from microbiome data. The mean accuracy from 5-fold cross validation
is plotted for ABO status, secretor status, and ABO status only in secreting
individuals (yellow). Significance was determined by comparing the accuracy
of each test to the accuracies of permuted data, which took into account
twin relationships (gray). D-F) Microbiome diversity does not significantly
differ by ABO, but does by secretor status. Within sample diversity

(Faith's phylogenic diversity) is significantly different between secretors versus
non-secretors (D, P < 0.05), but not across the ABO groups in all individuals
(E, P> 0.05), or across ABO groups in only secreting individuals (C, P> 0.05).
(F) Microbiomes are more similar for siblings versus pairs of unrelated
individuals, as measured by unweighted UniFrac distance. However,
microbiomes of pairs of individuals concordant for either ABO or secretor
status are not more similar than for pairs of individuals who are discordant.
This holds true when all individuals in the dataset are considered (“all
individuals”) or when only one individual from each twin pair is examined
(“one twin per family”). The total number of pairs of individuals within
each boxplot is indicated with “n=". H) None of the common taxa
are associated with ABO or secretor status. QQ-plot displaying the
expected —log;o(P-value) compared to the —log;q(P-value) for all taxa
tested in linear mixed models 6 (light gray points) and 8 (dark gray
points, as plotting in Fig. 3). Significance codes: P<0.05=*, P <0.01
=**, P<0.001 =** P<0.0001 =**** not significant = NS.

(PDF 387 kb)

Additional file 18: Table S9. P- and g-values for linear mixed models,
only including individuals with BMI < 25. This table contains the p-values
and g-values for the linear mixed models relating the abundances of the
common OTUs and collapsed taxa to ABO and secretor status, for only
individuals with a BMI < = 25. Models 1-9 are described fully in the
methods section, but a brief description of each is included below.
P-values were calculated by comparing a full model to a reduced model,
which consisted of only the random effects for family and twin status.
Q-values were calculated within each model separately. Descriptions of
each column are included in the document. (XLSX 229 kb)

Additional file 19: Table S10. ABO alleles in the TwinsUK cohort. The
phased SNPs used to call ABO status are listed, along with the haplotype
count and frequency within the TwinsUK samples. (XLSX 30 kb)
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