
Kojima et al. BMC Genomics  (2016) 17:991 
DOI 10.1186/s12864-016-3294-x

RESEARCH ARTICLE Open Access

STR-realigner: a realignment method for
short tandem repeat regions
Kaname Kojima, Yosuke Kawai, Kazuharu Misawa, Takahiro Mimori and Masao Nagasaki*

Abstract

Background: In the estimation of repeat numbers in a short tandem repeat (STR) region from high-throughput
sequencing data, two types of strategies are mainly taken: a strategy based on counting repeat patterns included in
sequence reads spanning the region and a strategy based on estimating the difference between the actual insert size
and the insert size inferred from paired-end reads. The quality of sequence alignment is crucial, especially in the
former approaches although usual alignment methods have difficulty in STR regions due to insertions and deletions
caused by the variations of repeat numbers.

Results: We proposed a new dynamic programming based realignment method named STR-realigner that considers
repeat patterns in STR regions as prior knowledge. By allowing the size change of repeat patterns with low penalty in
STR regions, accurate realignment is expected. For the performance evaluation, publicly available STR variant calling
tools were applied to three types of aligned reads: synthetically generated sequencing reads aligned with BWA-MEM,
those realigned with STR-realigner, those realigned with ReviSTER, and those realigned with GATK IndelRealigner.
From the comparison of root mean squared errors between estimated and true STR region size, the results for the
dataset realigned with STR-realigner are better than those for other cases. For real data analysis, we used a real
sequencing dataset from Illumina HiSeq 2000 for a parent-offspring trio. RepeatSeq and lobSTR were applied to the
sequence reads for these individuals aligned with BWA-MEM, those realigned with STR-realigner, ReviSTER, and GATK
IndelRealigner. STR-realigner shows the best performance in terms of consistency of the size of estimated STR regions
in Mendelian inheritance. Root mean squared error values were also calculated from the comparison of these
estimated results with STR region sizes obtained from high coverage PacBio sequencing data, and the results from the
realigned sequencing data with STR-realigner showed the least (the best) root mean squared error value.

Conclusions: The effectiveness of the proposed realignment method for STR regions was verified from the
comparison with an existing method on both simulation datasets and real whole genome sequencing dataset.

Keywords: High-throughput sequencing, Short tandem repeat, Alignment

Background
From the development of high-throughput sequencing
(HTS) technologies, the detailed variant detection is
enabled for each individual with whole genome sequenc-
ing analysis. For single nucleotide variants (SNVs), various
types of variant callingmethods have been proposed [1–4]
for HTS data, and the accurate SNV detection is archived
for more than a thousand of individuals in genome-wide
scale [5, 6]. However, unlike SNVs, there still exists dif-
ficulty in the accurate detection of structural variations

*Correspondence: nagasaki@megabank.tohoku.ac.jp
Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-machi,
Aoba-ku, 980-8573 Sendai, Japan

such as genome insertion, genome deletion, short tandem
repeat (STR) number polymorphisms, and copy number
variations, especially from data with low read coverage [7].
For repeat number polymorphisms, several studies thus

far reported associations with various disease phenotypes
such as CAG repeats in the Huntingtin gene with Hunt-
ington’s disease [8] and CAG repeats in the androgen
receptor gene with spinal and bulbar muscular atrophy
[9]. From HTS data, several approaches such as lobSTR
[10], RepeatSeq [11], STRViper [12], and coalescentSTR
[13] have been proposed for estimating repeat numbers
in STR regions. In lobSTR and RepeatSeq, repeat patterns
included in sequence reads spanning the STR regions
are considered for the estimation of repeat numbers.

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3294-x&domain=pdf
mailto: nagasaki@megabank.tohoku.ac.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Kojima et al. BMC Genomics  (2016) 17:991 Page 2 of 15

On the other hand, STRViper and coalescentSTR esti-
mate repeat numbers by considering difference between
the actual insert size and the insert size inferred from
paired-end reads aligned to the flanking regions of the
target repeat. The alignment quality of sequence reads is
important for accurate repeat number estimation, espe-
cially in the former approaches although usual alignment
methods have difficulty in STR regions due to insertions
and deletions caused by the frequent change of repeat
numbers.
We propose a new dynamic programming based

realignment method named STR-realigner where repeat
patterns in STR regions are given as prior knowledge, and
repeat patterns are used multiple times in the realign-
ment process. Although a similar algorithm is adopted in
a tool for detecting STR regions in PacBio reads based
on 3-stage modified Smith-Waterman [14], consecutive
STR regions can be handled in the proposed algorithm
unlike the tool. In addition, clipping fragments, which are
an essential feature for the realignment, are also consid-
ered in the proposed algorithm. By allowing insertions and
deletions of repeat patterns in STR regions with repeat-
edly use of repeat units, accurate realignment of sequence
reads is expected.
In a simulation study with synthetically generated HTS

data for artificial diploid genomes sequence based on
phased genotypes of a sample in the dataset of 1000
Genomes Project [5], we showed the effectiveness of our
model by evaluating root mean squared errors between
true and estimated repeat numbers with RepeatSeq or
allelotype, an STR calling software in the lobSTR pack-
age, from realignment results. For real data analysis,
we applied STR-realigner, ReviSTER [15], and GATK
IndelRealigner to HTS data from Illumina HiSeq 2000
for a HapMap CEU parent-offspring trio and show the
effectiveness of STR-realigner based on consistency in
Mendelian inheritance in the estimated repeat num-
bers in the parent-offspring trio. Root mean squared
error values were also calculated from the compari-
son with the gold standard STR region size obtained
from high coverage PacBio sequencing data for one of
samples in the parent-offspring trio, and the results
from the realigned sequencing data with STR-realigner
showed the least (the best) root mean squared error
value.

Method
Realignment algorithm considering repeat sequence as
prior knowledge
We propose a dynamic programming based algorithm
named STR-realigner that realigns query read R to a
genome sequence, taking into account the multiple use
of repeat patterns for prespecified STR regions. We con-
sider a genome sequence comprised of series of m subse-
quences G1, . . . ,Gm. Let Bj be a binary variable that takes
one if Gj can be used repeatedly and zero otherwise, i.e.,
subsequence Gj with Bj = 1 is for a repeat pattern in
one of prespecified STR regions. Figure 1 shows an exam-
ple of a genome sequence comprised of subsequences
G1, . . . ,G6, where G2, G3, and G5 are repeat patterns of
prespecified STR regions and are repeatedly used in the
proposed realignment algorithm. In the description of the
proposed algorithm, |R| and |Gj| denote the size of R and
Gj, and R[k] and Gj[k] denote bases at the kth position of
R and Gj, respectively.
Since infinitely long deletions can be considered by

using the same subsequence with Bj = 1 repeatedly,
we limit the size of deletions to less than |Gj| for subse-
quences with Bj = 1. We consider the following six types
of states for the alignment of the ith position in query read
R to the kth position of subsequence Gj.

1. sM(i, j, k): a state representing match or mismatch
between bases at the i th position of query read R and
the kth position of subsequence Gj.

2. sI(i, j, k): a state representing insertion at the i th
position of query read R right after the kth position
of subsequence Gj.

3. sD(i, j, k): a state representing deletion of the kth
position of subsequence Gj right after the i th
position of query read R.

4. sD(i, j, k, l): a state representing deletion from the
k − l + 1 to k th positions of subsequence Gj right
after the i th position of query read R. This state is
considered only for subsequences with Bj = 1 in
order to avoid deletions longer than |Gj| by limiting
the range of l from 2 to |Gj| − 1. For l = 1, sD(i, j, k)
is used, and consecutive deletions in the same
subsequence are not considered for sD(i, j, k) with
Bj = 1. If l is longer than k, the deletion starts from
the |Gj| − l − k + 1st position on the subsequence

Fig. 1 An example of notations in STR-realigner. Subsequence with Bj = 1 can be used repeatedly in the realignment process



Kojima et al. BMC Genomics  (2016) 17:991 Page 3 of 15

and the deletion part rotates from tail to head of the
subsequence.

5. sL(i): a state representing left clipping that ends at
the i th position of query read R.

6. sR(i): a state representing right clipping that starts at
the i th position of query read R.

The following penalties are considered in the proposed
realignment algorithm.

• pm,j: penalty for match of bases between query read R
and subsequence Gj. Usually, the penalty is set to a
minus value, i.e., the penalty is used for rewarding.

• pmis,j: penalty for mismatch of bases between query
read R and subsequence Gj.

• pio,j and pie,j: penalties for open and extension of
insertion on subsequence Gj, respectively.

• pdo,j and pde,j: penalties for open and extension of
deletion on subsequence Gj, respectively.

• pc: penalty for clipping.

In the proposed dynamic programming algorithm,
penalty and traceback information for state s are stored in
functions P(s) and T(s), respectively. In the first step of
the dynamic programming, penalty and traceback infor-
mation of states for the first position in query read R are
initialized in the following algorithm.

Algorithm 1: Initialize penalty and traceback informa-
tion of states for the first position in query read R
1. For subsequence ID j from 1 to m, perform the

following steps:

(a) For position k from 1 to |Gj| in subsequence Gj,
perform the following steps:

(i) Set P(sM(1, j, k)) to pm,j if Gj[ k]= R[ 1]
holds, otherwise set P(sM(1, j, k)) to
pmis,j.

(ii) Set P(sI(1, j, k)) to infinity.
(iii) Set P(sD(1, j, k)) to infinity.
(iv) Set

P(sD(1, j, k, 2)),. . . ,P(sD(1, j, k, |Gj|−1))
to infinity if Bj = 1 holds.

(v) For each state s considered at steps i to
iv, set T(s) to NULL.

2. Set P(sL(1)) and T(sL(1)) to pc and NULL, respectively.

The best penalties for the alignment up to the ith posi-
tion of query read R for each state is updated by using
the best penalties of states for the i − 1st position of

query read R in Algorithm 2, where traceback informa-
tion is also updated. Algorithm 3 given below updates

Algorithm 2: Update penalties and traceback informa-
tion of states for positions 2 to |R| in query read R
1. For position i from 2 to |R| in query read R, perform

the following steps:

(a) For subsequence ID j from 1 to m, perform the
following steps:

(i) For position in subsequence Gj, k from
1 to |Gj|, perform the following steps:

(A) Use Algorithm 3 to update
penalties and traceback
information for sM(i, j, k).

(B) Use Algorithm 5 to update
penalties and traceback
information for sI(i, j, k).

(C) Use Algorithm 6 to update
penalties and traceback
information for sD(i, j, k).

(D) Use Algorithm 7 to update
penalties and traceback
information for sD(i, j, k, l) for l
from 2 to |Gj|−1 if Bj=1 holds.

(b) Set P(sL(i)) and T(sL(i)) to pc and NULL,
respectively.

(c) Use Algorithm 8 to update penalty and
traceback information for sR(i).

penalty and traceback information for states representing
match or mismatch. Algorithm 4 given below is used for
obtaining states that are in preceding subsequences and
can be traced from sM(i, j, 1). Algorithm 5 given below
updates penalty and traceback information for states rep-
resenting insertion. Algorithm 6 given below updates
penalty and traceback information for states representing
deletion.
For subsequence Gj with Bj = 1, consecutive deletions

in the same subsequence are handled with sD(i, j, k, l), and
hence sD(i − 1, j, k − 1) is not considered at step 6 of
Algorithm 6 for traceback. Procedures for updating
penalty and traceback information for states representing
consecutive deletions for subsequence Gj with Bj = 1 is
given as Algorithm 7. Algorithm 8 given below updates
penalty and traceback information for sR(i). Finally, an
algorithm for traceback is given as Algorithm 9. By follow-
ing states from head to tail in Q obtained with the above
algorithm, the realignment result with the best penalty is
obtained.



Kojima et al. BMC Genomics  (2016) 17:991 Page 4 of 15

Algorithm 3:Update penalty and traceback information
for sM(i, j, k)
1. Let S be an empty set of states.
2. Add sL(i − 1) to S .
3. Add sM(i − 1, j, |Gj|) to S if k = 1 and Bi = 1 hold.
4. Add sM(i − 1, j, k − 1) to S if k > 1 holds.
5. Add sI(i − 1, j, |Gj|) to S if k = 1 and Bi = 1 hold.
6. Add sI(i − 1, j, k − 1) to S if k > 1 holds.
7. Add sD(i − 1, j, k − 1) to S if k > 1 holds.
8. Add sD(i − 1, j, k − 1, 2), . . . , sD(i − 1, j, k − 1, |Gj|−1)

to S if Bj = 1 and k > 1 hold.
9. Add sD(i − 1, j, |Gj|) and

sD(i − 1, j, |Gj|, 2), . . . , sD(i − 1, j, |Gj|, |Gj| − 1) to S if
k = 1 and Bj = 1 hold.

10. Add states obtained with Algorithm 4 to S if k = 1
holds.

11. Set T(sM(i, j, k)) to argmaxs∈S P(s).
12. Set P(sM(i, j, k)) to P(T(sM(i, j, k))) + pm,j if

Gj[ k]= R[ i] holds, otherwise set P(sM(i, j, k)) to
P(T(sM(i, j, k))) + pmis,j.

Algorithm 4: Obtain a set of candidate preceding states
in preceding subsequences for subsequence Gj

1. Let S be an empty set of states.
2. Set j′ to j − 1.
3. Go to step 10 if j′ < 1 holds.
4. Add sM(i − 1, j′, |Gj′ |) to S .
5. Add sI(i − 1, j′, |Gj′ |) to S .
6. Add sD(i − 1, j′, |Gj′ |) to S .
7. Add sD(i − 1, j′, |Gj′ |, 2), . . . , sD(i − 1, j′, |Gj′ |, |Gj′ |−1)

to S if Bj′ = 1 holds,
8. Decrement j′.
9. Go back to step 3 if Bj′ = 1 holds.
10. Output S .

Algorithm 5: Update penalty and traceback informa-
tion of sI(i, j, k)
1. Let S be an empty set of states.
2. Add sM(i − 1, j, k) to S .
3. Add sI(i − 1, j, k) to S .
4. Add sD(i − 1, j, k) to S .
5. Add sD(i − 1, j, k, 2), . . . , sD(i − 1, j, k, |Gj|−1) to S if

Bj = 1 holds.
6. Set P(sI(i, j, k)) to infinity and perform the following

steps for each s ∈ S :

(a) Set penalty p to P(s) + pie,j if s is a state
representing insertion, otherwise set p to
P(s) + pio,j.

(b) Set P(sI(i, j, k)) and T(sI(i, j, k)) to p and s,
respectively if P(sI(i, j, k)) > p holds.

Algorithm 6: Update penalty and traceback informa-
tion for sD(i, j, k)
1. Let S be an empty set for states.
2. Add sM(i − 1, j, |Gj|) to S if k = 1 and Bj = 1 hold.
3. Add sM(i − 1, j, k − 1) to S if k > 1 holds.
4. Add sI(i − 1, j, |Gj|) to S if k = 1 and Bj = 1 hold.
5. Add sI(i − 1, j, k − 1) to S if k > 1 holds.
6. Add sD(i − 1, j, k − 1) to S if k > 1 and Bj = 0 hold.
7. Add states obtained with Algorithm 4 to S if k = 1

holds.
8. Set P(sD(i, j, k)) to infinity and perform the following

steps for each s ∈ S :

(a) Set penalty p to P(s) + pde,j if s is a state
representing deletion, otherwise set p to
P(s) + pdo,j.

(b) Set P(sD(i, j, k)) and T(sD(i, j, k)) to p and s,
respectively if P(sD(i, j, k)) > p holds.

Algorithm 7: Update penalty and traceback informa-
tion for sD(i, j, k, l) with l ∈ [2, |Gj| − 1]
1. Set P(sD(i, j, k, l)) to P(sD(i, j, k, l − 1)) + pde,j if l > 2

holds, otherwise set P(sD(i, j, k, l)) to
P(sD(i, j, k)) + pde,j.

2. Set T(sD(i, j, k, l)) to sD(i, j, k, l − 1) if l > 2 holds,
otherwise set P(sD(i, j, k, l)) to sD(i, j, k).

Algorithm 8:Update penalty and traceback information
for sR(i)
1. Let S be an empty set for states.
2. For subsequence ID j from 1 to m, perform the

following steps:

(a) For position k from 1 to |Gj| in subsequence Gj,
perform the following steps:

(i) Add sM(i − 1, j, k) to S .

3. Get ŝ = argmaxs∈S P(s).
4. Set T(sR(i)) and P(sR(i)) to ŝ and P(ŝ)+pc, respectively.

Algorithm 9: Trace back states for the realignment
result with the best penalty
1. Let S be a set of states representing match or

mismatch for the |R|th position in query read R.
2. Add sR(i) to S for all i ∈ [2, |R|].
3. Get ŝ = argmaxs∈S P(s).
4. LetQ be an empty queue and add ŝ toQ.
5. Set ŝ to T(ŝ)
6. If ŝ is not NULL, add ŝ toQ as its head element and go

back to step 5.



Kojima et al. BMC Genomics  (2016) 17:991 Page 5 of 15

Figure 2 summarize a relationship of the above nine
algorithms considered in STR-realigner as a flowchart.
After initialization of penalty and traceback informa-
tion for first query position with Algorithm 1, penalty
and traceback information are updated for other query
positions with Algorihtm 2 in a dynamic program-
ming manner. Then, a realignment with the best
penalty is obtained from traceback information with
Algorithm 9.

Time and space complexities of STR-realigner
Time complexity analysis
For each position i in query read R, updating penalty
and traceback information takes O(1) time for sM(i, j, k),
sI(i, j, k), and sD(i, j, k) for k > 1 and subsequence Gj with
Bj = 0. For k > 1 and subsequence Gj with Bj = 1,
updating information for sM(i, j, k) and sI(i, j, k) requires
O(|Gj|) time while updating information for sD(i, j, k) and
sD(i, j, k, l) requires O(1) time. For k = 1, states for tail
positions of preceding subsequences are additionally con-
sidered until reaching to subsequence Gj with Bj = 0
or j = 1 as in Algorithm 4. This process addition-
ally requires O

(∑j
x=j′ |Gx|

)
time for sM(i, j, 1), where j′

is one or the index for the first subsequence Gj′ with
Bj′ = 0 reached from Gj. However, since the best state
and its corresponding penalty before Gj−1 are already
considered for updating information for sM(i, j − 1, 1),
by using this information, we need to newly consider
only states in subsequence Gj−1, and hence the addition-
ally required time complexity is reduced to O(|Gj−1|).
Thus, with the modification of the algorithm according
to the above argument, updating information for states
sM(i, 1, 1), . . . , sM(i,m, 1) requires O

(∑
j |Gj|

)
time in

total. Since the same optimization can be applied to updat-
ing information for states representing insertion, updating
information for states with k = 1 requires O

(∑
j |Gj|

)

time in total as well. In addition, for sL(i) and sR(i),
O(1) time and O

(∑
j |Gj|

)
time are required, respec-

tively. Thus, updating penalties and traceback information
for all the states requires O

(∑
j |Gj| + ∑

j∈{j′|Bj′=1} |Gj|2
)

time for each position in query read R, and hence
the time complexity of the proposed algorithm is
O

(
|R| ·

(∑
j |Gj| + ∑

j∈{j′|Bj′=1} |Gj|2
))

time.

Space complexity analysis
The order of the number of states for each posi-
tion in query read R is O

(∑
j |Gj|

)
for sM(i, j, k),

sI(i, j, k), and sD(i, j, k). For sD(i, j, k, l), the order is
O

(∑
j∈{j′|Bj′=1} |Gj|2

)
, and for sL(i) and sR(i), the order

is O(1). Thus, storing values from functions P and

T requires O
(
|R| ·

(∑
j |Gj| + ∑

j∈{j′|Bj′=1} |Gj|2
))

space.
However, P(sD(i, j, k, l)) can be obtained by calculating
P(sD(i, j, k)) + (l − 1) · pde,j, and T(sD(i, j, k, l)) is given
by sD(i, j, k, l − 1) for l > 2 and sD(i, j, k) for l = 2.
Thus, the order of the space required for functions P
and T can be reduced to O

(
|R| ·

(∑
j |Gj|

))
by calcu-

lating functions P and T for sD(i, j, k, l) with O(1) time
when their values are required. The space required for
updating for each state is less than the order of the
number of states and is negligible, compared to spaces
required for P and T. Thus, with the above modifica-
tion, the proposed algorithm requires O

(
|R| ·

(∑
j |Gj|

))

space.

Practical implementation
Irregular repeat patterns are often contaminated in the
provided STR regions detected by some Bioinformatics
tools [16, 17], and those irregular repeat patterns worsen
the quality of the alignment of the proposed algorithm due
to the difference of the actual sequence and the assumed
repeat pattern. In order to address this issue, we extract
maximal regions containing repeat patterns consecutively
with some pre-specified error rate from the target STR
region. The extracted region is used for a new target STR
region for STR-realigner.
In order to use the realignment result from the pro-

posed algorithm for resequenced data, parts of the query
read aligned to Gj with Bj = 1 are again realigned to
the corresponding STR region of the reference genome.
However, the quality of the alignment is also worsened
due to irregular patterns in the STR region. Thus, we
consider a subsequence for a repeat pattern right after
the target STR region and set lower deletion penalty to
the target STR region. For penalty, the following set-
ting were used in our study: pm,i = −1, pmis,i = 4,
pio,i = 6, pie,i = 1, pdo,i = 6, pde,i = 1, and pc =
5. These parameter values are the same as the default
values in BWA-MEM. For subsequences corresponding
to target STR regions for lower deletion penalty, pdo,i is
set to 4.
In Illumina reads, bases at positions after homopolymer

regions are highly erroneous because the same phasing
is accumulated in synthesis during the Illumina sequenc-
ing process in homopolymer regions. Figure 3 shows
an example of erroneous bases around a homopolymer
region where a lot of clippings occur around a long
homopolymer comprised of A bases in GRCh37 due
to sequencing errors. Since sequence reads with such
highly erroneous bases worsen the quality of realign-
ment with STR-realigner, we additionally implemented
an option that skips the realignment with STR-realigner
for homopolymer regions with some specified size
such as 15.



Kojima et al. BMC Genomics  (2016) 17:991 Page 6 of 15

Fig. 2 A flowchart of algorithms considered in STR-realigner. After initialization of penalty and traceback information for first query position with
Algorithm 1, penalty and traceback information are updated for other query positions with Algorihtm 2 in a dynamic programming manner. Then, a
realignment with the best penalty is obtained from traceback information with Algorithm 9

Each mapping tool has its specific characteristics in
the aligned reads. For example, a deletion exists in the
start position of an STR region in the reads aligned with
some mapping tool while a deletion exists in the end
position of the STR region in the alignment result of

another mapping tool for the same sequence reads. The
performance of variant calling is worsened if such charac-
teristics are mixed in the alignment results. Thus, all the
reads aligned to a target STR region are realigned with
STR-realigner in the default condition.

Fig. 3 An alignment result around a homopolymer region. Most of the reads spanning the region contain soft clipping parts due to drastic
sequencing errors after the homopolymer region



Kojima et al. BMC Genomics  (2016) 17:991 Page 7 of 15

Results and discussion
Simulation analysis
From a list of STR regions provided in the RepeatSeq soft-
ware package, we extracted STR regions for evaluation as
follows:

• STR regions not in chromosome 22 were filtered out.
• STR regions with size longer than 100 bp were

filtered out.

The maximum period, the size of repeat pattern, in the
list is six. Since the length of sequence reads considered
in the following experiments is 100 or 101 bp and these
sequence reads cannot span STR regions > 100 bp for
most of the cases, STR regions > 100 bp were filtered out.
We then prepared synthetically generated diploid genome
sequences of chromosome 22 based on phased genotypes
for a CEU individual, NA12286, in the phase3 phased
reference panel by the 1000 Genomes Project [18]. In
the generation of the above genome sequences, variants
located in the extracted repeat regions were ignored. The
number of variants in total is 54,897. By randomly sam-
pling repeat numbers, we generated two sets of repeat
numbers for the extracted repeat regions and added STR
variants to the diploid genome sequences based on the
sets of repeat numbers for the evaluation. Note that repeat
numbers with which the size of STR region is > 100 bp
were avoided in the random sampling process. From
the diploid genome sequences, we generated paired-end
sequence reads in FastQ format with the read length of
100 bp and the insert size normally distributed with mean
of 500 bp and standard deviation of 50 bp. In the generated
reads, substitution errors were added with rate of 0.1%.
Base quality scores for bases in FastQ format were set to
Q30, which corresponds to 0.1% error. The read coverage
of the generated data is 40×. A BAM file for the dataset
was obtained by mapping the sequence reads to the refer-
ence genome (GRCh37) with BWA-MEM (0.7.12-r1039)
[19]. We applied our proposed realignment method, STR-
realigner, ReviSTER (0.1.7), and GATK IndelRealigner

(GATK 3.4-0) to the BAM independently and generated
three types of BAM files.
For GATK IndelRealigner, USE_READS was used

for --consensusDeterminationModel option. RepeatSeq
(v0.8.2) was applied to the original BAM file and the three
types of realigned BAM files, and sizes of variants in the
target STR regions were obtained. Table 1 shows call rates
of results from RepeatSeq using the original BAM file and
the three types of realigned BAM files. The call rate indi-
cates the rate of results with STR region size estimated as
a non-NA value. For all the STR periods other than period
of 1, call rates of results from the BAM file realigned
with STR-realigner are higher than those from other
BAM files.
Table 2 summarizes the root mean squared errors

(RMSE) between estimated and true STR region size for
each BAM file for all the STR regions. In the calcu-
lation of RMSE, the size in the reference genome was
assigned for the region size estimated as NA value. For
all the STR periods other than period of 1, the results
from the BAM file realigned with STR-realigner show
the best RMSE value. The RMSE value from the results
based on the BAM file realigned with GATK IndelRe-
aligner is slightly better than that based on the original
BAM file. In order to examine the performance excluding
the results estimated as NA value, we summarized RMSE
for STR regions where results were commonly estimated
as a non-NA value on all the four types of BAM files in
Table 3. Similarly to the results for all the STR regions, the
results from the BAM file realigned with STR-realigner
show the best RMSE value for all the STR periods other
than period of 1. The RMSE value from the results based
on the BAM file realigned with GATK IndelRealigner is
slightly better than that based on the original BAM file.
We also applied allelotype (4.0.0) [10], an STR calling soft-
ware in lobSTR package, to the original BAM file and the
three types of realigned BAM files. Tables 4, 5 and 6 show
call rates, RMSE values averaged on all the regions, and
RMSE values averaged on commonly called regions for
results from allelotype, respectively. In these tables, the

Table 1 Call rate of STR calling results with RepeatSeq using the original BAM file of 40× and those realigned with STR-realigner,
ReviSTER, and GATK IndelRealigner. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner Original BAM

1 5345 0.878 0.878 0.873 0.872

2 1160 0.799 0.794 0.785 0.784

3 517 0.834 0.807 0.799 0.803

4 1433 0.840 0.766 0.771 0.783

5 668 0.856 0.811 0.819 0.819

6 472 0.881 0.850 0.852 0.856

Total 9595 0.859 0.841 0.838 0.840



Kojima et al. BMC Genomics  (2016) 17:991 Page 8 of 15

Table 2 Root mean squared error (RMSE) between true and estimated repeat numbers with RepeatSeq using the original BAM file of
40× and those realigned with STR-realigner, ReviSTER, and GATK IndelRealigner for all the STR regions. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner Original BAM

1 5345 3.726 2.700 8.273 8.461

2 1160 2.648 4.648 8.213 8.539

3 517 2.151 4.022 8.242 8.601

4 1433 3.199 5.726 9.523 9.597

5 668 3.885 6.701 10.156 10.325

6 472 2.431 5.976 10.185 10.437

Total 9595 3.421 4.162 8.705 8.900

Table 3 Root mean squared error (RMSE) between true and estimated repeat numbers with RepeatSeq using the original BAM file of
40× and those realigned with STR-realigner, ReviSTER, and GATK IndelRealigner for commonly called STR regions. The best result is
underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner Original BAM

1 4659 3.858 2.718 8.694 8.891

2 900 2.471 4.815 8.735 9.084

3 410 2.402 3.265 8.548 8.930

4 1084 3.152 4.428 9.688 9.796

5 536 3.600 5.855 10.219 10.422

6 399 2.248 5.593 10.498 10.793

Total 7988 3.484 3.741 9.038 9.253

Table 4 Call rate of STR calling results with allelotype using the original BAM file of 40× and those realigned with STR-realigner,
ReviSTER, GATK IndelRealigner, and allelotype with --realign option. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner --realign option Original BAM

1 5345 1.000 1.000 0.998 0.998 0.998

2 1160 0.994 0.994 0.984 0.984 0.984

3 517 0.992 0.992 0.988 0.988 0.988

4 1433 0.991 0.992 0.988 0.987 0.987

5 668 0.997 0.997 0.990 0.990 0.990

6 472 0.994 0.994 0.992 0.989 0.989

Total 9595 0.997 0.997 0.993 0.993 0.993

Table 5 Root mean squared error (RMSE) between true and estimated repeat numbers with allelotype using the original BAM file of
40× and those realigned with STR-realigner, ReviSTER, GATK IndelRealigner, and allelotype with --realign option for all the STR
regions. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner --realign option Original BAM

1 5345 1.104 1.054 4.148 4.181 4.152

2 1160 2.638 2.679 5.454 5.762 5.477

3 517 2.778 2.746 4.818 4.768 4.818

4 1433 2.651 2.631 5.386 5.398 5.406

5 668 2.301 2.114 6.617 6.660 6.617

6 472 3.137 3.178 6.071 5.936 6.094

Total 9595 1.959 1.933 4.861 4.914 4.870



Kojima et al. BMC Genomics  (2016) 17:991 Page 9 of 15

Table 6 Root mean squared error (RMSE) between true and estimated repeat numbers with allelotype using the original BAM file of
40× and those realigned with STR-realigner, ReviSTER, GATK IndelRealigner, and allelotype with --realign option for commonly called
STR regions. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner --realign option Original BAM

1 5333 1.009 0.955 4.024 4.058 4.028

2 1141 2.475 2.489 5.086 5.420 5.111

3 511 2.472 2.435 4.490 4.435 4.490

4 1414 2.270 2.371 5.157 5.152 5.177

5 661 2.058 1.865 6.263 6.308 6.263

6 467 2.476 2.977 5.888 5.747 5.912

Total 9527 1.729 1.755 4.649 4.702 4.659

results for the original BAM file realigned by allelotype
with --realign option are also included. The results for
the BAM files realigned with STR-realigner and ReviS-
TER gave the highest call rate for all the STR periods other
than period of 4 and the case considering all the periods.
The results for STR-realigner gave the best RMSE value
for STR periods of 2, 4, and 6 and the case considering
all the periods for commonly called regions although the
results for STR-realigner are slightly worse than those for
ReviSTER in total for Table 5.
In order to examine the performance on lower cover-

age data, we downsampled the original BAM file from
40× to 10× and estimated repeat numbers with Repeat-
Seq and allelotype using the downsampled BAM file and
BAM files obtained by applying the realignment methods
to the downsampled BAM file. Table 7 shows call rates of
results from RepeatSeq for the downsampled BAM files.
For all the STR periods other than period of 1, call rates
of results from the BAM file realigned with STR-realigner
are higher than those from other BAM files. Tables 8 and 9
respectively summarize RMSE values for each BAM file
for all the STR regions and the regions where results were
commonly estimated as a non-NA value. In the calcula-
tion of RMSE, the size in the reference genome was set for
the region size estimated as NA value for Table 8. In both
Tables 8 and 9, the results from the BAM file realigned
with STR-realigner shows the best RMSE values for all the

STR periods other than period of 1. The RMSE value from
the results based on the BAM file realigned with GATK
IndelRealigner is slightly better than that based on the
original BAM file.
Tables 10, 11 and 12 show call rates, RMSE values

averaged on all the regions, and RMSE values averaged
on commonly called regions for results from allelotype,
respectively. The results for the BAM file realigned with
STR-realigner gave the highest call rate for all the STR
periods other than period of 1. In total, STR-realigner gave
the best results in both considering all the STR regions
and commonly called regions.
The results for the sequencing data of 10× are always

worse than those of 40× in all the cases.

Real data analysis
For real human sequencing data, we used 101 bp
paired-end sequencing data of a CEU parent-offspring
trio NA12878, NA12891, and NA12892 analyzed in
the 1000 Genomes Project. NA12891 and NA12892
are parents of NA12878. The data was sequenced on
Illumina HiSeq 2000 with the read coverage of 50×
and the average insert size of 300 bp. Sequence reads
were mapped to the reference genome (GRCh37) with
BWA-MEM and stored in BAM format. The data was
obtained from the Illumina Platinum Genomes Project
through the European Nucleotide Archive under the

Table 7 Call rate of STR calling results with RepeatSeq using the original BAM file of 10× and those realigned with STR-realigner,
ReviSTER, and GATK IndelRealigner. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner Original BAM

1 5345 0.874 0.876 0.854 0.848

2 1160 0.790 0.788 0.760 0.756

3 517 0.830 0.803 0.778 0.774

4 1433 0.831 0.759 0.735 0.736

5 668 0.859 0.793 0.774 0.774

6 472 0.871 0.824 0.807 0.814

Total 9595 0.854 0.836 0.813 0.809



Kojima et al. BMC Genomics  (2016) 17:991 Page 10 of 15

Table 8 Root mean squared error (RMSE) between true and estimated repeat numbers with RepeatSeq using the original BAM file of
10× and those realigned with STR-realigner, ReviSTER, and GATK IndelRealigner for all the STR regions. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner Original BAM

1 5345 5.261 5.128 8.904 9.126

2 1160 4.779 5.984 8.879 9.162

3 517 3.441 5.409 8.629 8.880

4 1433 4.466 6.724 10.060 10.195

5 668 4.951 7.489 11.058 11.159

6 472 4.854 7.179 10.385 10.652

Total 9595 4.966 5.809 9.308 9.517

Table 9 Root mean squared error (RMSE) between true and estimated repeat numbers with RepeatSeq using the original BAM file of
10× and those realigned with STR-realigner, ReviSTER, and GATK IndelRealigner for commonly called STR regions. The best result is
underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner Original BAM

1 4505 5.461 5.363 9.047 9.184

2 860 4.878 6.307 9.238 9.436

3 396 3.531 4.862 8.520 8.817

4 1023 4.449 5.954 9.828 9.899

5 497 5.188 6.835 10.504 10.638

6 371 4.622 6.771 10.451 10.773

Total 7652 5.129 5.712 9.323 9.474

Table 10 Call rate of STR calling results with allelotype using the original BAM file of 10× and those realigned with STR-realigner,
ReviSTER, GATK IndelRealigner, and allelotype with --realign option. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner --realign option Original BAM

1 5345 0.999 1.000 0.992 0.992 0.992

2 1160 0.990 0.988 0.972 0.973 0.972

3 517 0.985 0.983 0.977 0.977 0.977

4 1433 0.983 0.983 0.973 0.973 0.973

5 668 0.994 0.991 0.969 0.969 0.969

6 472 0.987 0.985 0.979 0.979 0.979

Total 9595 0.994 0.994 0.984 0.984 0.984

Table 11 Root mean squared error (RMSE) between true and estimated repeat numbers with allelotype using the original BAM file of
10× and those realigned with STR-realigner, ReviSTER, GATK IndelRealigner, and allelotype with --realign option for all the STR
regions. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner --realign option Original BAM

1 5345 2.477 2.695 6.017 6.009 6.009

2 1160 3.545 3.740 6.948 6.885 6.899

3 517 3.566 3.728 6.898 6.843 6.843

4 1433 3.754 3.818 7.476 7.417 7.431

5 668 3.910 4.469 8.760 8.762 8.762

6 472 4.319 4.265 8.232 8.217 8.233

Total 9595 3.116 3.309 6.752 6.727 6.732



Kojima et al. BMC Genomics  (2016) 17:991 Page 11 of 15

Table 12 Root mean squared error (RMSE) between true and estimated repeat numbers with allelotype using the original BAM file of
10× and those realigned with STR-realigner, ReviSTER, GATK IndelRealigner, and allelotype with --realign option for commonly called
STR regions. The best result is underlined

Period No. of regions STR-realigner ReviSTER IndelRealigner --realign option Original BAM

1 5304 2.413 2.656 5.740 5.732 5.732

2 1128 3.336 3.420 6.440 6.371 6.386

3 505 3.057 3.090 6.456 6.396 6.396

4 1394 3.398 3.479 7.045 6.980 6.995

5 647 3.766 4.199 8.015 8.017 8.017

6 462 3.688 3.872 7.907 7.892 7.909

Total 9440 2.906 3.099 6.363 6.336 6.341

study accession PRJEB3381 (http://www.ebi.ac.uk/ena/
data/view/ERP001960). STR-realigner, ReviSTER, and
GATK IndelRealigner were applied to these BAM files.
RepeatSeq was then applied to the original BAM files
and these realigned BAM files and sizes of the target
STR regions were estimated. In order to examine the per-
formance, we considered the consistency in Mendelian
inheritance in called regions, where the estimated region
size for NA12878 is a non-NA value. STR regions used for
the evaluation are the same as the regions in simulation
analysis in Section 1. We counted STR regions where the
estimated size for NA12878 consistent with those for her
parents, NA12891 and NA12892 in terms of Mendelian
inheritance as well as the STR regions with inconsistent
results.
In Table 13, the number of regions with consistent sizes

in terms of Mendelian inheritance (#CR) and the num-
ber of inconsistent estimation results (#IR) are summa-
rized. Note that the larger number is better for consistent
regions while the smaller number is better for inconsis-
tent regions. The results for STR period of 1 without
skipping homopolymer regions with size > 15 are in
parentheses.

For STR periods of 3, 4, and 6, results from BAM files
realigned with STR-realigner gave the best results in both
consistent and inconsistent regions.
In total, results from BAM files realigned with STR-

realigner gave the best results in both consistent and
inconsistent regions. Results for GATK IndelRealigner are
consistent in more regions than those for the original
BAM files although the results for GATK IndelRealigner
contains the most inconsistent regions.
In Table 14, the number of regions with consistent sizes

in terms of Mendelian inheritance (#CR) and the num-
ber of inconsistent sizes (#IR) on results estimated with
allelotype are summarized. For STR periods of 2, 3, 5, and
6, results from BAM files realigned with STR-realigner
gave the best results in consistent regions. In addition, for
STR periods of 2 and 5, results from BAM files realigned
with STR-realigner also gave the best results in inconsis-
tent regions. In total, the results for STR-realigner gave
the best performance in both consistent and inconsistent
regions.
Figure 4 shows an IGV view where STR-realigner effec-

tively works on realigning inserted repeat patterns in
an STR region comprised of GGAT repeats located at

Table 13 The numbers of estimated repeat numbers matched and mismatched with parents in terms of Mendelian inheritance

Period
STR-realigner ReviSTER IndelRealigner Original BAM

#CR #IR #CR #IR #CR #IR #CR #IR

1
1305 533 1319 540 1314 531 1298 531

(1,416) (563)

2 280 82 269 80 242 90 242 87

3 63 5 56 7 56 6 57 5

4 196 28 183 34 169 38 169 33

5 41 15 46 18 44 16 44 15

6 35 9 34 12 33 13 33 13

Total 1920 672 1907 691 1858 694 1843 684

The number of consistent regions (#CR), and the number of inconsistent regions (#IR) based on estimated repeat numbers with RepeatSeq in a parent-offspring trio,
NA12878, NA12891 and NA19892, for the original BAM files, those realigned with STR-realigner, ReviSTER, and GATK IndelRealigner are summarized. Values in parentheses for
STR-realigner are the result without filtering long homopolymer regions. The best result is underlined

http://www.ebi.ac.uk/ena/data/view/ERP001960
http://www.ebi.ac.uk/ena/data/view/ERP001960


Kojima et al. BMC Genomics  (2016) 17:991 Page 12 of 15

Table 14 The numbers of estimated repeat numbers matched and mismatched with parents in terms of Mendelian inheritance

Period
STR-realigner ReviSTER IndelRealigner --realign option Original BAM

#CR #IR #CR #IR #CR #IR #CR #IR #CR #IR

1
1772 777 1773 770 1770 773 1621 897 1775 776

(1834) (860)

2 345 81 328 94 323 90 317 97 328 84

3 70 6 69 4 66 7 65 8 65 7

4 222 24 224 20 219 23 214 28 216 26

5 75 27 75 29 75 28 73 31 73 28

6 73 28 67 28 67 27 68 22 70 26

Total 2557 943 2536 945 2520 948 2358 1083 2527 947

Fig. 4 Comparison of original and realigned BAM files for NA12892 in an STR region located at chr22:28045335-28045407. The top panel is a plot of
sequencing data in a BAM file realigned with STR-realigner and the bottom one is a plot of sequencing data in the original BAM file



Kojima et al. BMC Genomics  (2016) 17:991 Page 13 of 15

Table 15 Root mean squared error (RMSE) between the gold standard and estimated STR sizes with RepeatSeq using the original BAM
file for NA12878 from HiSeq 2000 and those realigned with STR-realigner, ReviSTER, and GATK IndelRealigner for all the STR regions

Period No. of regions STR-realigner ReviSTER IndelRealigner Original BAM

1 5345 2.429 2.397 2.431 2.430

2 1160 3.587 3.860 3.829 3.804

3 517 1.901 1.902 2.000 1.998

4 1433 2.509 2.540 2.709 2.710

5 668 3.134 2.736 3.021 3.039

6 472 2.821 2.823 2.890 2.890

Total 9595 2.656 2.660 2.724 2.721

For the gold standard, STR sizes estimated from high coverage PacBio sequencing data with allelotype are used. The best result is underlined

chr22:28045335-28045407 for a BAM file for NA12892.
In the original BAM file, there exist clipping fragments
in some reads due to the insertion of GGAT repeats, and
the insertion of GGA repeats was missed with RepeatSeq,
which caused the inconsistency of the estimated results
in Mendelian inheritance. On the other hand, sequence
reads with left clipping disappear and insertions are
observed in the BAM file realigned with STR-realigner.
In the estimated result with RepeatSeq, the insertion was
included in the estimated size of the STR region.
We also evaluated root mean squared errors for

NA12878 by using STR region sizes obtained from high
coverage PacBio sequencing data as the gold standard.
The PacBio sequencing data was obtained through Bio-
Project PRJNA253696 with Sequence Read Archive acces-
sion numbers SRX627421 and SRX638310 [20] and its
read coverage is 46× in total. Error-corrected reads with
Falcon (https://github.com/PacificBiosciences/FALCON)
in FASTA format were aligned to GRCh37 with BWA-
MEM, and STR region size data was then obtained from
variant calling results by applying allelotype to the aligned
reads.
Table 15 summarizes the RMSE values between esti-

mated STR region size with RepeatSeq and the gold stan-
dard for each BAM file for all the STR regions. In the

calculation of RMSE, the size in the reference genome was
assigned for the region size estimated as NA value. RMSE
values for estimated results with allelotype are also sum-
marized in Table 16. In both cases using RepeatSeq and
allelotype, the results from sequencing data realigned with
STR-realigner showed the best performance in total.

Comparison of computational time
Table 17 shows the computational time of STR-realigner,
ReviSTER, and GATK IndelRealigner for simulation and
real data analyzed in Sections 1 and 1. For the real data,
the computational time for realigning the BAM file for
NA12878 was measured. Computation was conducted in
Intel Xeon CPU E5-2670 processors with a single thread,
and computational time for each case is for single process.
STR-realigner is implemented in Java. In both simulation
and real data, ReviSTER required the most computational
time among these methods, and STR-realigner required
more computational time than GATK IndelRealigner.
For STR-realigner, by limiting alignment space within
some window of the original alignment result, the drastic
reduction of the computational time is expected while
keeping its realignment quality. In addition, the computa-
tional time can be reduced by realigning sequence reads
for each STR region in a parallel manner. For memory

Table 16 Root mean squared error (RMSE) between the gold standard and estimated STR sizes with allelotype using the original BAM
file for NA12878 from HiSeq 2000 and those realigned with STR-realigner, ReviSTER, GATK IndelRealigner, and allelotype with --realign
option for all the STR regions

Period No. of regions STR-realigner ReviSTER IndelRealigner --realign option Original BAM

1 5345 2.298 2.294 2.354 2.296 2.298

2 1160 3.152 3.293 3.265 3.243 3.129

3 517 2.033 2.039 2.034 2.038 2.034

4 1433 2.453 2.582 2.687 2.600 2.454

5 668 3.033 3.006 3.271 3.008 3.031

6 472 2.698 2.739 2.765 2.739 3.090

Total 9595 2.503 2.542 2.607 2.538 2.521

For the gold standard, STR sizes estimated from high coverage PacBio sequencing data with allelotype are used. The best result is underlined

https://github.com/PacificBiosciences/FALCON


Kojima et al. BMC Genomics  (2016) 17:991 Page 14 of 15

Table 17 Comparison of computational time on a simulation data for an individual with read coverage of 40× and a real dataset for
NA12878

Method Computational time Computational time
(Simulation data) (Real data)

STR-realigner 2,928.90 [s] 1,186.77 [s]

ReviSTER 5,230.72 [s] 3,618.62 [s]

GATK IndelRealigner 357.46 [s] 294.13 [s]

consumption, STR-realigner requires less than 2GB in
both simulation and real data.

Conclusion
We proposed a new realignment method for STR regions
named STR-realigner that takes sequence reads aligned
with other methods and realigns sequence reads by
dynamic programing manner with the consideration of
the corresponding STR repeat pattern as prior knowledge.
For the simulation data analysis, we prepared synthetically
generated reads aligned with BWA-MEM, those realigned
with STR-realigner, those realigned with ReviSTER, and
those realigned with GATK IndelRealigner. In order to
evaluate the effectiveness of our proposed method, we
applied RepeatSeq and allelotype to these four types
of aligned reads, and the results from sequence reads
realigned with the proposed method give the best RMSE
value among the results from these four types of aligned
reads. From the comparison of root mean squared errors
between estimated and true STR region size for these four
types of aligned reads, the results for the dataset realigned
with STR-realigner are better than those for other datasets
for most of the cases. For real data analysis, we con-
sidered a real sequencing dataset from Illumina HiSeq
2000 for a parent-offspring trio, RepeatSeq was applied
to an aligned sequencing dataset with BWA-MEM, that
realigned with STR-realigner, that realigned with ReviS-
TER, and that realigned with GATK IndelRealigner, and
the results from the dataset realigned with STR-realigner
shows the best performance in terms of consistency of
the size of estimated STR regions in Mendelian inher-
itance. In addition, by using the size for STR regions
obtained from high coverage PacBio sequencing data as
the gold standard, the results for STR-realigner show
the best RMSE values for the case considering all the
periods. In both simulation and real data, ReviSTER
required the most computational time among the realign-
ment methods considered in this work, and the proposed
method required more computational time than GATK
IndelRealigner. However, the computational time of STR-
realigner can be reduced drastically by parallel computing
and limiting the search space for the realignment around
the originally aligned results in some specified window
size.

Abbreviations
BAM: Binary alignment/map; CEU: Central Europe; GATK: Genome analysis
toolkit; GRC: Genome reference consortium; HTS: High-throughput
sequencing; RMSE: Root mean squared error; STR: Short tandem repeat

Acknowledgements
This work is partially supported by grants from the Reconstruction Agency, the
Ministry of Education, Culture, Sports, Science and Technology (MEXT), the
Center of Innovation Program from Japan Science, Technology Agency (JST),
and the Japan Agency for Medical Research and Development (AMED). All
computational resources were provided by the ToMMo supercomputer
system (http://sc.megabank.tohoku.ac.jp/en).

Funding
Publication costs for this work were funded by the Tohoku Medical Megabank
Project (Special Account for reconstruction from the Great East Japan
Earthquake).

Availability of data andmaterials
Sequence reads from HiSeq 2000 for NA12878, NA12891, and NA12892 are
available at the European Nucleotide Archive under the study accession
number PRJEB3381 (http://www.ebi.ac.uk/ena/data/view/ERP001960).
Sequence reads from PacBio for NA12878 is available through BioProject
PRJNA253696 with Sequence Read Archive accession numbers SRX627421
and SRX638310. A Java implementation of STR-realigner is available at https://
github.com/kanamekojima/STR-realigner.

Authors’ contributions
KK proposed the statistical model and implemented the program for
evaluation. KK, YK, KM, TM, and MN developed fundamental environments for
the evaluation using simulation and real data studies. KK, YK, KM, TM, and MN
carefully checked equations and other contents in this manuscript. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 13 May 2016 Accepted: 15 November 2016

References
1. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,

Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ,
Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly
MJ. A framework for variation discovery and genotyping using
next-generation dna sequencing data. Nat Genet. 2011;43:491–8.

2. Kojima K, Nariai N, Mimori T, Takahashi M, Yamaguchi-Kabata Y, Sato Y,
Nagasaki M. A statistical variant calling approach from pedigree
information and local haplotyping with phase informative reads.
Bioinformatics. 2013;29(22):2835–843.

3. Kojima K, Nariai N, Mimori T, Yamaguchi-Kabata Y, Sato Y, Kawai Y,
Nagasaki M. Hapmonster: a statistically unified approach for variant

http://sc.megabank.tohoku.ac.jp/en
http://www.ebi.ac.uk/ena/data/view/ERP001960
https://github.com/kanamekojima/STR-realigner
https://github.com/kanamekojima/STR-realigner


Kojima et al. BMC Genomics  (2016) 17:991 Page 15 of 15

calling and haplotyping based on phase-informative reads. Lect Notes
Comput Sci. 2014;8542:107–18.

4. Li H, Ruan J, Durbin R. Mapping short dna sequencing reads and calling
variants using mapping quality scores. Genome Res. 2008;18(11):
1851–1858.

5. 1000 Genomes Project Consortium. An integrated map of genetic
variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

6. Nagasaki JM, Yasuda KF, et al. Rare variant discovery by deep
whole-genome sequencing of 1,070 japanese individuals. Nat Commun.
2015;6:8018.

7. Mimori T, Nariai N, Kojima K, Takahashi M, Ono A, Sato Y,
Yamaguchi-Kabata Y, Kawai Y, Nagasaki M. iSVP: an integrated structural
variant calling pipeline from high-throughput sequencing data. BMC Syst
Biol. 2013;7(Suppl 6):(S8).

8. Walker FO. Huntington’s disease. Lancet. 2007;369(9557):2185–28.
9. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH.

Androgen receptor gene mutations in x-linked spinal and bulbar
muscular atrophy. Nature. 1991;352(6330):77–9.

10. Gymrek M, Golan D, Rosset S, Erlich Y. lobstr: A short tandem repeat
profiler for personal genomes. Genome Res. 2012;6:1154–1162.

11. Highnam G, Franck C, Martin A, Stephens C, Puthige A, Mittelman D.
Accurate human microsatellite genotypes from high-throughput
resequencing data using informed error profiles. Nucleic Acids Res.
2013;41(1).

12. Cao MD, Tasker E, Willadsen K, Imelfort M, Vishwanathan S, Sureshkumar
S, Balasubramanian S, Boden M. Inferring short tandem repeat variation
from paired-end short reads. Nucleic Acids Res. 2014;42(3).

13. Kojima K, Kawai Y, Nariai N, Mimori T, Hasegawa T, Nagasaki M. Short
tandem repeat number estimation from paired-end reads for multiple
individuals by considering coalescent tree. BMC Genomics. 2016;17(494).

14. Ummat A, Bashir A. Resolving complex tandem repeats with long reads.
Bioinformatics. 2014;30(24):3491–498.

15. Tae H, McMahon KW, Settlage RE. Revister: an automated pipeline to
revise misaligned reads to simple tandem repeats. Bioinformatics.
2013;29(14):1734–1741.

16. Benson G. Tandem repeats finder: a program to analyze dna sequences.
Nucleic Acids Res. 1999;27(2):573–80.

17. Misawa K. Short tandem repeats in the human, cow, mouse, chicken, and
lizard genomes are concentrated in the terminal regions of
chromosomes. Gene Reports. 2016;4:280–5.

18. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD,
DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean
GA. A map of human genome variation from population-scale
sequencing. Nature. 2010;467(7422):1061–1073.

19. Li H. Aligning sequence reads, clone sequences and assembly contigs
with bwa-mem. arXiv:130.3997. 2013.

20. Pendleton M, Sebra R, Chun Pang AW, Ummat A, Franzen O, Rausch T,
Stutz AM, Stedman W, Anantharaman T, Hastie A, Dai H, Fritz MH, Cao
H, Cohain A, Deikus G, Durrett RE, Blanchard SC, Altman R, Chin C, Guo
Y, Paxinos EE, Korbel JO, Darnell RB, McCombie WR, Kwok P, Mason CE,
Schadt EE, A AB. Assembly and diploid architecture of an individual
human genome via single-molecule technologies. Nat Methods.
2015;12(8):780–6.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Method
	Realignment algorithm considering repeat sequence as prior knowledge
	Time and space complexities of STR-realigner
	Time complexity analysis
	Space complexity analysis

	Practical implementation

	Results and discussion
	Simulation analysis
	Real data analysis
	Comparison of computational time

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

