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Abstract

Background: The ability to sequence the transcriptomes of single cells using single-cell RNA-seq sequencing
technologies presents a shift in the scientific paradigm where scientists, now, are able to concurrently investigate
the complex biology of a heterogeneous population of cells, one at a time. However, till date, there has not been a
suitable computational methodology for the analysis of such intricate deluge of data, in particular techniques which
will aid the identification of the unique transcriptomic profiles difference between the different cellular subtypes.
In this paper, we describe the novel methodology for the analysis of single-cell RNA-seq data, obtained from
neocortical cells and neural progenitor cells, using machine learning algorithms (Support Vector machine (SVM) and
Random Forest (RF)).

Results: Thirty-eight key transcripts were identified, using the SVM-based recursive feature elimination (SVM-RFE)
method of feature selection, to best differentiate developing neocortical cells from neural progenitor cells in the
SVM and RF classifiers built. Also, these genes possessed a higher discriminative power (enhanced prediction
accuracy) as compared commonly used statistical techniques or geneset-based approaches. Further downstream
network reconstruction analysis was carried out to unravel hidden general regulatory networks where novel
interactions could be further validated in web-lab experimentation and be useful candidates to be targeted for the
treatment of neuronal developmental diseases.

Conclusion: This novel approach reported for is able to identify transcripts, with reported neuronal involvement,
which optimally differentiate neocortical cells and neural progenitor cells. It is believed to be extensible and
applicable to other single-cell RNA-seq expression profiles like that of the study of the cancer progression and
treatment within a highly heterogeneous tumour.
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Background
The advent of sequencing technology has brought about
the unprecedented ability to sequence individual single
cells. Now, the distinct gene expression profiles of seem-
ingly similar yet genetically heterogeneous subpopulations
of cells within different tissue types can be elucidated with
the use of single-cell sequencing technology. The study of
such subpopulations within tumours is especially import-
ant in the study of differential reactivity of patients to drug
treatments and that of acquired drug resistance within
cancer patients [1, 2]. The complex underlying transcrip-
tomic dynamics elucidated will enhance our understand-
ing of the distinct gene expression signatures of different
carcinomas or subpopulations within disparate tumour
tissues which will ultimately aid in the optimization of
cancer treatments.
A major challenge, however remains, is that of a suit-

able computational analytic pipeline for the analysis of
single-cell RNA-Seq transcriptomic data. To address this
problem, this paper proposes the identification of the
unique gene expression profile within each subpopula-
tion through traditional statistical methodology, geneset
enrichment analysis (GSEA), machine learning algo-
rithms where genes identified are subsequently used to
build predictive classifiers for cell type prediction. Com-
putational analysis of RNA-Seq transcriptomic data
using machine learning algorithms, particularly that of su-
pervised learning algorithms, like rule-based machine
learning techniques [3], Support Vector Machine (SVM)-
based [4, 5] and network-based approaches [6], is not
new. However, this paper is the first to utilize a combin-
ation of two different machine learning algorithms (SVM
and Random Forest (RF)) on single-cell RNA-seq tran-
scriptomic data to identify the key signatures of different
cell types for cell type prediction. Using single-cell RNA-
seq expression data from neocortical cells and those of
neural progenitor cells as inputs, we have identified a set
of 38 key genes which optimally differentiates developing
neocortical cells and those of neural progenitor cells.
Further, relevance of the differentially expressed genes

in neuronal cell differentiation were also investigated
using network-based approaches where the gene regula-
tory networks (GRNs) inferred elucidated the potential
underlying interactions/functions of the key hub genes
(eg, genes that regulate many genes in neuronal cells but
do not regulate genes in neuronal progenitor cells)
which could be further validated in wet-lab experimenta-
tion [7, 8]. In summary, this paper described a novel
computational pipeline for the study of single-cell RNA-
Seq transcriptomic data where key genes identified were
used, with high accuracy, to predict distinct neuronal
cell subtypes where such a system could be used to
uncover the different subpopulations within a newly
sequenced brain tissue. In addition, downstream network

studies lend a systems-level relevance where potential
underlying relationships are unravelled and potentially be
used for targeted for treatment in neuronal developmental
diseases.

Results
Prefiltering of genes
The summary of the methodology employed in this
paper is summarized in Fig. 1.
Raw data, downloaded from the NCBI databased, was

filtered (the criteria used for data filtering is reported in
the materials and methods section) to obtain a total
8681 (~15%) genes which represents the dataset denoted
by “all genes”. A total of 65 samples (15 NPC and 50 de-
veloping neuronal cells) were used as training data to
SVM and RF algorithms. Significance of the cell types
assignment is further validated using Pvclust [9], which
employs a multiple bootstrap (50,000) resampling algo-
rithm to calculate the approximately unbiased (AU)
probability values for cluster distinctions which is shown
in red in Fig. 2.

SVM and RF-based classification of neuronal cell types on
all expressed genes
Each set of gene expression data, extracted from differ-
ent feature selection methods, was used to train two dif-
ferent machine learning (ML) models, namely a SVM
and a RF classifier. The classification was reduced to a
two-class problem where the predictor was designed to
identify potential neocortical neuronal cells from NPCs.
Due to the limited number of samples, 65 (15 NPC

and 50 neuronal cells) used in this study, the data was
not separated into training and testing set for the con-
struction of SVM-based classifiers. Instead, leave-one-
out (LOO) cross validation was carried out. However,
this was deemed unnecessary for RF as classifiers were
built by aggregating a large number of different decision
trees, predictors built with the random forests algorithm
is expected to have low variance and low bias.
SVM and RF classifiers built with the filtered high

dimensional single-cell RNA-seq expression dataset,
consisting of more than 8000 transcripts (Table 1), yields
an accuracy of 95.3 and 76.9% respectively (Table 2). It
seems like classifiers built with all transcripts, sans those
of low expression, are able produce classifiers of a
reasonably high accuracy, however, the quality of such
classifiers needs to be co-ordinately investigated. To this
end, the Matthews correlation coefficient (MCC) was
used to validate the quality of the classifiers constructed.
A coefficient of 1 represents a prefect prediction while
that of 0 indicates a classifier producing predictions
similar to random prediction. The SVM classifiers were
far superior to the cognate RF classifiers having a MCC
of 0.91 and 0, respectively. Thus, there is a need for
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additional feature transcript selection process to en-
hance both the accuracy and the quality of the con-
structed classifiers. Additionally, the construction of
classifiers based on all transcripts are computational
inefficient and the inclusion of large number of

“noisy genes” will obscure important underlying signa-
tures of each phenotypic class due to data overfitting
and this will greatly limit the accuracy and quality of
the classifiers [10]. On a more biological note, such a
method fails to identify a subset of key genes which

Fig. 1 Workflow for data analysis carried out in this paper. *All genes refers to the set of genes filtered by expression values and ^ selected genes
refers to the optimal set of genes identified by geneset enrichment analysis (GSEA), statistical and machine-learning approaches (See Methods for
more information)

Fig. 2 Clustering of 65 neuronal cells. The approximately unbiased (AU) probability value at each node is shown in red font. There are four
distinct clusters (red boxes labelled 1–4) with an AU higher than 80. Box1 comprises of mainly NPCs while boxes 2–4 primarily consists of
neuronal cells only
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might have important biological applications in novel
biomarker discovery.

SVM and RF-based classification of neuronal cell types
with enhanced feature selection
In this study, a total of five different feature selection tech-
niques were employed in for dimensionality reduction and
they are pathway-based selection by GSVA, statistical-based
selection by sRAP and T-test approaches and ML-based
selection by SVM-RFE and RF-based positive MDA
approaches. The number of transcripts selected by each
feature elimination method can be found in Table 1.
Additionally, the corresponding accuracies and MCC of
each classifier are listed in Table 2.
The feature selection process decreased the number of

transcripts analysed by ~60% to more than 95%. The
best classifier constructed was that with features selected
by SVM-RFE. This selection gave the best prediction ac-
curacies and MCC, 100% and 1 respectively, for both the
SVM and RF classifiers. GSEA has enabled scientists to
identify sets or group of deregulated genes where pre-
liminary insights to alternation of cellular mechanisms
under different biological conditions can be studied [10].

Given the usefulness of such a methodology, in this
paper, we explore the impact on GSEA gene selection
and prediction accuracy. Classifiers built with on GSVA-
enriched genes did not considerably increase the predic-
tion accuracy of the classifiers as a mere 3.2% increase
in accuracy of the SVM predictor was obtained.
Nevertheless, it is interesting to note that RF classifiers

generally have a lowered level of accuracy and a poor
MCC value as compared to the cognate SVM models. For
example, the RF classifier constructed using RF-based
Positive MDA gene selection approach have an accuracy
of 76.9, ~23% lower than that of the SVM classifier built
with the same data. Also, the SVM classifier produces a
perfect predictor (MCC= 1) while that of the RF classifier
performs no better than random prediction (MCC= 0).
This observation could be an indication of the short-
coming of tree-based ML methods to build high quality
classifiers with single-cell RNA-seq expression data.

Network-level differences between NPCs and neuronal
cells and their biological relevance in neuronal
development
Gene regulatory networks (GRNs) among these tran-
scripts inferred from RNA-seq expression profiles of
SVM-RFE genes are useful in the investigation of system-
level differences between the two cell types. Hub-genes
(genes/transcripts that have a large number of regulatory
interactions with other genes/transcripts) identified in
GRNs might play potentially key roles in the maintenance
of a particular cellular state. Thus, “differential hub genes
(DHGs)” that are hub-genes/transcripts in neuronal cells
(or NPCs) but not hub-genes in NPCs (or neuronal cells)
could have important roles to differentiate the two cell
types.
In order to investigate network-level difference (eg,

DHGs) between the two cell types, GRNs were inferred
(see Methods for more details) in neuronal cells (see
Fig. 3a), NPCs (see Fig. 3b) from RNA-seq expression
profiles and the structure of the two GRNs were subse-
quently compared (Fig. 3c). As observed, a large number
of regulatory interactions are activated in one cell type
but are not activated in the other cell type (blue links
represents regulatory interactions activated in NPCs but
not in neuronal cells, while red links represents those
activated in neuronal cells but not in NPCs). For ex-
ample, several interactions of the Homeobox protein
orthopedia (OTP) gene (red-colored node in Fig. 3c) are
activated in neuronal cells but not in NPCs and this is
indicative that OTP gene is a potentially important gene
which is possibly regulated in neuronal cells but not in
NPCs.
In order to identify DHGs between the two cell types,

we used a representative network metric, “degree”,
which is defined as the number of links to the transcript.

Table 1 Genes/features selected by disparate feature
selection techniques

Feature selection techniquesa Features/Genes (No.)

Filtered by low expression 8281

GSVA feature enrichment 1161

sRAP 837

SVM-RFE 38

RF-based Positive MDA 3339

T-test 60
aFeature selection is based on five different methodologies based on machine
learning algorithms (SVM and RF) and also that of traditional differentially
expressed genes (sRAP), t-test based analysis (limma) and genes in
deregulated pathways (GSVA)

Table 2 Accuracy of RF and SVM classifiers on the
neuronal dataset

Genes selected Accuracy (%)a MCC^

SVM RF SVM RF

All genesb 95.3 76.9 0.91 0.00

GSVA feature enrichment 98.5 76.9 0.87 0.00

sRAP 100 76.9 1.00 0.00

SVM-RFE 100 100 1.00 1.00

RF-based Positive MDA 100 76.9 1.00 0.00

T-test 100 97.0 1.00 0.91

The accuracy of the SVM predictors were obtained from LOO cross validation.
SVM and RF classifiers were constructed with each set of data listed in Table 2
aAll percentages are rounded off to three significant figures
bTranscripts with a total expression of zero and/or having more than six
samples with expression levels less than one were excluded
^Matthews correlation coefficient (MCC) rounded to 2 decimal places
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For weighted network, di, degree of a gene i is defined
as, dj = ∑j = 1

N Wi,j, where N is number of transcripts in a
GRN and wi,j is weight (in this study, we used confi-
dence score for a link as weight) for a regulatory inter-
action between two genes i and j. If a transcript have

high-degree in a cell type, such transcript is defined as
hub genes/transcripts in the cell type. In order to iden-
tify DHGs, for each of genes, we calculated difference in
degrees between two cell types. For example, degree of
MRPS36 in neuronal cells and that in NPCs are 57.08

Fig. 3 GRN in NPCs (a) neuronal cells (b) and differential GRN between the two cell types. a GRN in NPCs. Nodes represent transcripts, while links
between two nodes represent regulatory interactions between two transcripts in NPCs. Gene regulatory interactions with high confidence score
(confidence score > 0.75) in NPCs are shown in the diagram. b GRN in neuronal cells. Nodes represent transcripts, while links between two nodes
represent regulatory interactions between two transcripts in neuronal cells. Gene regulatory interactions with high confidence score (confidence
score > 0.75) in neuronal cells are shown in the diagram. c Differential GRN between two cell lines. Nodes are transcripts. Red links represent gene
regulatory interactions that are activated in neuronal cells but not activated in NPCs, while blue links represents those activated in NPCs but
not in neuronal cells. In this diagram, we assumed that a regulatory interaction is activated in neuronal cells (or NPCs) but is not activated in NPCs
(or neuronal cells), if difference in confidence score between the two cell types is greater than 0.75, eg, an interaction whose confidence scores are
0.99 and 0.20 in neuronal cells and NPCs, respectively. Note that OTP is a representative DHG (see Table 3) and thus the gene is highlighted in red
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and 33.99 respectively, and the degree difference of MPS
is 23.09 (= |57.08 – 33.99|). Then, we ranked the tran-
scripts according to their degree difference (Table 3). In
Table 3, highly ranked transcripts (transcripts with high

degree difference) are DHGs and may play an important
role in differentiating neuronal cells from NPCs.
Among the top ranked DHGs, we identified two

potential key transcripts (the mitochondrial ribosomal
protein S36 (MRPS36) and OTP) which could be re-
sponsible for the differentiation of NPCs from neuronal
cells. MRPS36 is reported to be important in the main-
tenance of an undifferentiated state as overexpression of
MRPS36 retards cell proliferation and delays cell cycle,
helping cells maintain their undifferentiated state [11].
Similarly, the protein OTP is reportedly expressed in the
hypothalamus during mammalian embryonic brain de-
velopment and is a key determinant underlying FezI and
Pac1-mediated of hypothalamic neural differentiation
[12, 13]. These results indicate that the putative tran-
scripts present within the top ranked DHGs could act as
candidate targets for further experimental validation of
their role in neuronal development. It is pertinent to
note that as shown in Table 3, several of the SVM-RFE
genes did not have significant difference in network
property (degree) between the two cell types. This can
signify that at the network level, all the SVM-RFE genes
(DHGs) may not play biologically relevant role in differ-
entiating the two cell types.

Discussion
The advancement of high throughput sequencing tech-
nologies has brought about an unprecedented ability for
scientists to analyze the highly complex eukaryotic tran-
scriptome by RNA-Seq. As compared to its predecessors,
RNA-Seq has a very high signal-to-noise ratio and very
large dynamic range. Reproducibility of RNA-Seq sequen-
cing is also high and is able to provide high correlation
across biological and technical replicates [14–16]. Further,
single-cell RNA-seq techniques were developed, allowing
finer insights to be elucidated with respect to the dynam-
ics of disparate cellular differentiation, responses to stimu-
lation and the stochastic nature of transcription within
individual cells within a tissue or a tumour. Though it is
still expensive to carry out RNA-seq sequencing in the
current paradigm, it is expected that the sequencing cost
will significantly decrease within the next few years [17].
In view of the impending information overflow, there is

a concurrent need to develop more efficient techniques
for the analysis such big data, especially for the construc-
tion of predictive models which can aid the identification
and classification of different cell types as described in this
paper. This work is one of the first to analyse single-cell
RNA-seq profiles for the construction of predictive classi-
fiers for neuronal cells and NPC. Also, classification accur-
acy of different models, built with features selected by
different methods (ML based, GSEA or traditional DE
genes based methods), have also been critically assessed.
Further, we integrated the classification results with a

Table 3 Degree of difference between neuronal cells and NPCs
in different genes

Genes Degree in
neuronal cellsa

Degree in
NPCsa

Degree difference
between neuronal
cells and NPCsa

MRPS36 57.1 34.0 23.1

RP11_4K3 23.0 44.0 21.0

SENP5 19.9 35.7 15.8

CLCNKB 23.9 39.6 15.7

POLR2F 23.7 39.2 15.4

OTP 48.3 33.1 15.2

RP1_58B11_1 24.6 39.3 14.7

RP11_293M10_2 32.4 45.9 13.5

RP3_465N24_6 25.6 39.1 13.5

SNORA77 30.0 43.2 13.2

C3orf65 50.8 38.0 12.8

ANGPTL7 49.7 37.9 11.8

RP4_580O19_2 47.2 36.9 10.2

RNU4_27P 45.1 35.0 10.0

COL11A1 25.8 35.3 9.46

RP11_68I18_10 47.9 39.3 8.67

Y_RNA 44.1 35.8 8.32

THTPA 29.9 37.5 7.61

ZNF44 45.7 38.6 7.11

CTH 28.9 35.9 7.02

RP11_692M12_4 42.8 35.8 7.02

RP11_345P4_7 32.0 38.8 6.82

RP13_614K11_2 36.5 43.3 6.81

MIR4417 30.7 37.2 6.55

RP11_223J15_2 36.7 42.5 5.77

RNU6_1330P 47.1 41.4 5.67

AC004893_11 45.1 39.9 5.23

RP3_406A7_5 33.4 37.5 4.06

MIR378F 39.1 35.5 3.63

PNRC2 33.7 30.6 3.15

RP5_886K2_3 43.5 40.6 2.89

RP5_857K21_5 34.9 33.2 1.61

PCID2 35.8 37.3 1.47

MST1L 38.5 37.4 1.00

RP4_749H3_1 39.5 38.9 0.624

RPL18AP2 36.0 36.6 0.573

DHDDS 41.1 40.7 0.414
aDegree of difference is corrected to three significant figures
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network inference pipeline to infer potential regulatory
network amongst genes/transcripts (GRN) and identify
network signatures for specific cell types.
Four key insights were obtained from this piece of

work. First, transcripts selected by ML algorithm build
better classifiers with enhanced accuracy, up to 100%, as
compared to DE genes selected by traditional methods
(sRAP and GSVA). Second, models built with differen-
tially expressed transcripts selected from biological
pathway-based methods (GSVA) proved to be inferior to
that of models built with highly deregulated genes iden-
tified by traditional statistical means (sRAP and T-test).
While pathway-based techniques are able to lend bio-
logical relevance to selected genes, genes selected by
such methodology might not be able to capture gene ex-
pression signature of the disparate cell types studied.
Thirdly, accuracy differs between classifiers built by dif-
ferent ML algorithms where RF, as compared to SVM, is
unable to produce high accuracy for the high dimen-
sional data analysed in this paper. Finally, the system-
level analysis of the set optimal transcripts, using GRN
inference analysis, is useful in the identification of hub
transcripts which defines the different cell types investi-
gated. Candidate transcripts identified by GRNs have po-
tential biological correlates which are important in
providing biological insights to cellular development. It
is believed that such a workflow is extensible and applic-
able to other single-cell RNA-seq expression profiles like
that of the study of the cancer progression within the
highly heterogeneous cancer cells within a tumour [18].

Conclusion
The advancement in sequencing technologies have
always brought along immense computational challenges
to accurately and rapidly analyse the large amount of
data generated from such experiments. Single-cell se-
quencing will inevitably become the gold standard for
the study of genetic/transcriptomic aberrations, thus,
concurrent efforts need to be placed in parallel to devise
computational pipelines which can effectively analyse
such big data. In addition to the use of legacy algorithms
passed down for the era of microarray data analysis,
there is a need to inject novelty and creativity in the ana-
lysis of single-cell RNA-seq data. This can be achieved
using the combination of machine learning algorithms
like SVM and RF and network reconstruction algorithms
as reported in this paper. We have demonstrated that
predictors built from transcripts selected using machine-
learning based feature selection techniques which out-
performs the commonly used statistical techniques or
geneset-based approaches. Also, the novel incorporation
of network reconstruction techniques have led to the
identification of existing interactions and also potentially
new interaction networks are identified which can be

further validated in a smaller number of wet lab experi-
ments as candidate biomarker genes. We believe that
such a pipeline is extensible to other single-cell RNA-
seq datasets, including those of tumor samples where
the intricate transcriptomic complexity of the highly het-
erogeneous tumor can be unravelled for the design of
personalized treatment for individual patient.

Methods
Data preparation for Single-cell RNA-Seq
Single-cell RNA gene expression profiles of neural cells
from Pollen et al. [19] were used for this study as train-
ing data for the SVM/RF classifiers and will be called the
“Fluidigm neural dataset” in this study. The data
contained expression profiles of four neuronal cell
populations, 65 samples in total, including (i) neural non-
progenitor cells (NPCs), (ii) cells from the germinal zone
of human cortex at gestational week (GW) 16 (GW16),
(iii) 21 (GW21) and (iv) a subset of cells at GW21 which
were furthered cultured for 3 weeks (GW21 + 3). Raw
reads, obtained from the NCBI Sequence Read Archive
(http://www.ncbi.nlm.nih.gov/sra) [20] under accession
number SRP041736 [3], were mapped to the reference
genome using Tophat2 (v2.1.0) [21] and were subjected to
Fragments per Kilobase of Exon per Million Fragments
Mapped (FPKM) normalization, using cuffdiff (v2.2.1)
[22], prior to downstream analysis. Expression levels were
logged prior to filtering. Genes having log FPKM of
greater than one in more than six cells were included in
the analyses. Samples were assigned labels of NPCs and
those of the neuronal cells (inclusive of expression data
obtained from cells of GW16, GW21 and GW21 + 3).

Construction of support vector machine (SVM) and
random forest (RF) predictive models for the
identification of fetal neocortical neuronal cells from
NPCs
Classification accuracies of each disparate dataset were
explored using two different machine learning algo-
rithms - Support Vector Machine (SVM) and Random
Forest (RF).
The SVM predictors were built with the LIBSVM

package [23] and the RF predictors were built with the
randomForest package in the R programming environ-
ment [24].
The detailed methodology for the construction of a

SVM classifier can be obtained from the article by Burges
[25] and a brief description of the SVM algorithm from
Wee et al. [26]. Briefly, the SVM algorithm is based on the
structural risk minimization principle from statistical
learning theory [27]. A set of positive (single-cell RNA-
Seq neocortical transcription data) and negative (single-
cell RNA-Seq NPC transcription data) examples were
represented by the feature vectors xi (i = 1, 2,....N) with
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corresponding labels yi ∈ {+1,-1}. To classify the data as
NPCs or neuronal cells, the SVM trains a classifier by
mapping the input samples, using a kernel function (radial
basis function (RBF) in this study), onto a high- dimen-
sional space, and then seeking a separating hyperplane
that differentiates the two classes with maximal margin
and minimal error. Parameter optimization was carried
out for g, which determines the capacity of the RBF kernel,
and the regularization parameter C using leave-one-out
(LOO) cross-validation. The optimal g and C values ob-
tained from the optimization processes were used subse-
quently for training the entire training set to create the
final SVM classifier.
RF is a tree-based classifier where classification is car-

ried out by aggregating the votes for all trees built from
different subsamples, randomly selected, with replace-
ment, within the training set, from the training dataset.
As the classifier is built by aggregating a large number of
different decision trees, predictors built with the random
forests algorithm is expected to have low variance and
low bias. The number of trees (T) was set to 20,000 and
the number of features to consider at each split in the
decision tree (m) obtained from the optimization pro-
cesses were used subsequently for training the entire
training set to create the final RF classifier [28, 29].

Feature extraction and dimensionality reduction
Additionally, dimensionality reduction was carried out
to obtain optimal subsets of gene/features for classifier
construction and they are as listed below.

(i) Selection of genes from deregulated pathways
using geneset enrichment analysis (GSEA). A
non-parametric, unsupervised G was carried out
with the Gene Set Variation Analysis (GSVA)
package [30] in the R programming environment
[24]. The original ensemble gene (ENSG) identifiers
were mapped to their cognate HUGO Gene
Nomenclature Committee (HGNC)/Uniprot
identifiers using the biomaRt package in R [31]. This
was carried out in order to permit the mapping of
genes to that of the curated C2 geneset (September
2014), obtained from the Broad Institute’s Molecular
Signatures database version 4.0 (MSigDB) [10], for
gene set analysis. Manual curation of the HGNC/
Uniprot identifiers was subsequently carried out to
obtain a curated list of identifiers. Genes with ENSG
codes that were not matched to any symbols were
removed. Also, gene fragments sharing the
same symbol were excluded from analysis. The
identities of the up and down-regulated pathways
(p-value < 0.005), together with the corresponding
genes within these genesets, were identified and
reported.

(ii) Selection of differentially expressed (DE) genes
using the R package Simplified RNA-Seq Analysis
Pipeline (sRAP) [32, 33].

(iii) Selection of a subset of genes with the highest
ranking criterion based on SVM-based classification
[34] (SVM-RFE) using the R package pathClass
[35]. SVM-RFE is an iterative gene selection process
where features, expression values of different genes
obtained from single-cell RNAseq experiments,
with the smallest ranking criterion are recursively
removed when the ranking criterion for all features
are computed from the SVM-classifiers.

(iv) Selection of genes with positive mean decrease in
accuracy (MDA) from RF analyses where selected
feature genes are deemed to reduce classification
error.

(v) Selection of DE genes using two-tailed T-test
based analysis using R package limma [36]
(p-value < 0.05).

Evaluation of model performance
A set of statistical variables were established to evaluate
the performance, Accuracy and Matthews correlation
coefficient (MCC) [37], of the SVM and RF classifiers.
Only LOO cross validation was carried out for the SVM
classifiers.

Inference of gene regulatory networks in neuronal cells
and NPCs
A plethora of network-inference algorithms are now avail-
able and have been used to infer GRNs from gene expres-
sion datasets. As mentioned in Marbach et al. [38] and
Hase et al. [39], different network-inference algorithms
have different strength and weakness and complement
with each other. Thus, by integrating heterogeneous
network-inference algorithms, we can take advantage of
their strengths to recover high-quality gene regulatory
networks [38, 39].
Therefore, in this study, we selected 14 representative

network-inference algorithms that are based on heteroge-
neous statistical techniques and integrated results from
the selected algorithms. The selected algorithms includes
six mutual information based methods (ARACNE [40],
CLR [41], MRNET [42], RELNET [43], C3NET [44], and
BC3NET [45]), two correlation based method (Spearman’s
correlation and Pearson’s correlation [43]), one Bayesian
network based method (SiGN-BN [46]), two random for-
est based method (GENIE3 [47] with two different param-
eter settings, see Table 4 for the details), two regression
based method (TIGRESS [48] with two different param-
eter settings, see Table 4 for the details), and one method
with both of ordinary differential equation based recursive
optimization and mutual information (NARROMI [49]).
The set of 14 algorithms includes several high-performance
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algorithms, ie, GENIE3 is the winner of both of DREAM4
(DREAM, Dialogue on Reverse Engineering Assessment
and Methods) and DREAM5 network inference challenges
[38, 47], while, in DREAM5, TIGRESS and CLR (and
MRNET) are the best performer among regression
techniques and that among mutual information tech-
niques, respectively [38]. Zhang et al. demonstrated that
NARROMI outperforms GENIE3 [49].

Integration of results from multiple network-inference
algorithms
In this study, we have used a computational framework,
“Top1net”, to integrate results from the selected 14
network-inference algorithms [39].
Each of individual network-inference algorithms calcu-

lates confidence score for each gene pair and, an inter-
action between a gene pair with higher confidence score is
more likely to be true positive interaction [39, 40, 50].
Top1net applies bagging method introduced by Breiman
[51], to integrate confidence scores for each of gene pairs
from multiple individual network-inference algorithms
[39]. Top1net assumes that, if at least one network-
inference algorithm assigns high confidence score to a
gene pair, one gene in the pair has a regulatory interaction
with another gene [39]. As network-inference algorithms
tend to assign high confidence scores to true positive in-
teractions, Top1net would recover a large number of true
positive interactions in a GRN. The procedure of Top1Net
is composed of three steps.

Step 1
From an expression dataset, an individual network-
inference algorithm assigns confidence score for each of
gene pairs and the gene pairs are ranked according to
their confidence scores, ie, a gene pair with highest con-
fidence score has the rank value of 1.

Step 2
We normalized ranked scores from each algorithm by
scaling from 0 to 1 and used the normalized ranked
scores (NRSs) as confidence scores by the algorithm. If a
pair of genes i and j has rank value of gi,j by an algo-
rithm, the NRSi,j of the gene pair by the algorithm is

defined as, NRSi;j ¼ N N−1ð Þþ1−gi;j
N N−1ð Þ , where N represents the

number of genes in the gene expression dataset.

Step 3
We integrate NRSs from the algorithms by Top1net. For
example, if we used the 14 network-inference algorithms
to calculate 14 NRSs for each gene pairs. For each gene
pairs, Top1net used the highest NRS among 14 NRSs as
the confidence score of the gene pairs. For example, if
the algorithms assign 14 NRSs, 0.98, 0.85, 0.8, 0.69, 0.65,
0.63, 0.62, 0.61, 0.58, 0.55, 0.53, 0.51, 0.50 and 0.35 for
the gene pair, Top1net used 0.98 as the confidence score
for the interaction between the gene pair.

RNA-seq expression profiles for GRN inference
Only 37 genes identified by SVM-RFE method were used
for the inference of gene regulatory interactions within
neuronal cells and NPCs as a single gene, RP4_803A2_1,
was excluded for having expression values of 0 across all
NPC samples.

Packages and parameters for individual network inference
algorithms
To infer GRNs by individual algorithms, we used MINET
package [52] for ARACNE, CLR, MRNET and RELNET,
c3net packages for C3NET, bc3net packages for BC3NET,
source code obtained from http://www.montefiore.
ulg.ac.be/~huynh-thu/software.html for GENIE3, source
code obtained from GP-DREAM network inference
website (http://dream.broadinstitute.org/) for TIGRESS,
and source code from http://comp-sysbio.org/narromi.htm
for NARROMI. For SiGN-BN [28], we used software on
the super-computing resource that was provided by Human
Genome Center, the Institute of Medical Science, and the
University of Tokyo. For PCC and SCC, we used R function
(“cor” function) to calculate Pearson’s and Spearman’s cor-
relation coefficient.
Nine, out of the 14, algorithms required optimization

and the parameter settings for the nine network-
inference algorithms are shown in Table 1. More infor-
mation on algorithm customization can be found in
references [40, 45–49] and also within the manuals writ-
ten for the individual algorithms.
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Table 4 Parameter used to optimize each network-inference
algorithms

Network-inference algorithms Parameter optimization settingc

GENIE3-Aa K = “all”, nb.trees = 10,000

GENIE3-Ba K = “sqrt”, nb.trees = 10,000

TIGRESS-Ab scoring = “area”

TIGRESS-Bb scoring = “max”

ARACNE eps = 0.1

BC3NET boot = 10, alpha1 = 0.99, alpha2 = 0.99

SiGN-BN Number of iteration of bootstrap
method = 1,000

aGENIE3-A and -B represent two different parameter settings for GENIE3
algorithm used in this study
bTIGRESS-A and -B represent two different parameter settings for TIGRESS
algorithm used in this study
cWe used default settings for parameters that are not shown in this table
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