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and expression analysis of pectin
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Abstract

Background: Pectin methylesterase (PME, EC 3.1.1.11) is a hydrolytic enzyme that utilizes pectin as substrates,
and plays a significant role in regulating pectin reconstruction thereby regulating plant growth. Pectin is one
of the important components of the plant cell wall, which forms the main structural material of cotton fiber.
In this research, cotton genome information was used to identify PMEs.

Results: We identified 80 (GaPME01-GaPME80) PME genes from diploid G. arboreum (A genome), 78
(GrPME01-GrPME78) PME genes from G. raimondii (D genome), and 135 (GhPME001-GhPME135) PME genes from
tetraploid cotton G. hirsutum (AD genome). We further analyzed their gene structure, conserved domain, gene
expression, and systematic evolution to lay the foundation for deeper research on the function of PMEs.
Phylogenetic data indicated that members from the same species demonstrated relatively high sequence identities
and genetic similarities. Analysis of gene structures showed that most of the PMEs genes had 2–3 exons, with a few
having a variable number of exons from 4 to 6. There are nearly no differences in the gene structure of PMEs
among the three (two diploid and one tetraploid) cotton species. Selective pressure analysis showed that the Ka/Ks
value for each of the three cotton species PME families was less than one.

Conclusion: Conserved domain analysis showed that PMEs members had a relatively conserved C-terminal
pectinesterase domain (PME) while the N-terminus was less conserved. Moreover, some of the family members
contained a pectin methylesterase inhibitor (PMEI) domain. The Ka/Ks ratios suggested that the duplicated PMEs
underwent purifying selection after the duplication events. This study provided an important basis for further
research on the functions of cotton PMEs. Results from qRT-PCR indicated that the expression level of different
PMEs at various fiber developmental stages was different. Moreover, some of the PMEs showed fiber predominant
expression in secondary wall thickening indicating tissue-specific expression patterns.
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Background
Cotton (Gossypium spp.) is one of the most important nat-
ural fiber crops around the world. The improvement of
cotton fiber quality is becoming increasingly important
and is now a main focal point of cotton research [1, 2].
Pectin is an important component of cotton fiber and
pectin metabolism may influence fiber quality. Previous
studies showed that PMEs play an important role in the
process of fiber development by influencing the chemical
properties of pectin [1]. Process of cotton fiber cell devel-
oping was purposely divided into four relative independ-
ent but overlapping stages: fiber initiation, elongation,
secondary wall biosynthesis and maturation [3]. Fiber
initiation and elongation are critical periods in which the
number and lengths of fibers, secondary wall thickening
(fiber strength), and other fiber quality traits are determi-
ned..The secondary wall thickening in cotton fibers starts
15–19 d after flowering and continues to thicken until
40–50d [4]. The increasing thickness of the fiber second-
ary wall gradually increases the strength of fibers.
A forward subtractive cDNA library constructed and

sequenced from upland cotton (G. hirsutum) fibers dur-
ing the secondary cell wall thickening stage. Computa-
tional analysis showed differentially expressed genes that
may be involved in cell wall synthesis and modification
of biological processes. Among them, several differen-
tially expressed genes which encoded PMEs were identi-
fied. Thus, in order to elucidate the relationship between
PMEs and fiber development, we analyzed identification,
phylogeny expression of PMEs in G. arboreum, G.
raimondii and G. hirsutum.
PMEs are widely present in plants and some microor-

ganisms that possess a cell wall degradation function.
PMEs catalyze the demethylesterification of pectin,
which generates carboxyl groups during the release of
methanol and hydrogen ions [5]. It plays an important
role in cell wall composition modification and degrad-
ation if pectin in different development stages of plant,
such as fruit maturity [6], pollen development and
pollen tube growth [7], cambium cell differentiation, and
other plant growth and so on. PMEs have a two-part
influence on the cell wall. These produce carboxyl
groups and combine with extracellular Ca2+ to form a
calcium chain bridge between adjacent pectins, thereby
hardening the cell wall and slowing cell diffuse growth
[8]. And, the reaction of demethylesterification decreases
the extracellular pH to increase the hydrolytic enzyme
activities of enzymes such as poly-galacturonic acid and
several pectin enzyme cleavage enzymes [9]. Pectin is
subject to substantial degradation, causes cell wall struc-
ture relaxation, and enhances the growth of cell tips
[10]. The activity of PMEs is regulated by pectin methy-
lesterase inhibitors (PMEIs) [11] whose active site is the
conserved PME domain. All members of PME family

consist of a catalytically active zone PME domain; some
also harbor a PMEI domain. Some proteins containing
only one PMEI domain belong to the PMEI family.
Therefore, the predicted proteins can be classified into
two categories, type I, containing both PME and PMEI
domains, and type II, consisting only a PME domain.
The PME belongs to a multigene family which was

first described by Richard [12]. There are 66 PMEs in
Arabidopsis [13], 16 in Phytophthora sojae [14], 43 in
rice [15], 105 in flax [16], and 81 in G. raimondii [1].
Previous reports suggested that PMEs may play a part

in cell wall development of cotton fibers [1]. At present,
studies related to PME genes mainly focused on cloning,
and functional analysis of single gene [17]; and few ana-
lysis had been carried out at the whole genome level [1].
In 2012, the genome of G. raimondii was completed [18,
19]. The genome map of cultivated cotton G. arboreum
was available in 2014 [20]. And next year, the genome
map of allotetraploid cultivated cotton (G. hirsutum cv
TM-l) was completed [21, 22]. The whole genome se-
quencing of cotton species provides opportunities for
comprehensive analysis and comparison of the PMEs.
PMEs, and its homologous genes were analyzed using
bioinformatics analysis on the cotton genome sequence.
The results showed that sequence similarities and gene
structures were highly conserved. In this study, the gene
structure, expression, phylogenetic tree, collinearity of
homologous genes and other corresponding analysis
were examined systematically by employing the methods
of bioinformatics. The results of this study will provide
novel insights into research of synthesis mechanism of
cotton fiber cell wall.

Results
Identification of cotton PMEs
From the three cotton genomes (AD, A, and D), we
identified 135 full-length putative G. hirsutum PMEs
(GhPME001-135), 80 full-length putative G. arboretum
PMEs (GaPME01-GaPME80), and 78 full-length
putative G. raimondii PMEs (GrPME01-GrPME78) (see
Additional file 1: Table S1, and Fig. 1a, c). The family
members were named according to their location and
sequence on the chromosome.

Gene structure and protein domain of PMEs in different
species
The length of the PMEs between different cotton species
was variable mainly due to large differences in the intron
length of each gene. The length of the exons in PMEs
ranged from 1045 bp to 13398 bp in G. arboreum,
1045 bp to 6730 bp in G. raimondii, and 964 bp to
4695 bp (with a majority between 1500 bp and 2500 bp)
in G. hirsutum (Additional file 1: Table S1). The number
of amino acid (AA) residues in the GaPMEs protein

Li et al. BMC Genomics  (2016) 17:1000 Page 2 of 13



ranged from 301 to 1169, 316 to 1644 in GrPMEs, and
260 to 845 in GhPMEs (Additional file 1: Table S1). Asi-
atic cotton PMEs gene structure analysis results (Fig. 1d)
showed that there were differences between different
members. The members of the exon number ranged
from 2 to 6, and the gene structure analysis showed that
the gene structure of the family members was conserved.
The gene structure could be mainly divided into three
types. Type I has a typical of two exons and two introns;
the differences in the first and second exon were highly
conserved, but the length of introns was different. There
were 37 such PMEs (46.25%) distributed in groups one,
two, and three. Type II contained three exons, and there
were 12 members (15%) in this group. Among the three

exons in this group, the first two exons had significantly
different length while the length of the third exon was
highly conserved. Type III contained four to six exons
with a shorter length than type I or II. These results sug-
gested that the gene structures were similar between of
G. hirsutum (Fig. 1b) and G. arboreum (Fig. 1d).
Eighty members of the PMEs family in G. arboreum had

evolutionary tree clustering relations, and could be divided
into four families (Fig. 1c). The analysis of the conserved
sequence of the PMEs family members and domain ana-
lysis showed that all of them contain a PME domain. Most
of the family members of PMEs contained both PME and
PMEI. Only five proteins GaPME13 and GaPME46 in
group 1, and GaPME40, GaPME47, and GaPME48 in

Fig. 1 Phylogenetic relationship and gene structure of the G. arboreum and G. hirsutum PMEs. a A phylogenetic tree was constructed using MEGA
5.1 with the neighbor-joining (NJ) method with 1000 bootstrap replicates based on a multiple alignment of 135 amino acid sequences of PMEs
from G. hirsutum. The eight major subfamilies are numbered I to VIII. b Exon/intron structure of PMEs from G. hirsutum. Exons and introns are
represented by boxes and black lines, respectively. c A phylogenetic tree was constructed with MEGA 5.1 using the neighbor-joining (NJ) method
with 1000 bootstrap replicates based on a multiple alignment of 80 amino acid sequences of PMEs from G. arboreum. The four major subfamilies
are numbered I to IV. d Exon/intron structure of PMEs from G. arboreum. Exons and introns are represented by boxes and black lines, respectively
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group 2 included only the PME domain. Members of a
fourth subfamily contained only a PME domain without a
PMEI domain, and there was nearly no difference in G.
hirsutum (see Additional file 1: Table S1).

Distribution of PMEs family members
We found 80 PMEs corresponding to the protein-coding
genes in the Asiatic cotton database. These 80 genes
were distributed on the 13 chromosomes (Additional file
2: Figure S1b), in which the most PMEs (11) were lo-
cated on chromosome 1 and chromosome 10. Ten PMEs
are mapped on chromosome 2, nine on chromosome 9,
eight on chromosome 4, three on chromosome 6, and
only one was mapped to chromosome 12. Each of the
chromosomes 3, 5, 7, and 8 had four genes. Only one
gene was not detected on the chromosome and was
positioned on the scaffold. Eighty genes showed uneven
distribution on the chromosomes. Some genes arised by
tandem duplication. Seven genes (GaPME61- GaPME67)
on chromosome 10 were located on the same block,
which we named as cluster I. Five such clusters were
located on chromosomes 1, 2, 9, 11, and 13; these clus-
ters covered by 22.5% of PMEs. We found 135 PMEs in
the cotton AD genome (Additional file 2: Figure S1a). Of
these, all the 26 chromosomes except At_chr12, fourteen
genes (10.4%) were located on chromosome Dt_chr9, 10
were mapped on chromosome At_chr9, and some genes
appeared via tandem duplication on chromosomes in
cotton AD and D genomes. We found 78 PMEs, of

which were distributed to all the chromosomes except
chromosomes 4, 12. Chromosomes 9, 8, 6, 7, 2, 1, had
16, 10, 8, 6, 2, and 3 chromosomes respectively.
Chromosome 10 and 11 together had five genes;
chromosome 5 and 13 had three while chromosomes 3
and 12 had one gene (Additional file 1: Table S1).
Based on the results of collinearity analysis between G.

raimondii and G. arboreum, 61 homologous gene pairs
were distributed in 36 collinearity blocks (Fig. 2a,
Additional file 3: Table S2). Among them, one syntonic
block contained 19 homologous gene pairs in G. arbor-
eum chromosome 10. We identified 57 homologous
gene pairs between G. hirsutum (Fig. 2b, Additional file
4: Table S3) and G. arboreum, and 50 homologous gene
pairs between G. hirsutum and G. raimondii (Fig. 2b,
Additional file 4: Table S3). Some genes were not shown
in Fig. 2 because they were not positioned on the
chromosome (Additional file 4: Table S3).

Phylogenetic analysis
Phylogenetic analysis indicated that PMEs of the same
species shared the highest similarities and had relatively
close genetic relationships. In order to analyze the evolu-
tionary relationships among the predicted GhPMEs,
GaPMEs, and GrPMEs based on amino acid sequence,
we aligned cotton amino acid sequences with 458
predicted PMEs from eight sequenced plants such as A.
thaliana, rice, rice, grape, poplar, soybean, cocoa,
papaya, and castor bean. Finally, phylogenetic trees were

Fig. 2 CIRCOS figure of PME homologous genes pairs of G. raimondii and G. arboreum. a CIRCOS figure of PME homologous genes pairs of G.
raimondii and G. arboreum. Lines represent homologous genes that are distributed in syntenic blocks between G. raimondii and G. arboreum
chromosomes. b CIRCOS figure of PME homologous genes pairs of G. raimondii and G. hirsutum, G. arboreum and G. hirsutum. Lines represent
homologous genes that are distributed in syntenic blocks between G. raimondii, G. arboreum and G. hirsutum chromosomes

Li et al. BMC Genomics  (2016) 17:1000 Page 4 of 13



constructed by using MEGA with the neighbor-joining
model. We found that the PMEs family could be divided
into 10 subfamilies according to cluster analysis (Fig. 3a).
The PMEs had a close genetic relationship within the
same species and with cocoa. However, these genes were
distant to other species on the evolutionary scale. These
data indicated that the PMEs might evolve along with
different directions for various species. Meanwhile, to
examine the evolutionary relationship of PMEs in G.
arboreum, G. raimondii, and G. hirsutum, the phylogen-
etic tree was built with 293 PMEs in which were divided
into eight families (Fig. 3b).
The value of the nonsynonymous substitution rate

(Ka) to the synonymous substitution rate (Ks) substitu-
tions (Ka/Ks) can be used as an indicator which could
reflect selection pressure of a gene or a gene region dur-
ing evolution. To infer the influence of selection on the
evolution of the three cotton species versus cocoa, we
estimated Ka/Ks values for all of them (Additional file 5:
Table S4). Our results suggested that all of the three cot-
ton species evolved mainly under the influence of stabil-
izing selection.

Transcriptome analysis
All of the identified PMEs of G. hirsutum were verified
by transcriptome data. Expression of 75.56% (102 of 135
genes) in G. hirsutum (Fig. 4a) can be detected 0 from
15 day post anthesis (DPA) during fiber development.
We detected the expression of 82.5% (66 of 80) PMEs of
G. arboreum (Fig. 4b) and 71.8% (56 of 78) PMEs of G.
raimondii (Fig. 4c) during fiber development (0–15
DPA). We found that 11 PMEs of G. hirsutum (Fig. 4d)
and five PMEs of G. arboreum were predominantly
expressed in fiber development at 15 DPA (belong to the
period of secondary wall thickening) (Fig. 4e). However,
only three genes in G. raimondii showed higher expres-
sion at 15 DPA (Fig. 4f ).
To examine the differential expression of homologous

gene pairs among the three cotton species, PMEs of G.
arboreum predominantly expressed in 15 DPA and its
homologous genes were selected for phylogenetic ana-
lysis (Fig. 5a). Based on above results, four homologous
gene pairs were chose for further studies. The data
showed that expression patterns of homologous genes
pairs were significantly affected. Moreover, the expres-
sion levels of almost all genes in the A genome of cotton
were higher than the genes in the D genome, and lower
than the genes in the AD genome of cotton (Fig. 5b), for
example, the expression of GrPME23 in fiber develop-
ment (at 15 days) was 12.28,007, whereas the expression
of GaPME17 was 25.40,384. The expression of
GhPME037 in fiber development (15 DPA) was
46.41,517. The expression level of GaPME34 was higher

than the expression of its orthologous genes in the AD
genome of cotton.
To survey on mechanism of the differences among

orthologous gene pairs, we compared their gene struc-
ture (Fig. 5c), protein domain conservation (Fig. 5d), and
sequence motifs (Fig. 5e). The results showed that ortho-
logous gene pairs have minimal to negligible effect on
the structure of the genes. The length of the first exon
affected the structure of these genes. GaPME17,
GhPME037, and GrPME23, GaPME04 and GhPME089,
GaPME34 and GhPME085 were all different in only this
one exon. The conserved domain of the protein between
the genes did not differ significantly. Protein of ortholo-
gous gene pairs varied only on the position of the
conserved domain and the length of the non-conserved
region (Fig. 5d).
Analysis of putative cis-element motifs of PMEs

homologous genes pairs of G. arboreum and G. hirsutum
showed significant differences between their promoter
regions (Additional file 6: Figure S2). Thus, we specu-
lated that structure variation in promoter region might
affect expression levels of homologous gene pairs.

qRT-PCR analysis for PMEs homologous genes pairs
To verify the alteration of expression patterns of four
PMEs homologous gene pairs in G. hirsutum and G.
arboreum, qRT-PCR was employed in this study. The
results (Fig. 6) showed that the expression of PMEs
peaked in Asiatic cotton at 20 DPA and 25 DPA in up-
land cotton. The average performance of upland cotton
was higher than the Asiatic cotton fiber development at
25 DPA suggested that the expression level of Asiatic
cotton PMEs was decreased in the late development of
cotton fiber. However, in upland cotton, the PMEs ex-
pression level continued to increasing. This probably
caused the thickening of fibers in the secondary wall,
de-esterification of the pectin in the cell wall,
reinforcement of the cotton fiber cell wall; thus,
increasing the strength and imparting high quality to
the upland cotton fiber.

PMEs activity
There are differences in PMEs activity in different cotton
fiber development periods. Of the increasing in Asiatic
cotton fiber development and PMEs activity gradually
increased from fiber development at 10 DPA to 25 DPA.
However, the PMEs activity decreased at 30 DPA. In
upland cotton, PMEs activity continued to increasing
(Additional file 7: Figure S3). The reason might be that
the Asiatic cotton prematurely ended the secondary wall
of the fiber growth causing feedback regulation by the
cellulose content and accumulation of pectin.
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Phylogenetic tree of PMEs. a Phylogenetic tree of PMEs from 11 species. The phylogenetic tree is based on a sequence alignment of the
C-terminal PME domains of 751 PMEs protein sequences from 11 genomes, G. hirsutum, G. arboreum, G. raimondii, A. thaliana, O. sativa, V. vinifera,
P. trichocarpa, G. max, T. cacao, C. papaya, and R. communis. The PME proteins are grouped into 10 distinct clades (I–X). b Phylogenetic tree of
PME domain containing proteins from G. raimondii, G. arboreum, and G. hirsutum. The phylogenetic tree is based on a sequence alignment of the
C-terminal PME domains of 293 PME protein sequences from three genomes, G. arboreum, G. raimondii, and G. hirsutum. The tree was generated
with MEGA 5.1 using the neighbor-joining method. Bootstrap values from 1000 replicates are indicated at each node. The PME proteins are
grouped into 8 distinct clades (I–VIII)

Fig. 4 Expression patterns of the PMEs family in G. raimondii, G. arboreum and G. hirsutum. a Heatmap showing the clustering of 135 PMEs of G.
hirsutum across five tissues (ovules at 0 DPA, 3 DPA, 6 DPA, 10 DPA, and 15 DPA; mentioned at the top of each lane). b Heatmap showing the
clustering of 80 PMEs of G. arboreum across five tissues (ovules at 0, 3, 6, 10, and 15 DPA; mentioned at the top of each lane). c Heatmap
showing the clustering of 78 PMEs of G. raimondii across five tissues (ovules at 0, 3, 6, 10, and 15 DPA; mentioned at the top of each lane). d
Expression of 11 (G. hirsutum) PMEs is predominantly expressed at 15 DPA. e Expression of 5 (G. arboreum) PMEs is predominantly expressed at 15
DPA. f Expression of 3 (G. raimondii) PMEs is predominantly expressed at 15 DPA. The color scale at the bottom of the dendrogram shows the
relative expression levels. RNA-seq data under the series accession number SRA180756 was obtained from the NCBI Sequence Read Archive
(SRA) database

Li et al. BMC Genomics  (2016) 17:1000 Page 7 of 13



Discussion
We used bioinformatics analysis to identify 135 GhPME
genes from AD genomes, 80 GaPME genes from A
genomes, and 78 GrPME genes from D genomes. Cotton
PMEs could be divided into four clades in two diploid
species and eight groups in the tetraploid species, and
all their last subfamilies were restricted to PME without
a PMEI domain. We speculated the common hypothesis
that PMEs that both PME and PMEI domains appear
relatively late in the evolutionary process [23], similar to
the species of that observed in A. thaliana PMEs [24].

Our analysis showed amount of reduction number of
genes (from 81 to 78) as compared with Liu’s study
(based on 81 sequences), mainly due to using a more
stringent screening criteria. Phylogenetic analysis indi-
cated that these could be divided into four subfamilies
(Additional file 8: Figure S4), and the fourth subfamily
only contained a PME domain (Additional file 1: Table
S1) [1]. Previous studies identified 66, 59, and 89 PMEs
coding genes in A. thaliana [24], O. sativa [25], and P.
trichocarpa [26], respectively. The number of the PMEs
varied greatly in different species. Previous studies had

Fig. 5 Analysis of PMEs predominantly expressed in fiber. a The phylogenetic tree was constructed with MEGA 5.1. b Heatmap showing the
clustering of PMEs across five tissues (ovules at 0, 3, 6, 10, and 15 DPA; mentioned at the top of each lane). The color scale at the bottom of the
dendrogram shows the relative expression levels. c Exon/intron structures of PMEs predominantly expressed in fibers. Exons and introns are
represented by boxes and black lines, respectively. d PME domain of the PMEs protein. e Motif of the PME protein

Fig. 6 Expression analysis of 4 selected PMEs homologous genes pairs using RT-qPCR. The relative mRNA abundance of 4 selected PMEs was
normalized to the reference gene histone 3 in different tissues. The bars show the standard deviation of three technical replications
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shown that the whole genome duplication (WGD) and
tandem repeats were the main reasons of gene family ex-
pansion during the process of plant genome evolution
[27, 28]. Plants have a higher rate of gene duplication
compared to other eukaryotes [29]. And also, recent
studies had shown that genome of diploid cottons had
underwent at least two rounds of WGD [18, 19]. The
uneven distribution of genes on the chromosome might
be due to gene replication or a partial fragment of gene
duplication of the cotton genome that occurred during
its long evolutionary history. The entire gene sequence
of cotton doubled with every copy event and these extra
genes were recombined or go undetected over time [21].
The distribution of genes on the chromosome suggested
that 19 of 80 PMEs appeared as tandem repeats in
Asiatic cotton with seven members in Cluster I
(GaPME61- GaPME67). This was also the main reason
for the expansion of this gene family. Arabidopsis PMEs
family experienced the α and β replication events [25].
Eight genes were formed by tandem duplication; rice
PMEs family experienced the events σ and ρ copy
events, four gene is made copy tandem formation [25].
The evolutionary tree analysis showed that the PMEs

sequence within the same species showed high similar-
ity; kinship was also relatively close but was distant from
other species. Gene structure analysis showed that most
PMEs had 2–3 exons, but a few differed in their number
of exons, which ranged from 4 to 6. The differences in
exon numbers might be due to PMEs function and
structure as a result of directional evolution. The N-
terminus in the evolutionary process was less stringent;
some of the family members contain PMEI conserved
domains, which might cause changes in the structure
and function of PMEs. This conservation helps retain
the basic functions of the family, enriches the diversity
of genes, and reduces the selection pressure.
Comparative genomics had become a highly interest-

ing area in genomics research especially for the study of
extensive genome families. Series of important gene fam-
ilies in crops have been studied by comprehensive ana-
lysis, for example, LEA in soybean [29], LBD and MAPK
in tomato [27, 28], and MAPKKK in cotton [26]. Previ-
ous studies found that PMEs were associated with fiber
quality of cotton [1]. Cotton fiber cells are hollow
tubular single cells, and their cell wall was the main
structure of the mature cotton fiber. Therefore, genes
that were directly related to cotton fiber development
and regulatory genes, especially the important compo-
nent of the cell wall-related genes, provided the basis for
research and development of cotton fiber and mecha-
nisms affecting its quality. The completion of the cotton
genome sequencing enabled the research on PME genes.
PMEs substrate is an important component of the cell

wall, which is synthesized in the Golgi complex, and is

secreted into the cell wall in the form of methylesters,
and quickly de-esterified by PMEs [1]. PMEs plays an
important role in regulating plant growth and pectin
remodeling [1] Many cell wall-related genes played an
important role during cotton cell development [30, 31].
PMEs played a key role in the modification of pectin
and formation of the cell wall [16]. Thus, the expression
levels of PMEs would likely affect the quality of cotton
fiber. Two PMEs, At2g47550, and At4g02330 were
cloned from Arabidopsis. At2g47550 was predominantly
expressed in pollen grains, and sometimes in vascular
tissues. However, the expression of At4g02330 varied in
flower and pod throughout their development in Arabi-
dopsis. At4g02330 was mainly expressed in the flower
abscission tissue, stigma, microtubule organization, and
pollen grains. At2g47550 might be involved in the devel-
opment of pollen and pollen tube, while At4g02330
might participate in pectin metabolism of cell walls to
achieve the regulation of cell separation and petals
falling [32]. The effect of PMEs could be reversed during
processing (heating) of fruits and vegetables. Fruits and
vegetables require Ca2+, which binded to methylester
backbone to release carboxyl, and then binds to Ca2+

outside the cell to form a calcium bridge between an
adjacent pectin chain, thus hardening the cell wall [33].
Liu et al. verified the five PMEs by studying the PME
enzyme activity at different stages of fiber development,
pectin content, and demethylation of pectin in Sea
Island cotton and Upland cotton [1]. Their results sug-
gested that these genes might be an important factor
governing cotton fiber diameter and length [1]. The high
expression of G raimondii PME4 and PME5 in fiber
development of secondary wall thickening might be re-
lated to the cell development [1]. The alignment result
showed that all of the cotton PMEs shared high similar-
ity to each other. Moreover, structural similarities sug-
gested that other PME members in the cotton genome
might be associated with the cotton fiber development.
The subfunctionalization of a gene family was preva-

lent in evolution and gene duplication was the main
cause new gene functions [34–36]. Changes in gene
expression patterns of the family often occur prior to
functional differentiation [34]. This study did not relate
to all the features of a PMEs family, but only those in-
volved in cotton fiber development during different
periods (0–15DPA). We found that 14 (17.5%) genes
were not expressed within a certain time frame suggest-
ing gene redundancy of the copy gene. Gene redundancy
raised as a result of interference from the external envir-
onment and was important for living systems [37]. Three
genes were specifically expressed during cotton fiber
elongation indicating their primary role in fiber elong-
ation. PMEs are up-regulated during fiber development
suggesting that pectin formation affects fiber diameter
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and length [1], and results in longer and thinner fibers.
Pectin could be differentially demethylesterified by PMEs
to strengthen or loosen plant cell walls [38]. Five genes
were highly expressed in fiber development during sec-
ondary wall thickening. Secondary wall thickening was a
critical period for the formation of fiber strength. High
expression of PMEs during this period was related to the
mechanical strength of the fiber.
Expression patterns of orthologous genes pairs were

significantly different between two plant species. The ex-
pression level of A genome was higher than the expres-
sion level of D genome, the expression level of G.
hirsutum were higher than the expression of A genome,
and only GaPME34 higher than the expression of its
orthologous genes. qRT-PCR results (Fig. 6) showed that
expression of PMEs genes were difference between dip-
loid and tetraploid cotton. The expression of PMEs in
Asiatic cotton and upland cotton peaks (20 DPA in G.
arboreum, 25 DPA in G. hirsutum) during fiber develop-
ment. Of the fiber had a peak, the peak mainly in cotton
fiber development 20 DPA. These differences were
presumably due to the differences in promoter elements
of these genes. The results showed that most PMEs are
expressed at high levels in secondary wall thickening of
the cotton fiber development, perhaps related to the
fiber strength during this period.
PMEs decomposed pectin and played an important

role in the expansion process in the plant cell wall.
PMEs had different expression patterns in the process of
the cotton fiber formation. However, the specific mo-
lecular evolutionary mechanisms and post-
transcriptional regulation of gene expression pathways
and regulatory pathways of PMEs required further
investigation.

Conclusions
This study systematically examined the gene structure,
protein domains, physical and chemical properties, gene
expression, phylogeny, and collinearity of PMEs. The
findings provided here will provide an important basis
for further research on the function of cotton PMEs.

Methods
Materials and processing methods
The plant material used in this study was G. hirsutum cv
69307 and G. arboreum Shixiya I. The material 69307
were from a RIL population developed with the parents
0–153 and sGK9708 and it showed a positive transgressive
segregation in fiber strength. The detail information about
the population construction was described in Sun’s report
[39]. The fiber quality of the parents and the line 69307
was described in Zhang’s report [40]. In the day of flower-
ing, flower buds were tagged as zero DPA. The bolls were
collected of each sample (5, 10, 15, 20, 25, 30 DPA) in the

morning. The fibers were separated from the ovules, fro-
zen in liquid nitrogen. Before RNA extraction, all the sam-
ples were stored at a refrigerator with −80 °C.

RNA-seq analysis
CTAB method was used to isolated the subsequent total
RNA samples from 3 g of cotton fiber (G. hirsutum TM-1,
G. arboreum Shixiya I and G. raimondii, 0, 3, 6, 10, and 15
DPA) [41]. A Nucleospin® RNA clean-up kit (MACHEREY-
NAGEL, Düren, Germany) was used to purified the total
RNA. An Agilent Bio-analyzer (Agilent Technologies, Santa
Clara, CA, USA) was used to assess the quality of the RNA
sample. After sequencing libraries were prepared following
the manufacturer’s standard instructions, and all RNA sam-
ples were sequenced on an Illumina HiSeq 2500 platform
(Illumina, Inc., San Diego, CA, USA). The CLC Genomics
Workbench software 4 (http://www.clcbio.com) was used
to analyze the transcriptome data with default parameters.
MeV program was used to draw the heat map of the
expression data [29].

RNA isolation and qRT-PCR
The CTAB method was used to extracting the RNA
from fiber cell samples [41]. A Nanodrop2000 nucleic
acid analyzer was used to test thequality of the RNA
sample. A PrimeScript RT reagent kit with a gDNA
eraser (TaKaRa, China) was used to performed reverse
transcription of samples. The software Premier 5 was
used to design primers for the fluorescent quantitative
research (Additional file 9: Table S5), and GhHistone 3
(AF024716) was used as a reference gene. The expres-
sion levels of the PMEs were measured by using Applied
Biosystems® 7500 Real-Time PCR Systems. Same method
was used to analyze expression changes in G. arboreum.

The data related to construct phylogenetic tree
According to evolutionary analysis of Gossypium, 11
plants sequenced genome were selected for PMEs pre-
dicting and further Phylogenetic analysis including A.
thaliana [42], O. sativa [43], V. vinifera [44], P. tricho-
carpa [45], G. max [46], T. cacao [47], C. papaya [48],
castor bean [49] and three cotton (G. hirsutum [21], G.
arboreum [20], and G. raimondii [18]). Annotated pro-
tein sequences data sets of 11 plant species with
sequenced genome were downloaded from correspond-
ing genome database (see Availability of data and
materials). And then, all of the protein sequences were
used for identification of PMEs. Predicted PMEs
sequences were further phylogenetic tree construction.

Identification of the PME family in cotton
The software HMMER 3.0 was used to predicted pro-
teins which contained PME (PF01095) (http://pfam.xfa-
m.org) and/or PMEI (PF04043) domains with parameter
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–cut_ga [50]. Only the genes without questionable
PFAM annotations (i.e., significant PME and/or PMEI
domain but low E-value; low coverage of the domain)
were used to do the next analyzes.

Analysis of PMEs family
The data for the D, A, and AD genomes were parsed by
a Perl program. The information of PMEs of the calcula-
tion of the chromosome locations and structures was
selected. We obtained the homologous genes between
different cotton species by blast program (E-value ≤1e-
10, Identity ≥ 60%). The collinearity of homologous gene
pairs was drawn using CIRCOS package (http://cir-
cos.ca). Mapping of PME genes was performed using
Map Chart [51]. Phylogenetic trees were constructed by
employing MEGA software with neighbor joining model,
and bootstrap values (1000 replicates) are indicated at
each node [52]. Exons and introns were displayed by
using The Gene Structure Display Server (GSDS, http://
gsds.cbi.pku.edu.cn) [53]. Conserved domains prediction
were performed using the SMART Package (http://smar-
t.embl-heidelberg.de) program [54]. Motif analysis was
conducted using online tools (maximum number of mo-
tifs, three; minimum motif width, six; and maximum
motif width, 50) (http://meme.nbcr.net/meme) [55]. The
cis-acting elements prediction was performed using an
online tool PlantCARE (http://bioinformatics.psb.u-
gent.be/webtools/plantcare/html) [56].

PMEs activity assay
Based on the Hagerman with some modifications [57],
total PMEs enzyme activity was measured. Briefly, 1 g of a
fiber sample was taken in a prechilled mortar and 5.0 mL
8.8% (w/v) pre-cooled NaCl was added. The samples were
centrifuged for 10 min; the supernatant was collected, and
adjusted to pH =7.5 with 0.1 mol/L NaOH to obtain a
crude enzyme solution. Four milliliters of 0.5% (w/v) pec-
tin solution and 0.3 mL 0.01% (w/v) bromophenol blue
were added to a test-tube, followed by adding 300 uL of
an enzyme solution. After 2 min, the absorbance value,
and the ΔA620/min∙g expressed enzyme activity, of each
sample was analyzed in triplicate [57].

Additional files

Additional file 1: Table S1. PMEs genes identified from the three
cotton species. (XLSX 36 kb)

Additional file 2: Figure S1. Chromosomal location of PMEs. a.
Chromosomal location of 135 GhPME genes. A total of 104 genes are
located on normal chromosomes, whereas the other 31 are located on
scaffolds. b. Chromosomal location of 80 GaPME genes. A total of 79
genes are located on normal chromosomes, whereas the other one is
located on scaffolds. (TIF 1445 kb)

Additional file 3: Table S2. Orthologous PMEs gene pairs of G.
arboreum and G. raimondii. (XLSX 14 kb)

Additional file 4: Table S3. Orthologous PMEs gene pairs of the three
cotton species. (XLSX 23 kb)

Additional file 5: Table S4. Selective pressure between T. cacao L. and
the three cotton species paralogous PMEs gene pairs. (XLSX 23 kb)

Additional file 6: Figure S2. Analysis of putative cis-element motifs of
PME homologous genes pairs of G. arboreum and G. hirsutum promoter.
cis-element motifs are represented by boxes. (TIF 612 kb)

Additional file 7: Figure S3. Cotton fiber proteins were isolated and
used for PME activity assay. Error bars represent the SE of three biological
replicates. (TIF 173 kb)

Additional file 8: Figure S4. A phylogenetic tree was constructed with
MEGA 5.1 using the neighbor-joining (NJ) method with 1000 bootstrap
replicates based on a multiple alignment of 78 amino acid sequences of
PMEs from G. raimondii. The four major subfamilies are numbered I to IV.
(TIF 1228 kb)

Additional file 9: Table S5. Primer pairs used in quantitative real-time
PCR analysis. (DOCX 12 kb)
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