
Ahrenfeldt et al. BMC Genomics  (2017) 18:19 
DOI 10.1186/s12864-016-3407-6
RESEARCH ARTICLE Open Access
Bacterial whole genome-based phylogeny:
construction of a new benchmarking
dataset and assessment of some existing
methods

Johanne Ahrenfeldt1* , Carina Skaarup1, Henrik Hasman2, Anders Gorm Pedersen1, Frank Møller Aarestrup3

and Ole Lund1
Abstract

Background: Whole genome sequencing (WGS) is increasingly used in diagnostics and surveillance of infectious
diseases. A major application for WGS is to use the data for identifying outbreak clusters, and there is therefore a
need for methods that can accurately and efficiently infer phylogenies from sequencing reads. In the present study
we describe a new dataset that we have created for the purpose of benchmarking such WGS-based methods for
epidemiological data, and also present an analysis where we use the data to compare the performance of some
current methods.

Results: Our aim was to create a benchmark data set that mimics sequencing data of the sort that might be collected
during an outbreak of an infectious disease. This was achieved by letting an E. coli hypermutator strain grow in the lab
for 8 consecutive days, each day splitting the culture in two while also collecting samples for sequencing. The result is
a data set consisting of 101 whole genome sequences with known phylogenetic relationship. Among the sequenced
samples 51 correspond to internal nodes in the phylogeny because they are ancestral, while the remaining
50 correspond to leaves.
We also used the newly created data set to compare three different online available methods that infer
phylogenies from whole-genome sequencing reads: NDtree, CSI Phylogeny and REALPHY. One complication
when comparing the output of these methods with the known phylogeny is that phylogenetic methods
typically build trees where all observed sequences are placed as leafs, even though some of them are in fact
ancestral. We therefore devised a method for post processing the inferred trees by collapsing short branches
(thus relocating some leafs to internal nodes), and also present two new measures of tree similarity that takes
into account the identity of both internal and leaf nodes.

Conclusions: Based on this analysis we find that, among the investigated methods, CSI Phylogeny had the
best performance, correctly identifying 73% of all branches in the tree and 71% of all clades.
We have made all data from this experiment (raw sequencing reads, consensus whole-genome sequences, as
well as descriptions of the known phylogeny in a variety of formats) publicly available, with the hope that
other groups may find this data useful for benchmarking and exploring the performance of epidemiological
methods. All data is freely available at: https://cge.cbs.dtu.dk/services/evolution_data.php.
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Background
The ability to detect and track outbreaks of infectious
diseases is of vital importance to maintain public health.
The advances of Next Generation Sequencing (NGS)
technology has led to decreasing cost and growing speed
of Whole Genome Sequencing (WGS) [1]. Due to this,
the technology has gained increasing importance in rou-
tine clinical microbiology and for studying and detecting
outbreaks and epidemics [2–4]. Various studies have
shown that inference of the phylogenetic relationship
between WGS isolates is helpful for determining epi-
demiological relationships [5, 6], and a number of
methods for inferring phylogenies directly from NGS
data have been created. Methods available online which
accept raw reads data include snpTree [7], NDtree [8, 9]
and CSI Phylogeny [10] available from Center for Gen-
omic Epidemiology. Furthermore REALPHY from the
Swiss Institute of Bioinformatics is also online available
and can be downloaded for local installation [11]. In
addition to this many groups are building in-house pipe-
lines for outbreak detection.
There were two main goals of the present study: (1) to

create a data set that could be used to benchmark NGS-
based methods for epidemiological data, and (2) to use
this for comparing the performance of some current
methods. We wanted the benchmark data set to mimic
NGS data of the sort that might be collected during an
outbreak of an infectious disease. This was achieved by
letting an E. coli hypermutator strain grow in the lab for
8 consecutive days. Each day all growing cultures were
divided in two, and samples were taken for sequencing.
The result was a total of 255 samples corresponding to
both internal (ancestral) and external (leaf ) nodes on a
bifurcating phylogenetic tree.
To the best of our knowledge there is currently no

other large scale in vitro WGS data sets with known
phylogeny for evaluation of WGS phylogeny methods,
and it is our hope that this data will prove useful for
benchmarking and optimization of future methods. The
group of Richard Lenski at Michigan State University
has performed a long-term experimental evolution pro-
ject, that has now been running since 1988 [12, 13], and
which might also be useful for this purpose, although
only a limited number of full genome sequences are so
far available.

Results
Escherichia coli hypermutator strain
To ensure a measureable difference between each se-
quenced sample in the data set, the experiment was set
up to give a high probability of observing at least one
mutation between each sequenced culture sample. Wild
type E. coli has a mutation rate around 10−3 mutations
per genome per generation [14] corresponding to about
0.05 mutations per genome per day at a generation time
of 30 min [15]. At this rate each sample would have to
grow for 20 days to undergo an average of one mutation
per genome. The E. coli hypermutator strain CSH114,
on the other hand, has been reported to have a muta-
tion rate that is about 100–1000 fold higher due to a
mutation in the mutT gene which makes it prone to
AT→GC mutations [14, 16]. Using an assay based
on the frequency of spontaneous development of
Rifampicin resistance (see Methods), we estimated the
mutation rate of the hypermutator strain to be about
160 times higher than a wild type E. coli. At the re-
ported generation time of 44 min for CSH114, this
corresponds to an average of about 5 mutations per
day, which is in a suitable range for our purposes,
and we therefore proceeded to use this strain for our
in vitro evolution experiment.
In vitro evolution experiment
The main idea of the in vitro evolution experiment was
to start with a single colony of E. coli CSH114 mutT,
which after 8 days of growth and daily division of
cultures would give rise to 128 related, but diverged,
populations. Specifically, each 24-hour cycle in our ex-
periment consisted of the following steps (Fig. 1): (1)
Streaking to single colonies, followed by 16 h of growth
on plate. (2) Inoculation of a single colony from the
plate followed by 8 h of growth in liquid culture. (3)
Isolation of a sample for sequencing. (4) Repeating the
procedure from step 1. Starting from the second of these
24-hour cycles two colonies were picked from each
plate, resulting in a splitting of the original population,
and a daily doubling of the number of growing cultures.
On consecutive days we therefore collected 1, 2, 4, 8, 16,
32, 64, and 128 culture samples for sequencing respect-
ively, resulting in a total of 255 samples. From these 255
samples, we obtained whole genome sequences from
101 (see Methods). The 101 sequenced samples came
from all 8 levels in the tree, and corresponded to both
external (leaf ) and internal (ancestral) nodes. The tree
showing the real, known relationship between the sam-
ples is shown in Fig. 2. Note that we employed a naming
convention where the original single colony sequence
was named S; its two descendants were named S1, and
S2; each of their two descendants were named S11, S12,
and S21, S22, respectively, etc., etc.
All data from this experiment (raw sequencing

reads, consensus sequences obtained by mapping to
the reference genome NC_000913, as well as descrip-
tions of the known phylogeny in a variety of formats)
has been made publicly available at the following website:
https://cge.cbs.dtu.dk/services/evolution_data.php. It is
our hope that other groups may find this data useful for

https://cge.cbs.dtu.dk/services/evolution_data.php


Fig. 1 Setup for the in vitro evolution experiment. Each day two single colonies were transferred to 20 mL LB broth, to grow for 8 h. 1 μL of
culture was plated on LB plate for overnight growth. This continued for 8 days until 128 tubes of culture was obtained, and 255 samples had
been saved for DNA sequencing
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benchmarking and exploring the performance of epi-
demiological methods.
Note that individual bacteria in the growing colonies

and liquid cultures are accumulating mutations con-
stantly through the daily cycle, and the sample taken for
sequencing each day therefore consists of a diverse
population. Specifically, each genome in this population
will have gained its own set of (on average) about 5
mutations compared to the founding single cell from the
original streaking. However, when we derive a single
whole genome consensus sequence based on the reads
obtained from such a sample, we expect to retrieve the
sequence of the original single cell’s genome. This is be-
cause only a very low fraction of bacteria will have expe-
rienced a change at any specific nucleotide position, and
the vast majority of reads mapped at that location will
therefore have the original nucleotide. (Specifically, a
rate of 5 substitutions/genome/day corresponds to a rate
of about 10−6 substitutions/site/day, and hence only 1
read in a million is expected to have a mutation at any
specific site). Populations with new consensus sequences,
an average of 5 mutations separated from their ancestor,
are created by the “founder effect” that occurs when we
streak to single colonies anew.

Benchmarking of phylogenetic methods for whole-genome,
epidemiologic NGS data
In addition to creating a benchmark data set as described
above, we were also interested in assessing the perform-
ance of some current epidemiological phylogenetic
methods that infer phylogenies from NGS data. Specific-
ally, we used the following three methods to analyze our
newly created dataset: CSI Phylogeny [10], NDtree [8, 9]
and REALPHY [11].
We used each of the three methods to infer phyloge-

nies from all 101 sets of whole genome sequencing reads
(resulting in trees with 101 leaves). For each method we
furthermore explored a number of settings (Table 1):
First, we explored the impact of using different reference
genomes for mapping reads. The investigated references
genomes had differing degrees of similarity to the
mapped reads. In order of increasing distance the inves-
tigated reference genomes were: (1) de novo assembled
contigs from the root strain S (very close); (2) E. coli K-
12 MG1655 (NC_000913; close); (3) E. coli K-12
BW2952 (NC_012759; close); and (4) E. coli UMNK88
(NC_017641; distant).
For the CSI Phylogeny method we furthermore explored

the effect of cutoffs for filtering data. This method maps
reads to the given reference genomes and filters SNPs
based on their quality, using a Z-score cutoff, which is
used to determine if X is significantly larger than Y (here a
cutoff of 1.96 was used). The CSI Phylogeny method
can also filter SNPs from the analysis by a process
called pruning. The default setting is to remove SNPs
such that no SNPs are within 10 base pairs of each
other. In the present analysis we explored the impact of
disabling pruning, thus including all SNPs in the ana-
lysis. CSI Phylogeny uses the FastTree method to build
the trees. FastTree is a method that infers approximate
maximum likelihood trees, and which can handle very
large alignments.
The NDtree method for inferring phylogeny splits the

raw reads to k-mers and maps them to the reference



Fig. 2 Ideal tree. This tree shows the expected phylogeny of the in vitro evolution experiment, with all 255 strains indicated as either tips or
ancestral nodes
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genome. Based on this an ungapped consensus sequence
with the same length as the reference genome is created;
the differences between the consensus sequences are
counted and used as the phylogenetic distance. The Z-
score is used to evaluate the base calling, the higher, the
stricter. The “pairwise comparison” threshold is where
all positions that are called in both sequences of a pair
to be compared are used, instead of only using positions
that were significant in all sequences. This has the advan-
tage that more positions can on the average be used to
compare sequences, but the disadvantage that different
sets of positions are used for comparing different pairs of
sequences. NDtree uses either UPGMA or neighbor
joining to build trees from the estimated distance matrix.
UPGMA assumes that all leaves in a tree have the same
distance from the root (i.e, that the substitution rate on all
branches is identical). This assumption can be problematic
if some observed sequences in fact correspond to internal
nodes. Neighbor joining on the other hand does allow for
different rates on different branches.
The REALPHY method has two standard thresholds

for trusting the base call. The first is that the weight of
the mapping has to be higher than 10, the second is that
95% of the mappings has to support the same nucleo-
tide. REALPHY uses either phyML or RAxML, both of
which are fast maximum likelihood methods.



Table 1 Methods, thresholds and reference genomes for inference of phylogeny for all 101 sequenced strains

Method Tree name Reference genome Threshold 1 Threshold 2 Tree method

CSI Phylogeny CSI_all_1 Assembled contigs from
root sample

Z-score 1.96 Prune disabled FastTree

CSI Phylogeny CSI_all_2 Assembled contigs from
root sample

Z-score 1.96 Prune set to 10 FastTree

CSI Phylogeny CSI_all_3 E. coli NC_000913 Z-score 1.96 Prune disabled FastTree

NDtree ND_all_1 Assembled contigs from
root sample

Z-score 1.96 X 10 x < Y Neighbor Joining

NDtree ND_all_2 Assembled contigs from
root sample

Z-score 1.96 X 10 x < Y UPGMA

NDtree ND_all_3 Assembled contigs from
root sample

Pairwise comparison X 10 x < Y Neighbor Joining

NDtree ND_all_4 Assembled contigs from
root sample

Z-score 1.64 X 10 x < Y Neighbor Joining

NDtree ND_all_5 E. coli NC000913 Z-score 1.96 X 10 x < Y Neighbor Joining

NDtree ND_all_6 E. coli NC012759 Z-score 1.96 X 10 x < Y Neighbor Joining

NDtree ND_all_7 E. coli NC017641 Z-score 1.96 X 10 x < Y Neighbor Joining

Realphy RP_all_1 E. coli NC012759 and
E. coli NC000913

Weight≥ 10 ≥95% supports the same nucleotide RAxML

Realphy RP_all_2 E. coli NC012759 and
E. coli NC000913

Weight≥ 10 ≥ 95% supports the same nucleotide phyML

Realphy RP_all_3 E. coli NC012759, E. coli
NC000913, E. coli NC017641

Weight≥ 10 ≥ 95% supports the same nucleotide phyML
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The method which comes closest to infering the
known phylogeny is CSI Phylogeny with SNP pruning
disabled and the assembled contigs from the root sample
as reference genome (Fig. 3). The other infered trees can
be found in Additonal files 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.
Trees with bootstrap values can be found in Additonal
files 11, 12 and 13. Additional files 14, 15, 16, 17, 18, 19
and 20 contain SNP alignments and positions for the in-
ferred phylogenies.
An important point is that the benchmark data set an-

alyzed here includes several sequences that are (directly
or indirectly) ancestral to other sequences in the data
set. The real relationship between the observed se-
quences (shown in Additional files 21 and 22) is there-
fore one where some sequences correspond to internal
nodes in the tree, while others correspond to leaves.
However, the methods we investigate here (like most
other phylogenetic methods) do not explicitly take this
into account, and they therefore instead produce trees
where all observed sequences are placed as leaves. This
causes problems when one wants to compare the recon-
structed phylogenies to the known, real phylogeny or to
each other. Specifically, what typically happens, when
standard phylogenetic methods are used on epidemio-
logical data, is that ancestral sequences, which ought to
be located at internal nodes in the tree, will instead be
attached as leaves on very short (maybe even zero-
length) branches close to the internal nodes where they
belong. (In fact, a tree where an ancestral sequence is
placed as a leaf will require two branches extra com-
pared to a tree where the ancestral sequence is instead
placed at an internal node). As it turns out, on a rooted,
bifurcating tree there are three different ways an ances-
tral sequence can be placed as a leaf next to the internal
node where it rightfully belongs (Fig. 4). Judged on the
criteria used for both likelihood- and distance-based
phylogenetic methods respectively, these three
alternative ways of placing the ancestral sequence will all
be equally good, and will furthermore be (nearly) as
good as the real tree, at least if the two extra branches
have (nearly) zero length. In the case of distance-based
methods such as neighbor joining, this is because, for all
three trees, the pairwise distances between taxa measured
along the branches of the tree (the patristic distance) will
match the pairwise distances between sequences (the dis-
tance matrix) equally well, since the two additional, short
branches have very little impact on these. Likelihoods will
also be identical or almost identical for the three possible
alternative trees (and the real tree), since there is probabil-
ity near 1 of having the same nucleotide at either end of a
very short branch, and multiplying by this will not change
the overall likelihood much. Consequently, different
phylogenetic methods may choose either of three ways of
placing an ancestral sequence as a leaf depending on arbi-
trary and possibly random criteria. Since the placement of
an ancestral sequence as a leaf near any given internal
node is independent of how ancestral sequences are
placed near other internal nodes, the total number of



Fig. 3 Phylogenetic tree inferred by CSI phylogeny. This is the un collapsed version of the best scoring tree according to the new method for
tree comparison. The phylogeny is inferred by CSI Phylogeny on all 101 sequenced strains, using the assembled contigs from the root strain as
reference genome, SNP pruning disabled

Ahrenfeldt et al. BMC Genomics  (2017) 18:19 Page 6 of 13
possible, equally good resolutions is 3 raised to the power
of the number of internal nodes. (For instance, in a tree
with 127 internal nodes - such as the real relationship be-
tween our 255 sequences - there are 3127 = 3.9*1060 pos-
sible, equally good bifurcating resolutions of the real,
ancestral tree). It is therefore not meaningful to assess the
reconstructed phylogenies by directly using measures of
tree-distance that rely on branching order in the trees
(such as the frequently used Robinson-Foulds’ distance
[17]): there are so many possible ways of placing ancestral
sequences as leaves that even two resolved trees, that in
principle agree completely on the underlying ancestral
tree, might have almost zero similarity. Indeed, prelimin-
ary attempts to use the Robinson-Foulds’ measure to as-
sess the correctness of the trees by comparing to a
randomly resolved version of the real tree, showed very
large distances (data not shown). The problem described
above is exacerbated if an observed sequence is found to
be exactly identical to another observed sequence (as
might happen in our case if zero mutations have accumu-
lated after a day’s growth): in this case, the real relation-
ship would be one where an internal node in the tree
corresponded to two observed sequences, and here there
would be 15 different, possible bifurcating resolutions
where the internal nodes were placed as leaves by adding
short, or zero length branches (Fig. 5; 15 is the number of
possible rooted, bifurcating trees with 4 leaves).
At the same time, manual inspection of the recon-

structed phylogenies clearly indicated that the trees
captured many aspects of the real relationship: typically,



Fig. 4 Tree building artifacts, when constructing bifurcating trees with ancestral nodes. This figure shows the three possible resolutions of an
ancestral node in a bifurcating tree, which only allows leaves in the tree
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sequences with the same name prefix (e.g., S11, S111,
S112, S1111, S1112, S1121, etc.) were found to be in
the same sub-tree as expected (since longer names
with the same prefix are descendants of the sequence
with the shortest name). We therefore developed what
we deem to be a more meaningful way of measuring
Fig. 5 Tree building artifacts, when constructing bifurcating trees on ident
building a bifurcating tree with two identical sequences as possible ancest
the correctness of these trees. Our solution has two
parts: (1) We constructed an algorithm for collapsing
short branches on trees, such that a sequence located
at the end of a collapsed branch (e.g., as a leaf ) is in-
stead placed together with its own ancestral node. In
this way we can interpret the reconstructed
ical sequences. This figure shows 3 of the 15 possible resolutions for
ral nodes



Table 2 Comparisons of reconstructed phylogenies to the
known topology of the dataset

Tree method Tree name Fraction of
correct parent/child
relations

Fraction of
correct clades
in tree structure

CSI phylogeny,
pruning disabled

CSI_all_1 0.73 0.71

CSI phylogeny,
pruning set to 10 bp

CSI_all_2 0.52 0.61

CSI phylogeny,
pruning disabled
NC_000913 as ref

CSI_all_3 0.52 0.61

NDtree, z-score 1.96 ND_all_1 0.65 0.63

NDtree, z-score 1.96,
UPGMA tree method

ND_all_2 0.20 0.08

NDtree pairwise
comparison,
z-score 1.96

ND_all_3 0.26 0.29

NDtree, z-score
1.64

ND_all_4 0.65 0.63

NDtree, NC_000913
as ref, z-score 1.96

ND_all_5 0.65 0.63

NDtree, NC_012759
as ref, z-score 1.96

ND_all_6 0.65 0.63

NDtree, NC_017641
as ref, z-score 1.96

ND_all_7 0.65 0.63

REALPHY, ref
NC_012759 and
NC_000913, PhyML

RP_all_1 0.55 0.51

REALPHY, ref
NC_012759 and
NC_000913, RAxML

RP_all_2 0.33 0.24
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phylogenies as if some of the observed sequences were
in fact ancestral. (2) We devised two new measures of
tree similarity that specifically take into account the
identity of both the parent and the child node on a
branch (unlike measures such as Robinson-Foulds’
which only takes into account leaf sets, in the form of
tree bipartitions, and do not directly take internal
node identities into account). We then used these
measures to compare the collapsed versions of the
trees with the known, real phylogeny.
With regard to the algorithm for collapsing branches,

we used two different approaches: in one approach, we
used a predetermined branch-length cutoff to decide
whether or not a branch should be collapsed. In the
present case we collapsed branches with a length that
was less than or equal to 0.0 (in distance-based trees,
negative branch-lengths occasionally occur). In the
second approach we instead sorted all branch lengths in
the tree, and then tried using increasingly larger values
from this list as cutoffs until a desired number of leaves
(or less) was left in the collapsed tree. In the present
case we used 50 as the target value, since that was the
known number of leaves in our benchmark data (which
had a total of 101 sequences); the cutoffs used for
optimization and the remaining number of tips can be
seen in the Additional files 23, 24 and 25. If several con-
secutive branches were collapsed, then this resulted in
the creation of internal nodes with > = 3 names.
The two tree-similarity measures we suggest are the

following: (1) The percentage of correct parent-child re-
lationships. The main idea in this measure is to describe
a rooted tree as a list of parent-child relationships, where
parent and child means the names of the sequences at
the two ends of a branch (and the parent is the node
closest to the root). A collapsed tree can then be com-
pared to a benchmark (or to another collapsed tree) by
computing the fraction of parent-child relationships that
are identical in the two trees. (2) The percentage of
correct clades. In this measure, we, for each internal
node in a tree write a list of all its descendants (the clade
rooted at that internal node, where we in this case also
include internal nodes among the descendants). This
measure is related to the parent-child relationship
measure but is not necessarily identical (it is possible to
have a perfectly matching parent-child relationship for
a given internal branch, but not having all the same
descendants further downstream). Again, we use this
measure to compare a collapsed tree to the benchmark,
by computing the fraction of clades in the benchmark
that are also present in the investigated tree. An advan-
tage of the suggested measures compared to Robinson-
Foulds’ distance is that they are on a more naturally
interpretable scale (0–100% identity). Our clade-based
measure is actually identical to the distance measure
originally proposed by Robinson and Foulds, where in-
ternal nodes could also be labeled, but is different from
the implementations typically found which only rely on
sets of leaf names.
The results of these comparisons can be seen in

Table 2 (also see Additional file 23). The main observa-
tions are as follows: CSI phylogeny (Fig. 6) with the dis-
abled SNP pruning was able to infer 73% of the parent
child relations and 71% of the clade structure. The
NDtree method was able to infer 65% parent child rela-
tions and 63% of the clades structure, with the default
settings, the Neighbor Joining tree algorithm and the
reference genome was not important. REALPHY using
phyML, was able to infer 55% of the parent child rela-
tions and 51% of the clade structure.

Analysis of mutation rates
The full genome sequences of all 101 strains were used
to estimate the average substitution rate. For each
isolate, we counted the total number of nucleotide posi-
tions having a different nucleotide than isolate S (which
is the isolate closest to the root), and then divided these
numbers by the isolate’s age in days to give the observed



Fig. 6 Collapsed bifurcating tree from CSI phylogeny. This is the collapsed version of the best scoring tree according to the new method for tree
comparison. The tree was collapsed to have 41 remaining leaves. The phylogeny is inferred by CSI Phylogeny on all 101 sequenced strains, using
the assembled contigs from the root strain as reference genome, SNP pruning disabled

Ahrenfeldt et al. BMC Genomics  (2017) 18:19 Page 9 of 13
number of mutations per genome per day. The value
estimated in this manner was 3.3 mutations per genome
per day, i.e. slightly less than the expected value of about
5 estimated from the Rifampicin assay (but well within
the uncertainty of that analysis). Figure 7 shows a com-
parison between the distribution of observed rates and a
Poisson distribution with rate 3.3. It can be seen that
there is somewhat less variation in the observed distri-
bution compared to a Poisson distribution (the data is
“underdispersed”).
We also estimated the substitution rate using the soft-

ware BEAST (Bayesian Evolutionary Analysis Sampling
Trees), using the known sampling days (“dated tips”) for
calibrating the rate estimation [18]. The analysis was
performed on an alignment of the 392 variable sites
identified based on the pairwise NDtree analysis. Based
on this analysis the mean rate was estimated at 2.8
substitutions per genome per day (posterior mean), with
a 95% credible interval of 2.5 to 3.2 substitutions per
genome per day. This corresponds nicely to the values
reported above.
Branch support for reconstructed tree topologies
To investigate the confidence of the tree topology, boot-
strap values were analyzed. Trees produced by the
neighbor package have not been bootstrapped; therefore
FastTree was used to infer a tree with bootstrap values
on the SNP alignment from NDtree using the de novo
assembled contigs from day 1 as reference genome. PhyML
produced a tree with bootstrap values for REALPHY.
FastTree produced a tree with bootstrap values for CSI
Phylogeny. In all three trees approximately 60% of the
internal nodes had a bootstrap confidence interval above



Fig. 7 Histogram. Number of mutations per day as estimated by directly comparing each genome sequence to the sequence of the day 1 isolate, S,
and dividing by the age difference

Table 3 The number of single colonies on the plates from the
Rifampicin plate-assay

CGSG3004 CSH114

9 170

6 240

15 180

5 148

Average 8.8 185
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90%. The bootstrapped trees are found in Additional files
11, 12 and 13.

Discussion
Rapid and reliable identification of infectious disease
clusters is essential to guide outbreak response and con-
trol measures. Next-generation sequencing shows great
promise to improve the routine characterization of
infectious disease agents in microbial laboratories and
sequencing data are attractive because they both provide
high resolution as well as a standardized data format
(the DNA sequence) that may be exchanged and com-
pared between laboratories and over time. However, if
different laboratories use different methods for building
phylogenies and thus, identify outbreak clusters this may
create unnecessary discussions and delays.
To our knowledge we are the first to create a WGS

dataset with known phylogeny that can be used to
benchmark whole genome phylogenetic and epidemio-
logical methods. We have made all of our data available
online, with the hope that other researchers can used
them for investigating and improving the performance
of existing methods. A summation of the known rela-
tionship is found in Additional file 26.
In our findings we see similarities to the results from

Hillis et al. [19], such as the fact that the UPMGA
method is not able to correctly infer phylogeny of samples
that have unequal evolution rates, or have been sampled at
different times. There are also many differences between
Hillis et al. [19], and this study. First of all, this study uses
WGS data and not restriction site maps, this means that
there is a lot of emphasis on finding the correct SNPs, as
well as inferring the phylogeny from these. Second of all, in
Hillis et al. [19] they know the full knowledge of all the
mutations in the restrictions sites, as well as the known
topology, as they could measure the responses to all
restriction enzymes. In this study, the full truth of all muta-
tions is not known, only the structure of the experiment is
known and therefore the topology is known.
Conclusion
In this study we have succeeded in making a data set
with known phylogeny and made it publicly available.
We used this as a benchmark data set to assess the per-
formance of a number of freely available phylogenetic
analysis pipelines. The main conclusion is that it was
possible to obtain up to 73% of the known phylogeny, by
using CSI Phylogeny with a closely related reference
genome and no SNP pruning. Furthermore the other
methods were able to reconstruct more than 50% of the
phylogeny given the right settings.
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Methods
Rifampicin plate-assay
In order to estimate the mutation rate of the CSH114
strain compared to a similar non-hypermutator E. coli
strain (Escherichia coli CGSC3004 [16]), the strains were
tested for the frequency with which Rifampicin resistance
developed after 8 h of growth in LB broth (salt concentra-
tion 5 g/L) at 37 °C with 80 rpm shaking. Subsequently,
800 μL CGSC3004 culture and 100 μL CSH114 culture was
plated on brain heart infusion (BHI) agar plates with 25 μg/
mL rifampicin, 4 plates for each strain, 8 plates in total.
After O/N growth at 37 °C, the number of single colonies
was counted. As a control it was verified that strains grew
normally on BHI agar without rifampicin. Table 3 shows
the raw counts of the single colonies. As 8 times more cul-
ture was used for the non-hypermutator strain, the results
indicate a substitution rate for themutT strain CSH114 that
on average is increased 164-fold compared to the non-
mutator strain. Based on the previously reported substi-
tution rate of about 10−3 mutations per genome per
generation for the non-mutator E. coli [14], and a gen-
eration time of 44 min for the E. coli CSH114 mutator
strain [20], we can estimate that CSH114 will have a sub-
stitution rate of about 5.4 mutations per genome per day.
In vitro evolution
At the start of the experiment (day 0), CSH114 was
streaked on LB plates and grown for 16 h at 37 °C. On
day 1, a single colony was inoculated in 20 mL LB broth
and incubated at 37 °C with 80 rpm shaking. After 8 h
1 mL of culture was saved for sequencing. Hereafter, a
1 μL loop was used to streak the culture onto an LB
plate, which was incubated at 37 °C for 16 h. From this
point on, the following 24-hour cycle was repeated until
8 days: (1) streaking to single colonies, (2) 16 h growth
on LB plate, (3) inoculation of two single colonies in
liquid LB broth, (4) 8 h growth in LB broth, (5) sequen-
cing sample, repeat.
Whole genome sequencing
One milliliter of culture, from every 8-hour culture, was
spun down and the pellet was diluted in 200 μL PBS
buffer (Invitrogen, Carlsbad, CA). The buffer and pellet
was frozen and later used for DNA sequencing. The
genomic DNA was isolated using the Easy-DNA isola-
tion kit (Invitrogen, Carlsbad, CA). DNA concentration
was measured by Qubit dsDNA (double-stranded DNA)
BR and HS assay kits (Invitrogen). 101 of the 255
samples had a sufficiently high DNA concentration for
whole genome sequencing. DNA libraries were built
using Nextera XT (Illumina), and sequenced by Illumina
MiSeq (Illumina) to a minimal coverage of 30×.
Phylogenetic methods
CSI phylogeny 1.2 is available online at https://cge.cbs.
dtu.dk/services/CSIPhylogeny-1.2/ [10]. CSI Phylogeny
1.2, uses BWA version 0.7.12 [21], SAMtools version
0.1.18 [22], BEDtools version 2.16.2 [23], MUMmer ver-
sion 3.23 [24] and FastTree version 2.1.7 [25].
NDtree 1.2 is available online at https://cge.cbs.

dtu.dk//services/NDtree/ and for local installation
from https://bitbucket.org/genomicepidemiology/assimpler
[8, 10]. Besides from using in-house scripts found in the bit-
bucket folder, NDtree uses the Neighbor program from the
Phylip package version 3.695 [26].
REALPHY version 1.12 is available for download and

local installation from http://realphy.unibas.ch/fcgi/realphy
[11]. The local installation used Bowtie2 version 2.2.4 [27],
phyML version 3.1 [28], RAxML version 8.2.4 [29].

Tree comparison
The author’s own scripts and libraries were used for
collapsing short branches, as well as for computing
percentage correct parent-child relationships, and per-
centage of correct descendant clades.

BEAST
We used BEAUti and BEAST version 2.4.3 to estimate
substitution rates from an alignment of variable sites
(SNPs identified by the NDtree method). Settings were as
follows: Sequences were annotated with their known sam-
pling day (“dated tips”). Substitution model: TN93 +
gamma. Prior on clock rate: both lognormal and gamma
priors with different widths and centers were explored
(and different settings were found not to have much im-
pact on the results). Priors on kappa parameters: wide log-
normal distributions. Popsize prior: 1/X. Tree prior: both
coalescent exponential population and coalescent constant
population were explored and found not to have a major
impact on estimated rates (estimated tree heights did dif-
fer slightly between the two: 8.6 days for constant, and
7.7 days for exponential; both of these estimates still cor-
respond nicely to the experimental setup running over
8 days). MCMC was run for 10,000,000 iterations. Con-
vergence was checked by inspecting effective sample sizes
(ESS) and parameter value traces in the software Tracer
(version 1.6.0), and by ensuring that similar posterior dis-
tributions were obtained in several independent runs.
Clock rate estimates from BEAST were in substitutions
per site per day, and were multiplied by alignment length
(392 sites) to get the rate per genome per day.

Additional files

Additional file 1: a Tree inferred by CSI Phylogeny pruning set to 10,
contigs from day 1 used as reference. PDF. b Tree inferred by CSI

https://cge.cbs.dtu.dk/services/CSIPhylogeny-1.2/
https://cge.cbs.dtu.dk/services/CSIPhylogeny-1.2/
https://cge.cbs.dtu.dk//services/NDtree/
https://cge.cbs.dtu.dk//services/NDtree/
https://bitbucket.org/genomicepidemiology/assimpler
http://realphy.unibas.ch/fcgi/realphy
dx.doi.org/10.1186/s12864-016-3407-6
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Phylogeny pruning set to 10, contigs from day 1 used as reference.
Newick file. (ZIP 6 kb)

Additional file 2: a Tree inferred by CSI Phylogeny pruning disabled, E.
coli MG1655 (NC_000913) used as reference. PDF. b Tree inferred by CSI
Phylogeny pruning disabled, E. coli MG1655 (NC_000913) used as
reference. Newick file. (ZIP 6 kb)

Additional file 3: a Tree inferred by NDtree, Z-score 1.96, Neighbor
Joining tree, contigs from day 1 used as reference. PDF. b Tree inferred
by NDtree, Z-score 1.96, Neighbor Joining tree, contigs from day 1 used
as reference. Newick file. (ZIP 5 kb)

Additional file 4: a Tree inferred by NDtree, Z-score 1.64, Neighbor
Joining tree, contigs from day 1 used as reference. PDF. b Tree inferred
by NDtree, Z-score 1.64, Neighbor Joining tree, contigs from day 1 used
as reference. Newick file. (ZIP 5 kb)

Additional file 5: a Tree inferred by NDtree, Z-score 1.96, Neighbor
Joining tree, E. coli MG1655 (NC_000913) used as reference. PDF. b Tree
inferred by NDtree, Z-score 1.96, Neighbor Joining tree, E. coli MG1655
(NC_000913) used as reference. Newick file. (ZIP 5 kb)

Additional file 6: a Tree inferred by NDtree, Z-score 1.96, Neighbor
Joining tree, E. coli NC_012759 used as reference. PDF. b Tree inferred by
NDtree, Z-score 1.96, Neighbor Joining tree, E. coli NC_012759 used as
reference. Newick file. (ZIP 5 kb)

Additional file 7: a Tree inferred by NDtree, Z-score 1.96, Neighbor
Joining tree, E. coli NC_017641 used as reference. PDF. b Tree inferred by
NDtree, Z-score 1.96, Neighbor Joining tree, E. coli NC_017641 used as
reference. Newick file. (ZIP 5 kb)

Additional file 8: a Tree inferred by REALPHY, PhyML, NC_000913,
NC_012759 and NC_017641 used as reference. PDF. b Tree inferred by
REALPHY, PhyML, NC_000913, NC_012759 and NC_017641 used as
reference. Newick file. (ZIP 6 kb)

Additional file 9: a Tree inferred by REALPHY, PhyML, NC_000913 and
NC_012759 used as reference. PDF. b Tree inferred by REALPHY, PhyML,
NC_000913 and NC_012759 used as reference. Newick file. (ZIP 5 kb)

Additional file 10: a Tree inferred by REALPHY, RAxML, NC_000913 and
NC_012759 used as reference. PDF. b Tree inferred by REALPHY, RAxML,
NC_000913 and NC_012759 used as reference. Newick file. (ZIP 6 kb)

Additional file 11: Tree inferred by FastTree on the alignment from the
pairwise NDtree analysis. Bootstrap values shown. No isolate names. (PDF 4 kb)

Additional file 12: Tree inferred by CSI Phylogeny, same tree as Fig. 3.
Bootstrap values shown. No isolate names. (PDF 20 kb)

Additional file 13: Tree inferred by FastTree on the alignment from the
REALPHY phyML analysis with 2 reference genomes. Bootstrap values
shown. No strain names. (PDF 4 kb)

Additional file 14: SNP alignment from the NDtree analysis with
contigs from day 1 as reference genome. (FASTA 40 kb)

Additional file 15: Position for mutations from S14 SNP alignment.
(TXT 2 kb)

Additional file 16: SNP alignment from the NDtree analysis with
NC_000913 as reference genome. (FASTA 40 kb)

Additional file 17: Position for mutations from S16 SNP alignment.
(TXT 2 kb)

Additional file 18: SNP alignment from the CSI Phylogeny analysis with
NC000913 as reference genome. (FASTA 44 kb)

Additional file 19: SNP alignment from the REALPHY phyML analysis
with NC000913 and NC012759 as reference genomes. (FASTA 85 kb)

Additional file 20: Position for mutations from S19 SNP alignment.
Positions related to NC000913. (TXT 5 kb)

Additional file 21: Spreadsheet with an overview of all 255 strains from
the in vitro evolution experiment. The sequenced strains are marked in
bold. (XLSX 29 kb)

Additional file 22: The benchmark child list with the known tree
structure for the experiment, which all of the trees inferred on all the 101
strains was compared to. Tab separated. (TXT 1 kb)
Additional file 23: Tab separated table showing all results from the
new tree comparison method, where matching parent/child relations
and matching clades to the benchmark child list are counted. The cutoff
branch length is optimized. (TXT 6 kb)

Additional file 24: The full results from the cutoff optimization. (TXT 6 kb)

Additional file 25: Tab separated table, showing results from the new
tree comparison method when the cutoff was set to 0. (TXT 2 kb)

Additional file 26: Tab separated table with systematic names, fastq
filenames, age in the experiment and expected mutations to the strain
from day 1 of the experiment, and indication of whether the node is a
tip or internal node in the topology. (TXT 3 kb)
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