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Abstract

Background: The Gll.4 Sydney 2012 strain of human norovirus (HuNoV) is a pandemic strain that is responsible for
the majority of norovirus outbreaks in healthcare settings. The function of the non-structural (NS)1-2 protein from

HuNoV is unknown.

Results: In silico analysis of human norovirus NS1-2 protein showed that it shares features with the murine NS1-2
protein, including a disordered region, a transmembrane domain and H-box and NC sequence motifs. The proteins
also contain caspase cleavage and phosphorylation sites, indicating that processing and phosphorylation may be a
conserved feature of norovirus NS1-2 proteins. In this study, RNA transcripts of human and murine norovirus
full-length and the disordered region of NS1-2 were transfected into monocytes, and next generation sequencing was
used to analyse the transcriptomic profile of cells expressing virus proteins. The profiles were then compared to the

transcriptomic profile of MNV-infected cells.

Conclusions: RNAseq analysis showed that NS1-2 proteins from human and murine noroviruses affect multiple
immune systems (chemokine, cytokine, and Toll-like receptor signaling) and intracellular pathways (NFkB, MAPK,
PI3K-Akt signaling) in murine monocytes. Comparison to the transcriptomic profile of MNV-infected cells indicated the

pathways that NS1-2 may affect during norovirus infection.
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Background

Human noroviruses cause seasonal self-limiting gastro-
enteritis, with outbreaks common in densely populated
centers such as hospitals, cruise ships, and rest homes. It
is estimated that 18% of all acute gastroenteritis world-
wide is caused by norovirus [1]. In the US, norovirus
mortality rates are higher in individuals aged over 65 years,
whereas hospitalization is more common in children
under 5 years of age [2]. The majority of outbreaks in
healthcare institutes are caused by the genogroup I1.4
strains [3]. The current pandemic strain is Sydney 2012,
which arose as a recombination event between New
Orleans 2009, Apeldoorn 2008 and Osaka 2007 viruses
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[4]. The GIL.4 Sydney strain (henceforth called HuNoV)
is antigenically different to its parent strains showing
low to nil blockade activity with monoclonal antibodies
raised against previous pandemic norovirus strains [5].
Currently, there is no vaccine for norovirus and anti-
viral treatments have yet to be developed [6].
Noroviruses are a group of positive-sense, single-
stranded RNA viruses that are divided into 5 genogroups.
The virus consists of three open reading frames (orfs),
with orfl encoding non-structural proteins essential for
virus replication and orfs 2 and 3 encode viral proteins
1 and 2, respectively, that self-assemble into capsids. In
addition, genogroup V, murine norovirus (MNV) has
an extra open reading frame, termed orf 4 that encodes
a virulence factor involved in apoptosis [7]. The orfl
encoding polyprotein is further cleaved into 6 proteins
by the viral protease, to give rise to NS1-2 (p48), NS3
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(NTPase), NS4 (p22), NS5 (VpG), NS6 (protease) and
NS7 (RdRp) [8].

The NS1-2 protein is unique to noroviruses and con-
tains a highly disordered proline-rich N-terminus [9], a
putative C-terminal transmembrane domain, and caspase
cleavage sites [10]. The protein sequence shows homology
to the NIpC/P60 superfamily of circular permutated en-
zymes based on the presence of H-box and NC motifs
predicted to form a catalytic domain. These permuted
papain-like NIpC/P60 enzymes function as peptidases,
amidases, and acyltransferases [11]. In addition, they are
predicted to contain lipid-binding sites and play a role in
the ubiquitin signaling pathway [12].

Cellular expression of NS1-2 protein shows a cytoplas-
mic distribution. The GI NS1-2 interacts with the vesicu-
lar protein SNARE [13] and causes Golgi disassembly
[14]. The Golgi localization and disassembly was inhibited
when the predicted hydrophobic transmembrane domain
of NS1-2 was removed. The GIII bovine norovirus NS1-2
on the other hand does not co-localize with Golgi or ER
markers [15]. During murine norovirus infection, NS1-2
shows cytoplasmic punctate distribution, with partial
localization with ER and at the replication complex situ-
ated near the microtubule organizing center, implying that
the protein may have additional roles in cellular manipula-
tion beyond that of virus replication [16, 17]. There is very
limited data on the role of norovirus NS1-2 protein during
in vivo infection. In mice, MNV persistence and tropism
for proximal colon was linked to the presence of a glutam-
ate instead of aspartate at position 94 in the NS1-2 pro-
tein, indicating that the NS1-2 protein may play a role in
maintenance of viral reservoirs [18].

It is unclear which cell type human norovirus infects
during an in vivo infection, but in vitro studies showed
that B cells can take up human norovirus in the pres-
ence of intestinal bacteria, with increased viral RNA in
the supernatant over time, indicative of virus replication
[19]. However, for the purposes of a transcriptomic study,
the presence of bacterial RNA contaminants is not desir-
able. More recently, human norovirus replication has been
shown in specialized enteroid cultures derived from intes-
tinal stem cells in the presence of bile [20]. These stem cells
are derived from patients undergoing intestinal biopsies for
a variety of pathological conditions, which would compli-
cate transcriptomic analysis. MNV grown in monocytes has
been used a model system to study norovirus pathogenesis,
including intracellular signaling and effects on immune-
regulatory molecules [7, 21, 22]. Since murine monocytes
are well characterised in terms of both differences and simi-
larities to its human counterpart [23, 24], and MNV infec-
tions have been well studied [25, 26], an established murine
monocyte cell line was used in this study.

The role of the HuNoV NS1-2 is unknown and this study
uses transcriptomic analysis through RNA sequencing to
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identify the cellular pathways targeted by the HuNoV
NS1-2 protein, compares it to the effects of MNV NS1-2
protein, and overall to MNV-infected cells using murine
monocytes.

Methods

Cells

RAW-Blue™ cells (InvivoGen) were maintained in DMEM
supplemented with 10% FCS and 200 ug/ml Zeocin™
(InvivoGen) at 37 °C with 5% CO,, and routinely passaged
when 70-80% confluency was reached. Antibiotics were
not added during MNV infection or RNA transfection
experiments.

Virus and RNA transcripts

MNV-1 (CW1-P3) was initially generated via reverse
genetics [27], and purified as previously described [21].
MNYV NS1-2 (nt 1-1028) and NS1-2 dis (nt 1-431) were
cloned from full-length MNV-1 ¢cDNA using forward
primers containing a T7 promoter (underlined), the MNV
5" UTR (lowercase), and nt 6-25 at the N-terminus of the
MNV genome (5'-GAAATTAATACGACTCACTATAgtg
aaATGAGGATGGCAACGCCATC-3"), and reverse primers
containing stop codon (bold) and unique restriction enzyme
sites (italics) (NS1-2 (nt 1024-1046): 5'-AGCAAGGTCG
AAGGGTTATTCGGC-3") and (NS1-2 dis (nt 409-431):
5'-GGTGGTCTGCAGTTACTCCAAGATAGAGCCGATC
ACAG-3"). The PCR products were confirmed for authenti-
city by sequencing. The Sydney GII.4 NS1-2 transcripts
from 5’ to 3" end, containing a T7 promoter, HuNoV
5'UTR, nucleotides 5-993 (NS1-2 full length) and nu-
cleotides 5-409 (NS1-2 disordered) were obtained as
synthetic genes from GenScript using the non-
structural polyprotein sequence (Norovirus Hu/GII.4/
Sydney/NSW0514/2012/AU GenBank AFV08794.1). Each
gene had unique enzyme restriction sites flanking the
sequences to allow for cloning into pUC8 vectors. The
NS1-2 genes from both MNV and HuNoV were cloned
into pUCS8 vectors, linearized, then capped and poly(A)-
tailed RNA transcripts were generated using the
mMESSAGE mMACHINE T7 ultra transcription kit
(Ambion). The RNA transcripts were purified, to remove
unincorporated NTPs, enzymes, and buffer components,
using the MEGAClear transcription clean-up kit (Ambion).
Purified RNA from both HuNoV and MNV NS1-2 proteins
were stored in 4 ug aliquots at —80 °C.

Infection and transfection

MNV infection was performed in triplicate, at an MOI
of 5 for 12 h as described previously [28]. Control cells
were mock infected with media alone. NS1-2 and NS1-2 dis
RNA for both MNV and HuNoV were transfected sep-
arately into murine monocytes using a Neon transfection
system (Invitrogen); 4 ug of RNA was electroporated with
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1 x 10° cells using 1 pulse for 20 milliseconds at 1730 V.
The electroporated cells were immediately placed into
2 ml of pre-warmed media (per well of 6-well plate)
and incubated for 12 h. Control cells were mock trans-
fected without the RNA. All transfections were per-
formed in triplicate. The infected and transfected samples
were collected for total RNA purification and the presence
of virus protein expression was confirmed by western blot
(MNV NS1-2 and NS1-2 dis) or mass spectrometry ana-
lysis (HuNoV NS1-2 and NS1-2 dis). Mass spectrometry
was performed by the Centre for Protein Research, Dept.
of Biochemistry, University of Otago (Dunedin, NZ).
MNV infection was confirmed by western blot analysis
using validated antibodies for NS1-2 and viral capsid
proteins [9].

RNA purification

The cell monolayer was washed with Dulbecco’s PBS
(Sigma), and cells were lysed in 1 ml of TRIzol reagent
(Invitrogen). RNA was extracted using the chloroform
method; briefly, 200 ul chloroform was added to TRIzol
samples, mixed vigorously, and incubated at RT for 2
mins. Samples were centrifuged and the RNA-containing
top phase was collected (~350 ul). An equal volume of 70%
ethanol was added before purifying RNA via the PureLink
RNA mini kit (Invitrogen) as per manufacturers instruc-
tions. The RNA was eluted in RNase and endotoxin-free
water, and stored at —80 °C. RNA quality was checked using
a Bioanalyzer (Agilent Technologies) before transcriptomic
analysis. Next generation sequencing service was provided
by the Otago Genomics and Bioinformatics Facility using
[lumina TruSeq™ RNA libraries on an Illumina HiSeq2000
platform, with 2 x 100 base pair paired end reads.

Transcriptomic analysis

Sequencing reads were first trimmed for sequencing
adaptor and then for quality at Phred score of Q20. Only
paired end reads longer than 50 nucleotides were kept
using the SolexaQA package [29]. Reads were mapped
against the mouse genome version 10 using TopHat [30]
and Bowtie 2 [31]. Read count were summarized at the
transcript level using RefSeq annotation from the map-
ping using bed tools [32] and in-house PERL script. The
differential expression analysis was performed using the
EdgeR Bioconductor package [33]. The library size was
corrected to take into account the sequencing depth [34].
Transcripts with less than 1 count per million (CPM)
per replicate were removed. Read counts were then nor-
malized using the trimmed mean of M-value (TMM) ap-
proach. Biological coefficient of variation was estimated
using the triplicates. Differential expression (DE) analysis
using a quantile adjusted conditional maximum likelihood
(qCML) approach was conducted. The p-values were then
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adjusted using the Benjamini-Hochberg procedure with a
threshold of 5% false discovery rate (FDR).

Flow cytometry analysis

Raw-Blue cells were transfected or infected as indicated
above and harvested at 12hpi into 70% ethanol. The fixed
cells were permeabilised with PBS buffer containing 0.1%
saponin and 0.1% bovine serum albumin. Cells were in-
cubated with rabbit anti-TLR antibodies (TLR7 (Abcam
45371) and TLR8 (Abcam 180610); 1/50 dilution) for
20 min, washed and labeled with goat anti-rabbit Alexa488
antibody (Invitrogen) for a further 20 min. Labeled cells
were washed thoroughly before being analysed using BD
Fortessa. Each sample contained 20,000 gated cells for
analysis using Flow]Jo 10.1.

Alignment and phylogenetic analysis

Multiple sequence alignments were performed using the
MUSCLE tool [35]. The alignment for phylogenetic ana-
lysis was edited to eliminate poorly aligned positions and
divergent regions using Gblocks software [36]. Phylogen-
etic analysis was performed using MrBayes 3.2.3 [37] on
the Phylogeny.fr web server [38] under WAG substitution
model with 10,000 generations. The phylogenetic re-
construction was then visualized using FigTree 1.4.2
(http://tree.bio.ed.ac.uk/software/figtree). All polyprotein se-
quences were obtained from GenBank: GI.1 Norwalk 1968
AAB50465.1, G1.2 Southampton 1991 AAA92983.1, GL6
Kingston 2010 AFH88382.1, GL.8 Nagoya 2008 All73782.1,
GL9 AHA91653.1, GII AKE(07105.1, GIL1 Hawaii 1971
AFS33557.1, GIL2 Malaysia 1978 AFX1658.1, GIL.2 Taiwan
AGT39205.1, GIL3 Korea 2006 ADK23786.1, GIL3 China
1978 AFX1655.1, GII.4 Japan 2011 BAU24947.1, GIL.4
Osaka 2007 BAJ13911.1, GIL4 New Orleans 2010
AEX91909.1, GIL4 Sydney 2012 AFV08794.1, GIIL.6
Guangzhou 2011 AGC96534.1, GII.12 Taiwan 2010
AGT39196.1, GIL.14 Saga 2008 ADE28700.1, GII.17
AKB94549.1, GIL.17 ALG05459.1, GIII Jena AFQ00092.1,
GIV NSW 2010 AFJ21375.1, GIV.2 feline AFD30969.1,
GV MNV AEY83582.1, and GV rat AFV48050.1.

Results and discussion

Phylogeny and secondary structure of HuNoV NS1-2

The sequences of the available norovirus orfl proteins
from Genbank were used to construct a phylogenetic
tree showing the divergence of the NS1-2 proteins. The
NS1-2 proteins cluster distinctly into their respective
genogroups (Fig. 1a). The exceptions are the GII.1 Hawaii
strain from 1971, which is different to the more current
GII strains, and the GIII bovine strain clusters closely with
the GI strains. There is significant variation between the
GII strains, with the GIL4 Sydney (2012) NS1-2 protein
clustering more closely with the GII.3 noroviruses than its
parenteral GII4 New Orleans strain consistent with the
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Fig. 1 Comparison of NS1-2 proteins of norovirus genogroups. a Phylogenetic tree showing evolutionary distances between norovirus NS1-2
sequences. b Multiple sequence alignment of NS1-2 from the different genogroups with mammalian LRAT proteins, showing H-box (dashed box) and
NC motifs (double arrows). The arginine (red box) required for mammalian phospholipase activity and tyrosine (black box) for acyltransferase activity is
indicated. The predicted caspase cleavage sites are depicted by elbow connecters (black). Alignment generated using Clustal Omega;
*denotes identity in all sequences, : indicates conserved substitutions, and . are semi-conserved amino acids
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Sydney strain only sharing the orf2/3 capsid component
with the New Orleans strain [4]. It is also interesting to
note that the more recently emerging GIL.17 and GIL14
strains are clustered separately to the GIL4 strains in
terms of their NS1-2 identity (Fig. 1a). Alignment of NS1-
2 proteins from norovirus genogroups shows that the
HuNoV Sydney NS1-2 shares 42%, 36%, and 37% amino
acid identity to the Norwalk (GI), Jena (GIIL bovine), and
MNV (GV) NS1-2 proteins, respectively (Clustal Omega).
Despite the low sequence homology, HuNoV NS1-2
shares certain traits with the other norovirus NS1-2 pro-
teins. They all have a proline-rich disordered N-terminus
(discussed in [9]) and a predicted transmembrane domain

at the C-terminus based on concentration of hydrophobic
residues [10]. The NS1-2 proteins also contain predicted
caspase cleavage sites identified in GIL4 and GIII
(DLxD*xWLS; probability 0.8), between the two GIIL.4
proteins (EMWD*GELY; probability 0.7), and the two
GI proteins (SARD*GVxx; probability 0.76) (Fig. 1b), as
determined by Cascleave 2.0 [39]. The GV MNV NS1-2
has functional caspase-3 cleavage sites at residues 118
(DxxD*APSH) and 128 (DAMD*AKEP) [10]. The noro-
virus NS1-2 proteins also share the H-box and NC motifs
(Fig. 1b) of the circular permutated NlpC/P60 family
of peptidases [11]. Circular permutation allows pro-
teins to adopt different enzymatic abilities within the
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same structure, and often leads to increased stability
or reduced degradation by cellular proteases [40]. The
proteins in the NIpC/P60 family are present in a wide
array of prokaryotes and eukaryotic cells and function
as peptidases, amidases, phospholipases, and acyltrans-
ferases. In the majority of the NIpC/P60 proteins, the
catalytic domain is composed of a histidine (from H-box),
a cysteine (from NC motif), and a third polar residue [12].
In bacterial NIpC/P60 cysteine peptidase enzymes, the
most commonly present polar amino acid is a histidine,
followed by asparagine, glutamate, glutamine, and aspar-
tate [41]. In mammalian cells, the NIpC/P60 family in-
cludes LRAT (acyltransferase), HRev107-3, and TIG3
(class II tumor suppressors with phospholipase activity).
Figure 1b shows the alignment of the conserved regions of
norovirus NS1-2 proteins with mammalian NIlpC/P60
proteins, highlighting the H-box and NC motifs and the
additional polar residue. The polar residue determines
substrate specificity; in HRev107-3, this residue is an ar-
ginine (Fig. 1b; red box) that is required to stabilize the
phosphate group of phospholipid substrates [42]. In viral
NS1-2 proteins, there is an acidic aspartate or glutamate
instead of the basic arginine residue, suggesting that the
HuNoV and MNV NS1-2 proteins may not function as a
phospholipase or may utilize a different substrate. A viral
NIpC/P60 protein, G6R from Vaccinia virus, also does not
contain the arginine residue but was predicted to bind
lipids based on the charge and hydrophobicity of the resi-
dues present in the catalytic binding groove [43]. The bac-
teria Mycobacterium avium subspecies paratuberculosis,
which causes chronic intestinal disease in ruminants, con-
tains a protein MAP_1204 belonging to the NIpC/P60
family that contains an acidic glutamate as the third polar
residue, and this protein functions as a hydrolase [44].
The tyrosine residue upstream of NC motif in LRAT is re-
quired for its acyltransferase activity to generate all-trans-
retinyl esters [12, 45], and this residue is conserved in the
norovirus NS1-2 proteins. In addition, LRAT, HRev107-3
and RIG1/TIG3 have all been shown to induce apoptosis
in cancer cells, and the presence of the NC motif is crucial
for this function [46]. MNV-induced apoptosis has been
attributed to the non-structural polyprotein, but has not
been isolated to any individual protein in orfl [47]. The
structures of human LRAT and TIG proteins have been
resolved, but due to circular permutation of the NlpC/P60
family, these mammalian proteins cannot be used to pre-
dict the structure of the norovirus NS1-2 proteins.

The analysis of HuNoV NS1-2 sequence using the
Predictor of Natural Disordered Regions (PONDR)) [48]
server showed 37% of the protein, consisting of amino
acids 1 to 124 at the N-terminus, is disordered (Fig. 2a).
This profile is similar to the previously published disorder
profiles of GL1, GL2, GIII, and GV (MNV) NS1-2 pro-
teins [9]. The predicted caspase cleavage site at amino acid
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134 (EMWD-GEILY; 0.7 probability), at the termination of
the inherently disordered region (yellow arrow; Fig. 2a)
was chosen as the termination site for NS1-2 dis for this
study. Figure 2a also shows the location of the H-box
and NC motif (blue arrows), and the predicted trans-
membrane domain (red double arrow; PSIPRED) in the
highly conserved/ordered region of the protein. The
HuNoV NS1-2 secondary structure, hydropathy, and
flexibility predictions are comparable to the previously
published MNV NS1-2 protein analysis [9]. The disor-
dered region of HuNoV NS1-2 contains limited second-
ary structure, and has residues that are predominately
hydrophilic, flexible, and immunogenic, when compared
to the full-length NS1-2 protein. Comparison of the inher-
ently disordered regions shows areas of conservation be-
tween the HuNoV and MNV NS1-2 dis proteins that are
not apparent with whole protein alignment (Fig. 2b).
These similarities could play a role in interactions this
disordered region has with other molecules. Analysis of
MNYV NS1-2 dis and HuNoV NS1-2 dis sequences using
Prosite motif finder [49] showed that MNV NS1-2 dis pro-
tein did not match up to any known sequences, whereas
the HuNoV NS1-2 dis showed sequence similarity to a pu-
tative Mycobacterium virulence protein predicted to bind to
and inhibit IgG responses (NCBI-CDD 275319). The con-
served motifs in MNV and HuNoV NS1-2 dis correspond
to putative MHC-I epitope binding sites when compared
against the Immune Epitope Database [50], indicating
that the disordered part of NS1-2 may induce an immune
response. Antibodies generated against full length
MNYV NS1-2 also bound the disordered N-terminal re-
gion of the protein, indicating that the disordered re-
gion is immunogenic [9], hence this disordered region
may serve as a target for cell-mediated immune responses
against norovirus.

The Disorder-Enhanced Phosphorylation Sites Predictor
(DISPHOS 1.3) [51] predicted that the threonine-61 of
HuNoV NS1-2 is phosphorylated, with a probability of 0.9
and 0.87, in human and murine cells, respectively (Fig. 2a
and b; blue circle). Murine NS1-2 analysis using DIS-
PHOS suggests that the protein may be phosphorylated at
threonine-15 and tyrosine-47 (0.5 probability; Fig. 2b; blue
circles). Threonine phosphorylation on kinase-type pro-
teins are required for catalytic activity [52]. In eukaryotic
cells, phosphorylation activates a variety of cellular
pathways, including cell cycle regulation, apoptosis and
immune cell activation [53]. RNA viruses, such as HIV
and Hepatitis C, utilize host kinases to phosphorylate
viral proteins in order to increase the viral proteome to
aid virus replication [54, 55]. Hepatitis C virus NS5A
protein contains a phosphorylated threonine amongst
proline-rich disordered residues that is crucial for repli-
cation center formation and production of virions [56].
In MNV-infected monocytes, NS1-2 is partially localized
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to the replication complex but it is not known what role it
plays in replication [16].

HuNoV NS1-2 and NS1-2 dis induced transcriptomic
profile

HuNoV NS1-2 and NS1-2 dis RNA transfections were
carried out in triplicate, and cells electroporated without
RNA were used as controls (mock-transfected). Cellular
RNA was extracted and sequenced using Illumina TruSeq™
RNA libraries on an Illumina HiSeq2000 platform with 2 x
100 base pair paired end reads. The quality control, read
mapping, read count, and differential expressed genes were
performed as described in methods. The PCA plots of
HuNoV NS1-2 and NS1-2 dis transfected cell samples
showed that the triplicate samples clustered together and
there is good separation between mock and viral protein
transfected cells (Additional file 1: Figure S1). Smearplots
of genes that are upregulated and downregulated in NS1-2
and NS1-2 dis are shown in Fig. 3a and b, respectively.
Transfection of HuNoV NS1-2 altered the expression of
1735 genes, whereas HuNoV NS1-2 dis transfected cells
had 1269 genes that changed compared to mock trans-
fected samples (Cut off at 5% FDR, with 2-fold change). Of
these differentially expressed (DE) genes, 1197 were shared
between the two conditions (Fig. 3c). This left 538 DE
genes found solely in the HuNoV NS1-2 transfected cells,

suggesting that the ordered region of the viral protein in
context with the disordered region was required for these
cellular interactions. HuNoV NS1-2 dis transfected cells
had 72 DE genes that were attributed solely to the dis-
ordered protein. The differentially expressed genes were
further analysed by DAVID [57] and Panther [58] data-
bases to categorise pathways and protein classes that
were specifically up- or down-regulated in the presence
of HuNoV NS1-2 and NS1-2 dis proteins.

Figure 3d shows the shared gene between the HuNoV
NS1-2 and NS1-2 dis proteins classified into Panther
pathways [59]. Using the Panther-db, majority of the DE
genes are classified under inflammation mediated by
chemokine and cytokine, integrin signalling, Toll-like re-
ceptor signalling, apoptosis, and ubiquitin proteasome
pathways. The DE genes can also be classified separately
into pathways that are either up- or down-regulated using
Kegg classification. Table 1 shows that the upregulated
genes belong to the pathways involved in proteasome,
apoptosis, antigen processing and presentation, and gap
junction interactions. The genes in RIG-I-like, NOD-like,
and MAPK intracellular signalling pathways are also up-
regulated. The downregulated genes belong to the path-
ways involved in lysosomes, cell adhesion molecules, and
transendothelial migration. In addition, the genes in p53,
mTOR, and phosphatidylinositol signalling pathways are
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present in response to NS1-2 and NS1-2 dis proteins. d Genes present in both NS1-2 and NS1-2 dis were categorized into Panther pathways
(y-axis) with the number of genes indicated (x-axis) using DAVID Bioinformatics Resources 6.7. The adjusted p-values (Benjamin-Hochberg) are
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downregulated. There are some pathways where select
genes are both up- and down-regulated, and these in-
clude cytokine-cytokine receptor interactions, Toll-like
receptor signalling, focal adhesion, and regulation of
actin cytoskeleton.

At first glance, these Kegg and Panther pathways appear
to be diverse but they do contain similarities; the PI3-K
and chemokine pathways require GTPases to function,
and all the intracellular pathways use phosphorylation as a
means of molecular activation [60, 61]. Further categor-
isation of these DE genes as molecular function (Kegg
classification) showed that the types of proteins altered
in response to HuNoV NS1-2 and NS1-2 dis can be
classified as 43% phosphoproteins and 31% nucleotide-
binding proteins, with 25% comprising solely of ATP-
binding proteins (Table 2).

The 538 DE genes present solely in HuNoV NS1-2
group mainly into the lysosome, proteasome, and RIG-
1-like receptor signalling Kegg pathways (Fig. 4a). Panther
classification of the same DE genes group to integrin-
signalling, Toll-like receptors, and ubiquitin-proteasome

pathways (Fig. 4b). When looking at the class of proteins
that are altered by presence of HuNoV NS1-2, phospho-
proteins made up 53% and acetylation constitutes 25% of
the DE genes (data not shown). This suggests that the
ordered region of the NS1-2 protein may play a role in
regulating phosphorylated and/or acetylated proteins,
as shown for mammalian proteins with the H-box and
NC motif, such as LRAT and retinoic acid responder 3
(RARRES3) [62]. When looking at the cellular placement
of the proteins altered by HuNoV NS1-2, 26% of the pro-
teins are cytoplasmic and 29% are nuclear. Transfection of
HuNoV NS1-2 into cells results in a diffuse cytoplasmic
distribution with no nuclear localisation detected. Previous
studies with Norwalk virus and MNV NS1-2 proteins have
shown the same distribution pattern [13, 16]. The effects
on nuclear proteins by HuNoV NS1-2 are more likely to
be due to changes in transport across nuclear membrane
that are related to modifications such as phosphorylation,
rather than direct presence of NS1-2 in the nucleus.

The DE genes altered by the expression of HuNoV
NS1-2 dis alone do not classify well into either Kegg or
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Table 1 DE gene pathways in HuNoV NS1-2 and NS1-2 dis transfected cells

NS1-2 gene counts

NS1-2 dis gene counts

NS1-2 “adjusted p-values ~ NS1-2 dis®adjusted p-values

Upregulated gene pathways

Proteasome 25 15
Aminoacyl-tRNA biosynthesis 14 9

Focal adhesion 27 22
RIG-I-like receptor signaling 14 10
Toll-like receptor signaling 16 13
Pathways in cancer 33 28
NOD-like receptor signaling 11 8

Apoptosis 12 1
Regulation of actin cytoskeleton 22 16
Antigen processing and presentation 1" 9

MAPK signaling 24 22
Gap junction 10 10
VEGF signaling 9 9

Cytokine-cytokine receptor interaction - 20

Downregulated gene pathways

Lysosome 28 17
Leukocyte transendothelial migration 13 8
Phosphatidylinositol signaling system 9 9
Toll-like receptor signaling 10 7
Regulation of actin cytoskeleton 16 12
Glycosaminoglycan degradation 4 4
Cell adhesion molecules 11 -
p53 signaling - 6
Cytokine-cytokine receptor interaction - 13

Focal adhesion - 11

mTOR signaling - 5

180" 230E°%
480E°%° 23087
6.90E% 260E %
5608 6.20E°%
2108 5308 %
7.80E% 4.80E %
7.20E7% 190"
190" 9508 %
1807 3.80E
300877 35087
30087 15087
3608 1.90E°"
3.80E°Y 1907
- 180"
150" 43067
20087 6308
3308 1,006’
3707 580E
43067 7308
6.60E° 7508
7107

- 85087
- 6.80E
- 5908
- 5408

“adjusted p-values calculated using the Benjamini-Hochberg procedure

Panther pathways likely due to the small size of the gene
set. Off the 77 DE genes, only 4 belong to the Ras path-
way with GTPase function. The other DE genes do not
correlate to any specific Kegg or Panther pathway, but
do contain proteins that bind cations and/or specific
motifs, such as zinc finger domains and kelch motifs
(discussed below).

Taken together, the transcriptomic profile of murine
cells expressing HuNoV NS1-2 and NS1-2 dis suggests
that the virus protein affects multiple pathways. One of
the possibilities based on in silico analysis is that HuNoV
NS1-2 performs an enzymatic function. The enzymatic
function of NS1-2 protein is likely to be related to phos-
phorylation, acetylation, or NTPase activity based on the
pathways that are altered in cells expressing virus pro-
tein. The data also suggests that the disordered region of
the NS1-2 protein may bind specific motifs or cations in
substrate host protein that may lead to the enzymatic

activity by the ordered region of the viral protein con-
taining the H-box and NC motifs. As discussed previ-
ously, HuNoV NS1-2 contains the catalytic Y residue
and NC motif in mammalian LRAT proteins required
for acyltransferase activity and apoptosis, respectively.

Comparison of HuNoV NS1-2 dis and MNV NS1-2 dis

Since the DE genes in HuNoV NS1-2 dis did not correl-
ate well into distinct pathways, the changes in HuNoV
NS1-2 dis transfected cells were compared to those in
MNV NS1-2 dis cells. The disordered region of the
HuNoV and MNV NS1-2 proteins share 153 DE genes
when compared to mock-transfected cells. There is good
correlation between the up- and down-regulated genes
between the two viral proteins. Analysis of the up and
downregulated DE genes present in both HuNoV NS1-2 dis
and MNV NS1-2 dis using the String-db [63] showed
presence of 2 distinct clusters involved in interferon
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Table 2 Protein class of the DE genes in HuNoV NS1-2 and
NS1-2 dis transfected cells

DE Genes NS1-2 and NS1-2 dis

% of gene counts  *Adjusted p-values

Phosphoprotein 432 7667
Purine nucleotide binding 311 6.6E%°
Nucleotide binding 311 55670
Ribonucleotide binding 288 1567%
Purine ribonucleotide binding 2838 15670
Adenyl nucleotide binding 273 7367
Purine nucleoside binding 273 6.0E°%°
Nucleoside binding 273 53g%
Cytoplasm 265 2287%
ATP binding 25 21679
Transferase 189 586
Hydrolase 16.7 207

adjusted p-values calculated using the Benjamini-Hochberg procedure

regulation and cell cycle/apoptosis, with a further smaller
cluster of genes with uncharacterised function (Fig. 5a).
The upregulated genes of interest include the Schlafen
gene family, STAT1 and IRF transcription factors, indicat-
ing interferon-dependent activation in the NS1-2 dis pro-
tein transfected monocytes [64, 65]. Further, the genes
induced by IFN upregulation, such as Oas enzymes, are
also upregulated in both HuNoV and MNV NS1-2 dis
samples, indicating that the NS1-2 dis protein activates a
pro-inflammatory profile in monocytes. Analysis of the
DE genes using Panther-db showed that they belong to
the biological processes of nucleotide metabolism, cell
cycle, IFN-mediated immunity, MHC-I, and T cells
(Fig. 5b). The DE genes can also be grouped into pro-
tein families (Fig. 5c), with the highest number of genes
in the melanoma-like 3 antigen family, the majority of
which includes uncharacterised genes. Other protein fam-
ilies of interest, aside from the previously mentioned
Schlafen and IFN proteins, include proteins with Kelch
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and EH domains, required for protein-protein interactions
and intracellular sorting. The DE genes also include pro-
tein families with zinc finger motifs and helicases required
for DNA binding (Fig. 5a and c). Overall, the number of
immune response pathways triggered by the disordered
region of NS1-2 from both HuNoV and MNV warrants
further study in the context of virus infection.

Comparison of HuNoV NS1-2 with MNV NS1-2 and
correlation to MNV infection
The HuNoV NS1-2 transcriptomic profile was compared
to MNV NS1-2 transfected cells, and then overall to
MNV infected cells. Figure 6 shows these up- and down-
regulated genes classified into Kegg pathways. A closer
look at the shared pathways shows changes in intracellular
signalling molecules such as MAPK, and proteins that
activate key immune responses, such as cytokines and
chemokines. These DE genes and their fold changes are
shown in Table 3. The genes present in MNV NS1-2
transfected cells followed similar regulation patterns to
HuNoV NS1-2. In each case, the genes upregulated in
HuNoV NS1-2 were also upregulated in MNV NS1-2
and consequently in MNV infected cells, showing a strong
correlation between transfection of virus protein and whole
virus infection in these specific pathways in monocytes.
The combination of chemokine and cytokine mRNA
that is upregulated in MNV infected cells suggests a Thl
profile, and this is further supported by down-regulation
of genes such as IL10ra and CSF3R (G-CSF receptor)
[66] that support an anti-inflammatory phenotype (Table 3).
Overall, the transcriptomic profile suggests that MNV in-
fected cells are pro-apoptotic, and affect MAPK, NF«B,
and PI3K-Akt intracellular signalling pathways. The genes
outlined in metabolic pathways affect the fatty acid and
arachidonic acid regulation, with enzymatic activities such
as oxidoreductase and transferase functions (Table 3). The
proteins encoded by genes affected by MNV infection are
localised at the endoplasmic reticulum and mitochondria.

A

One carbon pool by folate

Glycine, serine and threonine
metabolism

RIG-I-like receptor signaling
Aminoacyl-tRNA biosynthesis

Lysosome

Proteasome 7.7x10%

0 2 4 6 8 10 12

DE Genes in NS1-2 (KEGG)

14

B

Toll receptor signaling

7.7x10%

Ubiquitin proteasome

Fig. 4 Genes differentially expressed in response to HuUNoV NS1-2 only. Genes that were altered solely in response to transfected HuNoV NS1-2
were categorized into Kegg pathways (a) and Panther classification (b), with the number of genes indicated (x-axis) using DAVID Bioinformatics
Resources 6.7. The adjusted p-values (Benjamin-Hochberg) are indicated next to the bars

Integrin signalling 8.6 x 102
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MNV NS1-2 expression induces a similar trend in intracel-
lular signalling and metabolic pathways, apoptosis, and im-
mune responses as MNV-infected cells, indicating that
NS1-2 protein is a contributing factor to this phenotype, as
these changes are not seen in mock-transfected or un-
treated monocytes. This same trend in all the pathways is
seen with cells expressing HuNoV NS1-2 (Table 3), sug-
gesting a similar role as MNV NS1-2 during virus infec-
tion. Previous work has shown that downregulation of
survivin and upregulation of TNF and trafl contributes to
apoptosis during MNV infection [67]. The TNFa and
Trafl upregulation was also observed in this study, both in
MNYV infected and in NS1-2 transfected cells (Table 3).
The chemokines secreted during an in vitro MNV infec-
tion correlate to a Thl phenotype, and this has been previ-
ously shown by microarray analysis for mRNA and ELISA
assays to detect secreted chemokines [21]. There is also an
upregulation of serum TNFa and IFNP [22], and an in-
crease in inflammatory dendritic cells in the intestines of
mice [68], during an MNYV infection that further supports
a'Th1 phenotype.

The DE genes in the TLR pathway in this study indi-
cate a moderate decrease in TLR4, TLR7, and TLR9 and
a strong decrease in TLR8 mRNA in HuNoV NS1-2
transfected and MNV-infected cells. The changes in
MNYV NS1-2 transfected cells were not statistically sig-
nificant (Table 3). The role of TLR regulation during
norovirus infections is currently unknown, though the
presence of viral RNA is known to upregulate intracellu-
lar TLR7/8 and TLR9 [69]. Previous studies have shown
that there is good correlation between the mRNA and
protein levels of TLRs, hence decreased mRNA levels in-
dicate downregulation of the expressed TLR proteins
[70]. To analyse this further, intracellular expression of
TLR7 and TLR8 was analysed using flow cytometry in
NS1-2-transfected cells and MNV-infected monocytes at
the same time point as transcriptomic analysis. Figure 7a
shows that expression of TLR7 does not change signifi-
cantly in NS1-2 transfected or MNV-infected cells when
compared to mock-transfected and untreated cells.
However, expression of TLR8 (Fig. 7b) is decreased by
40% (HuNoV NS1-2), 35% (MNV NS1-2), and 37%
(MNYV infected) when compared to control cells. Inter-
actions between TLR and single-stranded RNA viruses
are not completely understood. Generally, TLR7/8 ex-
pression is increased upon recognition of viral single-
stranded RNA, as shown for human parechovirus [71].
Some RNA viruses can modulate TLR expression either
via direct binding to TLR or via modulating downstream
effectors [69]. Hepatitis C virus encodes a non-structural
disordered protein, NS5A which impairs TLR2 signalling
by targeting MyD88 [69]. Studies with HIV-positive pa-
tients showed that the mRNA expression of TLR7/8 de-
creased during disease progression, and that activation
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Table 3 Select pathways in common between viral NS1-2

transfected cells and MNV infected cells

Gene HuNoV NS1-2 MNV NS1-2 MNV infected
NFkB signalling
Card11 -134 °NS -0.88
Traf1 2.72 0.09 313
Ptgs2 201 0.19 2.29
Nfkb2 1.22 0.13 1.55
Relb 1.29 °NS 249
Ddx58 297 032 1.75
Tnfaip3 1.00 0.05 3.26
MAPK signaling
Fgf13 -1.50 -0.10 -0.09
Myc 528 NS 5.06
Mef2c -1.27 -0.13 -0.22
Cacnald -3.04 —-0.36 -0.86
Gadd45g =121 -0.14 1.29
Dusp5 1.93 0.03 335
Dusp4 146 0.30 1.85
Dusp2 148 0.11 2.38
Nfatc1 136 0.12 0.70
Ptpn5 1.76 042 1.23
PI3K-Akt signaling
Pkn3 1.20 0.25 0.54
Igf1 —2.58 -0.14 -0.30
[tgb5 -1.40 -0.03 -0.36
Lamc2 3.19 0.81 5.77
Creb3I2 1.29 0.28 1.23
Efnal 2.06 =013 -132
Pck2 1.08 0.19 045
ltga5 138 0.10 133
Lck 1.44 0.39 0.68
TLR signaling
Ikbke 1.24 035 113
TLR8 —2.84 —-0.20 -2.18
TLR9 -1.04 -0.04 -0.57
TLR4 -0.86 NS -047
TLR7 -0.88 NS -0.28
TLR13 —-1.58 NS —-0.68
IRF9 2.09 0.15 1.80
IRF7 451 °NS 2.88
IRF3 0.19 0.01 0.26
IRF1 -0.46 -0.1 -0.36
Apoptosis
Fas 1.79 1.19 2383
Capn2 1.07 0.04 0.21
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Table 3 Select pathways in common between viral NS1-2
transfected cells and MNV infected cells (Continued)

ILTrap
IRAK2
MIkI
Tnfrsf1b

1.11
1.19
1.56
=176

Metabolic pathways

Fut7
Ppt1
Pla2g2d
Khk
Ptgsi
Pck2
Kmo
Agpat4
Acy1
11401
Cth
Xdh
Acsbgl
Stégall
Dgkg
Ugtla7c
Ak4
Kdsr
Acss2
Mthfd2
Dhrs3
Dexr
Bdh2
Lpin3
Gamt
Akrib8
Hpgds
Alox5

Chemokine and cytokine signaling

CcCL2
CCL3
CCLS
CXCL2
CCR1
CXCR3
CXCR4
CX3CR1
TNF

Lif

—124
-1.06
1.53
-1.07
-1.28
1.08
—4.09
146
1.23
-167
261
—246
1.76
—242
—2.86
-122
1.06
-1.23
—124
1.19
-1.90
-1.02
1.96
1.22
—-1.31
145
-3.35
-2.69

2.24
1.01
6.45
4.01
253
1.09
-2.96
-1.74
1.85
2.28

0.08
0.18
032
-0.07

-0.14
-0.14
0.18
-0.23
-0.07
0.19
—-0.35
0.1
0.15
-0.26
0.54
NS
0.08
-0.08
-0.03
-0.02
0.14
-0.15
-0.02
0.04
NS
-0.25
0.32
-0.06
-0.06
0.15
-0.04
-0.06

0.34
003
0.18
0.89
0.50
0.11
-0.14
°NS
0.11
0.52

1.12
1.97
0.29
-0.70

953
222
PND
738
120
009
-0.14
-043
254
348
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Table 3 Select pathways in common between viral NS1-2
transfected cells and MNV infected cells (Continued)

Bcl3

1.25 040 1.54
[fnar2 —1.24 -0.03 -0.55
Vegfa 1.60 0.09 0.79
[110ra =191 NS -143
Csf3r -8.20 -0.27 -1.00

Positive logFC numbers indicate upregulation, and negative numbers are
downregulated genes when compared to mock-treated and cells only samples
@NS: gene detected, but FC not significant

BND: not detected

of the TLR7/8 receptors led to suppression of HIV repli-
cation in monocytes [72]. In T cells however, HIV causes
an upregulation of TLR7 resulting in T-cell anergy [73].
The consequences of down regulating TLR8 appear to
be cell-specific. In mice, decreased TLR8 expression
leads to an increase in TLR7 in dendritic cells but not in
monocytes [74].

Conclusion
This study undertook transcriptomic analysis of cells
transfected with HuNoV NS1-2 to identify the cellular
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pathways affected by the virus protein. Our data indi-
cates that the HuNoV NSI1-2 protein targets multiple
pathways in murine cells. The intracellular pathways in-
clude Jak-STAT, MAPK, p53, PI3K-Akt signaling, and
the immune processes affected are apoptosis, chemokine
and cytokine secretion, and TLR pathways. This pheno-
type suggests that HuNoV NS1-2 has a role in regulation
of innate immunity, in particular affecting intracellular
signaling pathways in response to cell surface receptor
expression. The disordered region of HuNoV NS1-2
protein is predicted to be immunogenic and upon pro-
tein expression caused an upregulation of genes belong-
ing to MHC-I, IEN, and T-cell mediated immunity
pathways. Comparison of transfected HuNoV NS1-2
cells with MNV NS1-2 expressing cells showed a similar
transcriptomic profile. Evaluation of the transcriptomic
profile of MNV-infected monocytes correlated well with
previous studies showing that MNV affects apoptosis
and cytokine/chemokine secretion in monocytes. The
RNAseq data indicates that NS1-2 protein may be re-
sponsible for these cellular immune functions. The role
of TLR7/8 expression in MNV infection has not been
previously reported, and our data shows that TLR8
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expression in MNV infection is decreased at 12hpi, with
no discernable change in TLR7 expression. The TLR7/8
profile is also present in NS1-2 transfected cells, show-
ing a role for NS1-2 in modulating TLR signaling during
infection. This study is the first to report the multiple
pathways targeted by NS1-2 and identifies key areas that
future research can focus on. In particular, the putative
enzymatic function of NS1-2 that may be responsible for
affecting multiple pathways needs to be determined.

Additional file

Additional file 1: Figure S1. PCA plot showing triplicate samples of
HuNoV NS1-2 or NS1-2 dis transfected cells compared to mock-transfected
cells. (PDF 27 kb)
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