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Meta-analysis reveals conserved cell cycle
transcriptional network across multiple
human cell types
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Abstract

Background: Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular
machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it
have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have
been studied in different organisms and different cell types. In each case hundreds of genes have been reported to
be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent
comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were
reported to be the same across all studies examined.

Results: Here we perform a systematic re-examination of published human cell cycle expression data by using a
network-based approach to identify groups of genes with a similar expression profile and therefore function. Two
clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence
across the four human cell types assessed.

Conclusions: Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression
across human cell types than reported previously, which can be separated into two distinct transcriptional networks
associated with the G1/S-S and G2-M phases of the cell cycle. This work also highlights the benefits of performing a
re-analysis on combined datasets.
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Background
Cell division is a fundamental process common to all
eukaryotic organisms and involves sequential duplication
of the genome and daughter cell generation. These two
events occur during S phase and M phase respectively,
each preceded by a gap (G) phase, named G1 and G2,
where cells grow in mass and prepare for the following
phase. With the advent of genome-wide expression micro-
arrays hundreds of cell cycle-regulated transcripts have
been identified in yeast [1–5]. Likewise, in human cell
lines several efforts have been put to define the cell cycle
transcriptome. Among others, Whitfield and coworkers
[6] synchronized HeLa cells both at G1/S transition, using
a double-thymidine block, and at G2/M transition, using a

thymidine-nocodazole block and identified 874 cell cycle-
regulated genes. A later study on primary human foreskin
fibroblasts identified 480 cell cycle-associated genes [7]
after synchronization of fibroblasts both with a double-
thymidine block and by serum deprivation. The latter syn-
chronisation method forces cells to enter a quiescent state
(G0), from which they can then re-enter proliferation as a
cohort upon serum re-feeding [8]. More recently, the cell
cycle transcriptome has been further characterized in two
additional studies: one reported 1249 cell cycle-associated
genes employing a human keratinocyte cell line (HaCat)
which although immortalized is deemed to retain a nor-
mal cell biology [9], whereas the second study identified
1871 periodic genes in the osteosarcoma-derived cell line
(U2OS) [10]. The studies mentioned above isolated peri-
odic signals from the gene expression profiles, apparent
when multiple cell cycle events are monitored, in order
to identify cell cycle-associated genes. This is typically
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achieved by converting expression measurements for each
gene into a wave function (Fourier transform), a method
pioneered by Spellman and co-workers [1]. However, re-
sults from independent studies showed considerable dis-
crepancies in the identity and size of the gene lists
identified, with a large portion of genes being reported by
only a single study [9, 11, 12].
Works on reconciling these diverse results have been

carried out in budding and fission yeasts [11, 12]. These
studies concluded that the primary cause of such discrep-
ancies are not differences in experimental procedures nor
in actual biological variation but rather in the analysis of
the data. To date no similar studies have been performed
on data derived from human cells. Cyclebase [13], a pub-
licly available web resource provides a list of 378 human
cell cycle-associated genes, but these have been derived
from four experiments from only one study performed in
human cells (HeLa cells) [6]. To address this gap we have
re-analyzed publicly available expression data derived
from four different human cell types using a correlation-
based approach. This has enabled us to define conserved
gene co-expression patterns associated with proliferation.
Our analysis demonstrates that, as for yeast data, data in-
terpretation is the primary reason for the discrepancies
between previous results in defining a cell cycle gene set
and that, contrary to what has been reported, the tran-
scriptional network associated with the cell cycle is highly
conserved across human cell types.

Methods
Description of cell cycle studies used for the meta-analysis
Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.
nih.gov/geo/) and ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/) data repositories were searched for micro-
array studies of the human cell cycle and filtered by array-
based experiment. Four cell cycle studies were found, two
on GEO (Acc. numbers: GSE52100, GSE26922) and two
on ArrayExpress (Acc. numbers: E-MTAB-454, E-TABM-

263). Raw data was available as cel files format with the
exception of Grant et al. data, for which a preprocessed
data matrix was instead available. Measurements in this
dataset corresponded to the logged ratio of fluorescence
intensities of the Cy3 (green) and Cy5 (red) fluorescent
dyes. A brief description of the studies is summarized in
Table 1.

Data processing
Three tests were performed to assess the array data quality
from each study: 1) boxplots and histograms, to spot
anomalous signal distribution and/or intensity, 2) pseudo-
images of the arrays to identify spatial artifacts and 3) sam-
ple correlation matrix to identify low-correlated samples
not associated with a different biology. After poor quality
array removal, each sample set was normalized separately
using robust multiarray averaging (RMA) normalization, a
standard method for normalizing microarray data which
implements background noise adjustment, quantile
normalization and probe intensity summarization [14].
Next, probe sets were annotated with Entrez gene identi-
fiers (Entrez IDs). Ambiguous probe sets mapping to mul-
tiple gene identifiers were removed. Quality control (QC),
normalization and probe sets annotation was performed in
R environment using a range of Bioconductor packages.
Samples for each study were further examined after
normalization by principal component analysis (PCA).

Batch correction
Datasets were bound together using Entrez IDs as refer-
ence. The unified dataset contained 11,693 Entrez IDs and
159 samples. To adjust for different average intensities
across datasets we applied ComBat [15], a widely used
batch effect correction algorithm. Batches were manually
numbered according to the study and then the algorithm
was run in R environment.

Table 1 Description of cell cycle studies used for the meta-analysis

Cell line Synchronisation
method

Time points Array platform Study Ac.
Number

Raw data
availability

Cell cycle genes
(Entrez ID)

NHDF
(primary
fibroblasts)

Exp 1: Thy block
Exp2: serum
starvation

0 h–32 h, 2 h interval
0 h–32 h, 2 h
interval

Affymetrix U133A 2.0 Bar-Joseph et al.
2008 [7]

E-TABM-263 yes 480

HeLa cells Exp 1: Thy block
Exp 2: Thy block
Exp 3: Thy block

0 h–12 h, 2 h interval
0 h–12 h, 2 h interval
0 h–12 h, 2 h interval

Affymetrix
HuGene 1.0st

Sadasivam et al.
2011

GSE26922 yes _

HaCaT
cells

Exp 1: Thy block
Exp 2: Thy block
Exp 3:Thy block

0 h–33 h, 3 h interval
0 h–33 h, 3 h interval
0 h–33 h, 3 h interval

Affymetrix HG-U133 Diaz et al. 2013 E-MTAB-454 yes 1249

U2OS cells Exp 1:Thy block
Exp 2:Thy block
Exp 3:Thy block
Exp 4:Noc block

0 h–46 h, 2 h interval
0 h–38 h, 2 h interval
0 h–46 h, 2 h interval
0 h–44 h, 2 h interval

Agilent Oligonucleotide
arrays

Grant et al.
2013 [10]

GSE521000 no 1871

Giotti et al. BMC Genomics  (2017) 18:30 Page 2 of 12

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/


Cluster analysis
Cluster analysis was performed with BioLayout Express3D

[16]. This tool allows the conversion of a data matrix into
a correlation matrix by calculating Pearson correlations
between every transcript to every other transcript meas-
urement. Following the selection of a correlation thresh-
old value, the correlation matrix is then rendered as a
weighted undirected network, where nodes represent
transcripts and the edges between them the correl-
ation coefficients. A network clustering algorithm
(MCL) is implemented within the tool to identify
highly connected cliques of nodes within the network
that represent genes with a similar expression profile
[20]. Once the algorithm is run, clusters are color-
coded and numbered according to their size in a de-
scending order. Data was imported into BioLayout
Express3D after converting the text file into an ‘.ex-
pression’ file. Measurements were anti-logged before
the calculation of correlation matrix. The correlation
cutoff threshold was set to r ≥ 0.60 and signal with a
coefficient of variance lower than 0.18 was removed.
The MCL inflation value (MCLi) of the cluster algo-
rithm, controlling the granularity of the clusters, was
set to 1.4 and the pre-inflation value was set to 2.0.
Further sub-clustering of cell cycle-related clusters was
obtained with MCLi at 2.3 for cluster 4 and 4.2 for cluster
6. Minimum cluster size was set to 5. Clusters of gene ex-
pression were then visually inspected. Specifically, we
searched for clusters of genes whose average expression
increased with a particular phase of the cell cycle across
all datasets.
The clusters profiles are calculated as the average of the

z-score of all the genes within the cluster. The z-score is
defined as:

z ¼ x−�x
sd

where z is the z-score, x is the value of the given gene
and x is the mean of the values for the given gene.

Gene ontology enrichment analysis
Enrichment analysis was performed with Database for An-
notation, Visualization and Integrated Discovery (DAVID)
(Version 6.8 Beta), a web-based tool for Gene Ontology
enrichment analysis (http://david.abcc.ncifcrf.gov/) [18].
Gene symbol lists were uploaded and analysed using
Functional Annotation Clustering only for GO Biological
Process annotation (GO_BP). Representative GO Bio-
logical Process terms selected from the top significantly
enriched clusters were reported in figures. The Benja-
mini corrected P-values were used.

WGCNA analysis
The R package “WGCNA” [17] was used to perform
weighted gene co-expression analysis (WGCNA). Before
construction of the adjacency matrix a soft threshold (β)
was set by inspection of plots generated after calling the
function pickSoftThreshold. The soft threshold was set to 6
as this value represented the point at which the Scale-Free
Topology (SFT) Index as a function of the Soft Threshold
reached saturation. Modules were generated after calling
the function blockwiseModules. Arguments of this func-
tions were kept as default. To run GO enrichments
analysis the function GOenrichmentAnalysis was called
returning the 10 most significant GO terms for each mod-
ule. Benjamini-corrected P-values were used.

Results
Incongruences in previous cell cycle lists
Four previous cell cycle studies [6, 7, 9, 10] identified gene
sets with periodic expression ranging from 480 cell cycle
genes in fibroblasts to 1871 in U2OS cells. Grant et al.
noted large differences between the gene lists (Additional
file 1: Figure S1A) and phase assignation of the cell cycle
genes based on their peaking times exhibited further in-
congruences. Three studies identified five different phases,
namely: G1/S, S, G2, G2/M and M/G1 while in Bar-Joseph
data S phase was not assigned. Percentage and number of
genes assigned to the phases varied greatly across studies.
Bar-Joseph et al. assigned 43% of the genes (221 genes) to
G2/M phase while Grant et al. 21% (598 genes) to the
same phase (Additional file 1: Figure S1B). Similarly, G2

phase accounted for 6% (29 genes) of the Bar-Joseph gene
list and it comprised 21% (203 genes) of Peña-Diaz list.
Only 18 genes were annotated as G2/M and 16 genes as
G1/S consistently across all four studies while for the other
phases (S, G2, M/G1), not even a single gene was identified
by all studies (Additional file 1: Figure S1C). We therefore
set out to perform a systematic re-analysis of the human
core cell cycle transcriptome.

Data processing and generation of a clustered network
graph
Data was collected from four microarray gene expression
studies [7, 9, 10, 19] generated from four human different
cell types: NHDF (primary fibroblasts), HeLa (cervical can-
cer cell line), HaCat (immortal keratinocytes), and U2OS
(osteosarcoma cells), respectively. Low quality arrays were
discarded by performing a number of QC metrics (see
Methods) (Additional file 1: Figure S2–S5). Each sample set
was then normalized separately using RMA normalization
and data was further investigated using PCA plots to assess
the presence of subtler batch effects and further samples
were discarded (Additional file 1: Figure S2–S5). We next
mapped probe sets from each dataset to Entrez IDs which
were then used as reference to generate a collated dataset
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of 11,693 unique Entrez IDs and 159 samples. As the aver-
age intensity of each sample set was variable (Additional file
1: Figure S6A) we used ComBat, a batch correction algo-
rithm which uses Empirical Bayes models to adjust for
batch effects in the data (Additional file 1: Figure S6B). A
correlation network from this data was reconstructed using
BioLayout Express3D. [16] After selecting for genes with
Pearson’s correlation coefficient (r) ≥ 0.60, which was high
enough for correlation not to occur by chance (Additional
file 1: Figure S7A), the resulting network contained 3157
nodes (genes) connected by 21,858 edges (correlations).
The network was then clustered using the MCL cluster al-
gorithm [20] generating 68 different clusters of which six
are here reported as showing reproducible pattern of ex-
pression across all the cell types and/or including relevant
biology (Fig. 1a). Other clusters included noisy expression
patterns which did not reproduce across samples or
reflected artifact expression (Additional file 1: Figure S7B).
Cluster 11 for example showed a sharp peak in a single
sample not seen in the replicate samples and was therefore
not considered for further analysis (Additional file 1: Figure
S7C).

Clusters with G1/S-S and G2-M phase specific gene
expression
Genes in clusters 4 and 6 were maximally expressed dur-
ing S and M phases consistent across all cell line
assessed (Fig. 1b, blue and red profiles). The expression
of genes in cluster 4 was up-regulated upon release from
the double-thymidine block (which synchronises cells at
the G1/S transition) and raised approximately 16 h after
serum-refeeding in the serum starvation experiment in
fibroblasts (Fig. 1b, blue profile). This is in agreement
with an increased enrichment of S phase-related genes
in human fibroblasts reported previously [21–23]. Con-
versely, cluster 6 genes exhibited low expression upon
release from the thymidine-block followed by up-
regulation at around 8–12 h and after around 24 h in
the starvation experiment (Fig. 1b, red profile). Gene
Ontology enrichment analysis of the 155 genes in cluster
4 demonstrated a highly significant enrichment for bio-
logical processes linked with S phase including DNA
replication (P = 1.58 10−55), DNA repair (P = 1.31 10−39)
and G1/S transition (P = 4.3 10−26) (Fig. 1c, blue bar-
plots). The 143 genes found in cluster 6 were instead
highly enriched for mitosis-related biological processes
such as mitotic cell cycle (P = 3.46 10−72), chromosome
segregation (P = 1.29 10−48) and spindle organization
(P = 4.47 10−22) (Fig. 1c, red barplots).

Genes in cluster 4 included several factors involved in
DNA replication such as various polymerases (POLA1,
POLA2, POLD1, POLD3, and POLE2), proliferating cell
nuclear antigen (PCNA), cell division control protein
(CDC6) and other protein complexes necessary to

initiate DNA synthesis e.g. members of the DNA replica-
tion complex (GINS2-4), members of the minichromo-
some maintenance complex (MCM2-7 and 10), and the
replication factor complex (RFCs). DNA repair and
DNA damage factors known to cooperate in DNA repli-
cation were also identified including Fanconi anemia
complex components (FANCE, FANCG, FANCI, and
FANCL), RAD complex components (RAD51,
RAD51AP1 and RAD54L) and Breast cancer type 1 sus-
ceptibility protein (BRCA1). Importantly, genes known
to regulate G1/S transition including cyclins E (CCNE1
and CCNE2), M phase inducer phosphatase 1 (CDC25A)
and Cell division control protein 6 homolog (CDC6)
belonged to cluster 4. Genes in cluster 6 included several
G2 and mitotic regulators such as mitotic checkpoint
serine/threonine-protein kinase (BUB1), cyclin-dependent
kinase 1 (CDK1), a master cell cycle regulator, cyclins A
and the two isoforms of cyclin B (CCNA2, CCNB1,
CCNB2) and M phase inducer phosphatase 2/3 (CDC25B
and CDC25C). Various genes involved in kinetochore for-
mation (CENPA, CENPE, CENPF, CENPI) and several
motor proteins members of the kinesin-like proteins
(KIFs) known to participate in chromosomal and spindle
movements during mitosis [24] also belonged to this clus-
ter. Clusters 4 and 6 together accounted for 298 genes
which exhibited up-regulation associated with S phase
and mitosis across all the four cell lines examined. This
number is three fold higher than that previously found to
be representing the core cell cycle signature across the
human cell lines investigated [10].

Sub-clustering of clusters 4 and 6 allows more specific
cell cycle phase association
As in the previous cell cycle studies genes were assigned
to at least four different cell cycle phases, we investi-
gated if more detailed phase-specific gene networks
could be identified from cluster 2 and 4 by increasing
the stringency of the clustering algorithm (see Methods).
Cluster 4 separated in 5 sub-clusters, of which two
showed subtle differences in their peak of expression
(Fig. 2a, left) i.e. genes in cluster 4A displayed a peak in
their expression earlier than those of cluster 4B (Fig. 2b,
top). These two clusters represent G1/S transition and S
phase gene expression respectively as they included sev-
eral bona fide markers of these two phases. G1/S regula-
tors, discussed in previous section, indeed belonged to
cluster 4A (G1/S cluster). This cluster also contained the
majority of genes known to be involved in the formation
of the pre-replication complex, necessary to initiate
DNA replication (MCM 2-7/10, CDC6, CDT1 and
ORC1) [25]. On the other hand, in cluster 4B (‘S phase’
cluster) we identified genes playing a role in DNA repli-
cation, particularly in the initiation of DNA replication
including cell division control protein 45 homolog
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Fig. 1 (See legend on next page.)
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Fig. 2 Separation of cluster 4 and 6 in multiple sub-clusters. (a) When the clustering algorithm inflation value was increased to 2.3, cluster 4 separated
in clusters 4A and 4B, indicative of G1/S and S phase (left). The algorithm generated other 3 clusters which were omitted for clarity. Similarly, cluster 6
split in clusters 6A and 6B when inflation value was set to 4.2 representing G2 and M phase respectively (right). (b). Comparison of expression profiles
of clusters 4A and 4B (top) and clusters 6A and 6B (bottom). A slight shift in the peaks of expression can be observed for both pair of clusters which is
almost entirely consistent across data (see dots on top of expression profiles)

(See figure on previous page.)
Fig. 1 Cluster and GO enrichments analysis (a) Graph based on correlation of gene expression highlighting 4 of the most relevant clusters
generated by the MCL. Clusters 4 and 6 represented the conserved core cell cycle signature from G1/S transition to mitosis. (b) Average expression
profiles of the z-score for each gene within the clusters. Error bars represent standard errors. Dashed lines separate each experiment. Time points,
number of experiments and cell types are specified on the x axis. Method of synchronisation is specified by color-coded bars above time points
(see legend at the bottom). S, M and G1 phase events are highlighted on the top of the figure. (c) Barplots of three significant GO Biological Process
terms after enrichment analysis using DAVID Functional Annotation Chart on the genes found in the respective clusters. Values are negative logarithms
of the corrected p-values (Benjamini)
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(CDC45) [25], DNA polymerase alpha catalytic subunit
(POLA1) and PCNA associated factor (KIAA0101). DNA
metabolism factors including RRM1/2 were present in
cluster 4B, responsible for providing precursors neces-
sary for DNA synthesis.
Likewise, increasing the stringency of the clustering

split cluster 6 into two sub-clusters, cluster 6A and clus-
ter 6B (Fig. 2a, right), associated with G2 and M phase
respectively (Fig. 2b, bottom). Cell cycle regulators
CDK1, CCNA2, CDC25B and CDC25C were found in
cluster 6A (G2 cluster) and are known to intervene at
the G2/M boundary [6]. Kinetochore proteins (CENPE,
CENPF, CENPI) and motor proteins (KIF11, KIF14,
KIF18A, KIF18B, KIF20B, KIF22, KIF23, KIF2C, KIF5B)
were included in this cluster. Cluster 6B was populated
with mitotic cyclins such as: CCNB1 and CCNB2, BUB1,
involved in the metaphase checkpoint [26] and other
gene products playing a role in mitosis. Complete de-
scription of the phases assigned to genes in clusters 4
and 6 can be found in Additional file 2: Table S1. It
should be emphasized however that whilst sub-division
of clusters 4 and 6 may identify regions in the network
that are more enriched for genes associated with par-
ticular phase of the cell cycle, the network is a con-
tinuum and these sub-divisions are relatively arbitrary.

G1-related and early growth response clusters
Cluster 2 showed a partial cell cycle-associated expres-
sion with peaks of expression coinciding to those of
cluster 6 as observed in the following experiments: in
experiment three in U2OS cells, in all the three experi-
ments in HeLa cells and in the second experiment in
HaCat cells (Fig. 1b, grey profile). Notably, this cluster
profile also showed up-regulation at around 6 h in pri-
mary fibroblasts entering cell cycle from quiescence
(starvation experiment). Genes in cluster 2 were in-
volved in pathways indicative of an active metabolism
such as: cellular metabolic process (P = 2.3 10−4), ribo-
some biogenesis (P = 3.8 10−2) and macromolecule modifi-
cation (P = 1.4 10−2) (Fig. 1c, grey barplots). Also were
found in this cluster: E2F5, a member of the E2F tran-
scriptional factors family, which plays a role as repressor
during G1 phase [27], the retinoblastoma protein (RB1),
a main tumor suppressor which inhibits cell cycle pro-
gression during this phase by inactivating E2F1 [28] and
CDC73, another tumor suppressor which has been
reported to interact with cyclin D1 [29]. Cluster 2 also
included several mitogen-activated MAP kinases (MAP2K1,
MAP3K4, MAP3K7CL, MAP4K3, MAPK6) essential to
deliver mitogenic stimuli signals to cell cycle regulators.
Interestingly, cluster 1 and 9 (Fig. 1a) also contained
G1-related genes with cluster 1 including cyclins D1
and D3 (CCND1 and CCND3), master regulators of G1

progression [28] while cluster 9 included CDK4, a cyclin

dependent kinase which operates during G1 phase. [28]
These clusters however failed to show expression patterns
associated with cell cycle events (Additional file 1: Figure
S8, green and red profiles). Cluster 3 showed a conserved
sharp peak in expression in the first hours after the release
of cells from blockade, with no further induction at other
times (Fig. 1b, brown profile). The 128 genes in this clus-
ter were highly enriched with pathways involving trans-
mission of both proliferative and anti-proliferative signals
(Fig. 1c, brown barplot). Accordingly, the cluster included
several genes activated by mitogenic stimuli and encoding
for a variety of cytoplasmatic enzymes, secreted proteins
and transcription factors assigned to transduce the signal
from the cell membrane to the nucleus [30]. These
included early growth response genes 2/3 (EGR2 and
EGR3), fos and jun (FOSB and JUNB) which activate
transcription upon dimerization [30] and Immediate early
response gene 2/3 (IER2 and IER3).
A full list of genes included in the six clusters identi-

fied and lists of their enriched GO biological process
terms can be found in Additional file 2: Table S1 and
Additional file 3: Table S2, respectively.

Validation of clusters analysis with another unsupervised
clustering technique
We analyzed the data using weighted correlation net-
work analysis (WGCNA), an unsupervised technique
that generates modules (clusters) of correlated genes
after construction of an adjacency matrix. We identified
(color-coded) modules after hierarchical clustering using
the WGNCA package (see Methods) [17] (Additional file
1: Figure S9A). Reassuringly, comparisons of the genes
included in the most enriched modules derived from the
WGNCA analysis and genes in the clusters identified
with BioLayout Express3D showed high overlap and GO
enrichments for each module (Additional file 1: Figure
S9B) showed consistency of GO biological process
terms, particularly for clusters 2, 3, 4, 6 (Additional file
1: Figure S9C). Moreover, we compared the overlap be-
tween the two sets of clusters/modules enriched with
cell cycle genes finding 237 genes in common. Though
WGCNA analysis identified many other genes included
in the two modules (449) (Additional file 1: Figure S9D),
the enrichment for the GO_BP term cell cycle in the two
clusters found in our analysis was far more significant
(Additional file 1: Figure S9E).

A network analysis of the combined data more efficiently
identifies commonalities in cell cycle-related genes
We identified 298 cell cycle genes up-regulated during
G1/S-S and G2-M phase across independent studies in
different human cell lines whereas direct comparison of
the results of individual cell cycle studies showed only
96 common genes. To look deeper at the cause of the
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poor overlap we overlaid the gene sets from the four
studies [6, 7, 9, 10] on the network graph. Notably, the
highest overlap was in clusters 4 and 6, representing G1/
S-S and G2-M phases (Fig. 3a). However many genes in
clusters 4 and 6 were not reported by all studies with 63
genes identified by three studies, 62 genes by two, 50
genes by one study and 39 genes not reported by any
(Fig. 3b). Nevertheless, their expression profiles did show
cell cycle-dependent regulation across all the cell lines
and many of them are documented to be involved in cell
cycle. We illustrate this by describing few examples
below. Their relative expression profiles with superim-
posed known-cell cycle factors can be seen in Fig. 3c.
The Kinetochore-associated protein DSN1 homolog
(DSN1), necessary for proper chromosome alignment
and segregation during mitosis as part of the MIS12
complex [31] was only reported in Grant et al. study.
KIF20A, a mitotic kinesin required for cytokinesis [32],
was only found in HaCat and U2OS cells. CDKN3, a
tumor suppressor phosphatase intervening during G1/S
transition and mitosis, was not identified by Bar-Joseph
et al. study and DNA polymerase alpha catalytic subunit
(POLA1), essential for DNA replication initiation was
only reported by Whitfield et al. study. Genes not sup-
ported by any study showing cell cycle-associated expres-
sion included structural maintenance of chromosomes
protein 2 (SMC2), a central component of the condensing
complex assigned to condense chromatin into mitotic-
like chromosomes [33] and putative pituitary tumor-
transforming gene 3 protein (PTTG3P), potentially
involved in chromosome segregation. A table with
complete gene listing of the clusters and the overlap
from previous studies can be found in Additional file 4:
Table S3. In summary, the majority of the genes in clus-
ter 4 and 6 were not identified in all studies despite
following a cell-cycle dependent expression pattern.
Thus, correlation-based analysis of the collated data en-
ables bypassing incongruences as a result of the independ-
ent analyses and finds coherent patterns in the data.

Data comparison with yeast data and further human-
derived datasets
As a large body of work on cell cycle transcriptomics have
been performed on budding and fission yeast, we sought
to compare our results with these studies. To do so, we
exploited a web resource called Cyclebase (Cyclebase.org)
[13] in which several yeast studies were re-analysed and
genes were ranked according to the magnitude of their
periodicity scores calculated by a statistical method that
proved to give the best performance when compared to
others [12]. Ranked list of genes were downloaded from
the website for the budding and the fission yeasts. The fis-
sion yeast list included 449 ranked periodic genes while
the budding yeast list comprised a ranked list of the whole

yeast transcriptome of which only the top 500 genes were
used for comparison. Yeast orthologues to human genes
were retrieved using YeastMine (http://yeastmine.yeast
genome.org) for budding yeast, and for fission yeast using
PomBase (http://www.pombase.org/). The list of 298 cell
cycle-associated genes identified here included 63 ortholo-
gues in budding yeast and 35 from fission yeast. When
compared with the results of individual human cell cycle
studies, the number of budding yeast orthologues is com-
parable, although in fission yeast almost a double amount
of orthologues are identified by the Grant et al. study
(Additional file 1: Figure S10A). Nonetheless the 96
genes overlapping in the four studies included a signifi-
cantly lower number of orthologues genes compared to
this list in both yeasts (Additional file 1: Figure S10A).
All in all our list includes a relatively high number of
orthologues which are mostly comparable with much
larger gene lists and a marked higher number than
those found in the 96 gene set. To further verify the
quality of the 298 gene set we compared its GO enrich-
ments for cell cycle biological process term across the four
cell cycle gene lists derived from the correspondent indi-
vidual studies and the set of 96 genes derived from their
direct comparison (Additional file 1: Figure S10B). Gene
lists from the Whitfield study were obtained both from
Cyclebase and from the original study. As it can be seen,
our list of genes received the highest enrichment for the
GO_BP term cell cycle.

Discussion
Cataloguing the genes involved in the cell cycle has
proven to be a challenging task. In human, individual
studies have identified highly variable lists of cell cycle-
associated genes, with only 96 cell cycle genes being
common to all studies performed on different cell types
i.e., HeLa, primary fibroblasts, HaCat and U2OS cells
[10]. We therefore set out to perform a meta-analysis of
a collated datasets to identify modules of genes co-
expressing among the four cell types. Specifically, we
identified two clusters containing 298 genes, associated
with G1/S-S, and G2-M stages in all the cell types exam-
ined which were highly enriched for GO terms associ-
ated with early and late cell cycle progression. As
circadian rhythm-associated genes are known to oscillate
in expression [34], we looked for members of this path-
way by mapping the 298 genes to Reactome pathways
database [35]. However, no genes involved in the circa-
dian clock were identified, nor known members of this
biological process were co-clustered together in the cor-
relation network. Of the genes found in clusters 4 and 6
many have been reported by at least one of the previous
four studies, however 39 genes have not been identified
previously. After a literature search we found that 18 of
these showed supporting evidence to be involved in cell
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cycle, other 13 were characterized as having non-related
cell cycle functions and 8 of them were poorly character-
ized with no supportive literature (Additional file 5:
Table S4). The fact that almost half of these genes have
been shown to encode proteins associated with the cell
cycle further reinforces the quality of the genes found in
clusters 4 and 6. Among them were the Structural main-
tenance of chromosomes protein 2 (SMC2), a subunit of
the condensin complex which is essential for chromo-
some condensation during mitosis [33], and Putative pi-
tuitary tumor-transforming gene 3 protein (PTTG3P), a
pseudogene member of the hPTTG gene family which
were found to be overexpressed in a number of human
tumors [36]. The 8 uncharacterised genes were of par-
ticular interest as they potentially represent novel cell
cycle genes. Two of these, C9orf40 and DNAJC9, were
confirmed to be co-expressed with known cell cycle genes
as shown in diagrams generated with GeneMania [37]
(Additional file 1: Figure S11A-B). Further, DNAJC9 was
shown to physically interact with Replication protein A
(RPA2), which is involved in DNA replication and repair
[38] (Additional file 1: Figure S11B). These genes were also
shown to be dysregulated in cancer: C9orf40 was reported
to be dysregulated in ovarian carcinoma [39] whereas
DNAJC9 was shown to be up-regulated in metastatic cer-
vical cancer in cancer stem cells [40, 41].
Unlike genes involved in the core cell cycle machinery,

G1 phase-associated genes did not all cluster together in
one unique cluster suggesting that this cell cycle phase is
less conserved across cell types. G1 phase involves cell
growth, and therefore it may be more dependent on a
given cell type, as cell size and metabolism is highly vari-
able across human cell populations [42]. Of the three clus-
ters containing G1 phase genes (cluster 1, 2 and 9), cluster
2 included a significantly higher number of periodic genes
supported by two previous studies (38 genes) compared to
the other two clusters (cluster 1 = 14 genes, cluster 9 = 3
genes) (Fig. 3a) and represented a pattern of expression
consistent with G1 phase. This was more pronounced in
cells entering proliferation from quiescence as opposed to
entering it from a previous cell division, possibly because
G1 phase in actively cycling cells is shorter than in cells
entering proliferation from quiescence [43]. For instance,
cyclin D1, responsible for G1 progression, is degraded
when cells are not actively cycling and has to be newly
synthetized upon cell cycle entry. In contrast cycling cells
have enough gene product to go through forthcoming cell
cycles so reducing the overall time of the cell cycle [28].

However, G1-associated gene expression remains largely
elusive. For example, an additional study specifically
aimed to identify genes differentially expressed during G1

phase in cycling HeLa cells [44] identified 200 transcripts
which however did not match any of those found in the
four studies nor did they cluster together in our analyses.
Further analyses focused on characterizing the G1 phase
transcriptional regulation will be then of value, especially
in view of its crucial role in aberrant proliferation.
Cluster 3 included early growth response genes greatly

induced soon after cells were released from the syn-
chronisation block and dropping to basal level for the
rest of the experiment. This suggests that this set of
genes might be essential only in triggering proliferation
from a cell cycle arrest or quiescence (induced by drugs-
based or serum starvation synchronisation methods, re-
spectively) but are not needed to induce a second cell
cycle in actively cycling cells. The presence of this clus-
ter is yet another clue that the transcriptional regulation
of cells entering cell cycle from quiescence compared to
cycling cells is significantly different.
Finally, we note that 298 is a highly conservative esti-

mate of conserved cell cycle genes. In collating datasets
derived from different microarray platforms, thousands
of genes were discarded leading to only 11,693 unique
Entrez ID entries (approximately half of total number of
the human genes) being shared across platforms.

Conclusions
These findings suggest a far more conserved transcrip-
tional network associated with the human cell cycle than
might be suggested by just comparing previous gene
lists, which is in line with this system to be highly con-
served across evolution. Moreover, additional biologic-
ally relevant clusters were found using such exploratory
analysis, free from a priori hypothesis. The limited num-
ber of shared cell cycle genes reported previously is
therefore likely to be primarily due to analysis protocols,
similar to the conclusions drawn on meta-analyses on
budding and fission yeasts studies [11, 12]. We also
speculate that the number of conserved cell cycle genes
might be even higher given the intrinsic limitations of
this analysis approach.

Additional files

Additional file 1: Figures S1-S11. Supplementary figures. (DOCX 5416 kb)

(See figure on previous page.)
Fig. 3 Overlay of cell cycle gene lists from other studies on the graph. (a) Nodes from the graph previously clustered were color-coded according
to the degree of supportive evidence from published cell cycle gene lists. (b) Magnification of the clusters associated with G1/S-S phase and G2/
M phase to show some examples of cell cycle genes found in our analysis but not detected in each of the previous cell cycle studies. (c) Expression of
six transcripts showing periodic-like expression with superimposed known cell cycle factors. Color scheme in legend refers to all the three sections
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Additional file 2: Table S1. Lists of genes included in the clusters.
(XLSX 52 kb)

Additional file 3: Table S2. GO enrichment analyses of the clusters.
(XLSX 1180 kb)

Additional file 4: Table S3. Overlay of previous cell cycle gene lists on
the clusters. (XLSX 75 kb)

Additional file 5: Table S4. Table S4. Annotation of the 39 unreported
genes. (XLSX 10 kb)
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