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Abstract

Background: In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist
of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and
difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is
paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information

for those making treatment decisions.

Results: Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7

days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes
in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly
downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially
expressed genes were regulated in response to all 21 Gy exposures at both times. Of these, 25 genes were
consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed
bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis
revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron
irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals. Most
biological processes significantly enriched at both timepoints were consistently represented by either under- or
over-expressed genes. In contrast, cell cycle processes were significant among down-regulated genes at day 1,
but among up-regulated genes at day 7 after exposure to either neutron or x-rays. Cell cycle genes downregulated at
day 1 were mostly distinct from the cell cycle genes upregulated at day 7. However, five cell cycle genes, Fzr1, UbeZc,

Ccna2, Nusap1, and Cdc256, were both downregulated at day 1 and upregulated at day 7.

Conclusions: We describe, for the first time, the gene expression profile of mouse blood cells following
exposure to neutrons. We have found that neutron radiation results in both distinct and common gene

expression patterns compared with x-ray radiation.
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Background

The goal of radiation biodosimetry is to accurately
predict radiation dose, as a surrogate of radiological
injury, in a large-scale radiation emergency. Most
approaches focus on the first week after an event,
when radiological triage is most needed. A wide range of
different methods have been used to identify cellular
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responses to radiation, ranging from cytogenetic measure-
ments, specifically dicentric assays, to high throughput
proteomic, metabolomic, and transcriptomic profiling [1].
Several groups have reported gene expression-based ana-
lyses, with the development of predictive gene sets that
correlate with dose [2—5].

Radiation quality plays an important role in driving gene
expression, and different signaling pathways may be
triggered in response to the different types of irradiation.
In addition, various genes and biological functions are
induced in cells at different time points after radiation
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exposure [6—8]. To date, most of the gene expression
signatures for the purpose of radiation biodosimetry have
been obtained in response to photon (y- and x-rays)
exposure. However, there have been a limited number of
studies that have compared gene expression profiles in
mice or human blood cells after exposures involving heavy
ions and a-particles, the latter representing isotopes likely
to be used in a radiological dispersal device [9]. For
example, using human peripheral blood mononuclear
cells, Chauhan et al. [10] found that the gene expression
profile induced by a-particle radiation was very similar
to the x-ray responses, despite the fact that a-particles
are characterized by a higher linear energy transfer
coefficient compared with x-rays [11]. In contrast,
comparison of a-particle and x-ray irradiation impact
on human tumor and endothelial cells [12], as well as
human epidermal keratinocytes [13] produced distinct
gene expression profiles.

An improvised nuclear device (IND) detonation is cap-
able of producing a mixture of y-rays and fast neutrons.
Furthermore, as neutrons generally have a higher Relative
Biological Effectiveness (RBE) for most physiological end-
points, it is important to understand the impact that
neutrons would have on the biodosimetry methods that
are being developed for medical triage purposes. Radiation
affects multiple biological processes, including immune
system and inflammatory responses, cell cycle progression,
cell death, DNA repair, as well as metabolism. However,
the impact of neutron radiation on any of these processes
has not been studied in detail. This study presents an
initial characterization of gene expression responses fol-
lowing exposure to IND-spectrum neutrons or x-rays.

In the present study, gene expression signatures were
analyzed after in vivo irradiation of mice with either
neutrons or x-rays. The doses used were selected based
on the limited RBE information available for IND-
spectrum neutrons. Using the in vitro cytokinesis-block
micronucleus assay [14] in peripheral human blood
lymphocytes, Xu et al. [15] calculated the RBE of our
neutron spectrum to be between 3 and 5 for micronu-
cleus induction with 250 kVp x-rays used as the refer-
ence radiation, with similar results for micronucleus
induction in mice (Helen Turner, personal communica-
tion). We therefore exposed mice to 0.25 Gy or 1 Gy of
neutron radiation and, separately, 1 Gy or 4 Gy of x-ray
radiation. We describe biological processes significantly
over-represented only in the neutron response, or only
in the x-ray radiation response, as well as processes
shared by both types of radiation. The ultimate goal is to
investigate whether we can separately estimate the
photon and the neutron component after a mixed pho-
ton/neutron exposure, and to develop gene expression
signatures capable of discriminating between neutron
and photon exposures.
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Methods

Animals and irradiation

All animal experiments were conducted in accordance
with applicable federal and state guidelines and were ap-
proved by the Columbia University Institutional Animal
Care and Use Committee (IACUC) (approval number
AC-AAAG4356). Male C57BL/6 mice were received
from Charles River Laboratories (Frederick, MD) and
quarantined for 2 weeks before irradiation at 8-10 weeks
of age. Twelve mice were used for each treatment, with
six being sacrificed 1 day after treatment, and the other
six being sacrificed 7 days after treatment. Samples were
lost from three mice (one each of the day 1 controls, 1
Gy x-ray at day 7, and 4 Gy x-ray at day 1) due to clot-
ting during blood draw.

Mice were either sham-irradiated or exposed to 0.25 Gy
or 1 Gy neutron beam or to 1 Gy or 4 Gy x-rays. Neutron
irradiations were performed using the accelerator-based
IND-spectrum neutron source [15] at the Radiological
Research Accelerator Facility (RARAF). Briefly, a mixed
beam of atomic and molecular ions of hydrogen and
deuterium was accelerated to 5 MeV and used to bombard
a thick beryllium target. The neutrons emitted at 60° to
the ion beam axis have a spectrum that closely mimics the
Hiroshima spectrum at 1.5 km from the epicenter [16].

For irradiation, six to eighteen mice were placed in
holders in adjacent positions on an eighteen position
Ferris wheel, rotating around the beryllium target at a
distance of 17.5 cm, at an angle of 60° to the particle
beam. The mouse holders, based on 50 ml conical tubes,
are designed to maintain a horizontal orientation as the
wheel rotates, providing an isotropic irradiation, while
maintaining the mice in an upright orientation. With a
wheel rotation speed of about 2 min per revolution, the
dose rate was adjusted so that the smallest dose was
delivered in 5 rotations (approximately 10 min). The
mouse holders were reversed end-to-end midway
through exposure, to correct for any angular variation in
dose rate so that the front and back of the mouse receive
equivalent doses. When fewer than 18 mice were on the
wheel, two 50 ml tubes containing Lucite phantoms
were placed at either end of the string of occupied
mouse holders in order to ensure a uniform scatter dose.
Irradiations were performed with a total beam current of
18 pA on the target, resulting in a dose rate of 1.55 Gy/
h of neutrons and 0.4 Gy/h of y rays. In order to allow
the mice to acclimate to the restraining conditions of
the holders and reduce stress during treatment, the mice
were placed in the holders in two separate sessions at 3
days and 1 day prior to irradiation. On the second training
session one day prior to the actual irradiation, the mice in
the holders were placed on the irradiation wheel. Sham-
irradiated control mice underwent the same holder accli-
mation protocol, and on the day of exposure they were
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placed in the holders on the wheel with the beam off for
mock treatment. Controls were performed prior to neu-
tron irradiation, to eliminate dose from activation of mate-
rials at the endstation.

For x-ray irradiation, mice were exposed to 1 Gy or 4
Gy of x-rays from a Westinghouse Coronado orthovoltage
x-ray machine operating at 250 kVp and 15mA with a
0.5mm Cu + 1lmm Al filter. The dose rate at the mouse lo-
cation was 1.23 Gy/min, as determined using a Victoreen
model 570 condenser R meter with a 250r chamber. After
dose administration, mice were housed in micro-isolator
cages until the time of sacrifice and blood draw.

No significant changes in cell death or constitution of
white blood cells were observed after irradiation.

Blood Collection and RNA isolation

Blood was collected by cardiac puncture at the time of
euthanasia at days 1 and 7 post-irradiation. Each sample
(~0.4 ml blood) was added to a 15 ml centrifuge tube
that contained 1.6 ml of PAXgene Blood RNA stabilization
and lysis solution (PreAnalytix GmBH, catalog # 762165)
and mixed thoroughly, while a small amount of blood was
added to anti-coagulant containing tubes for blood count
using a Genesis hematology system (Oxford Science). After
collection was complete, blood was mixed gently but thor-
oughly and the tubes were incubated at 4 °C for 24 h. Blood
samples were allowed to reach room temperature for 2 h
before proceeding to RNA isolation. RNA was purified
following the PAXgene RNA kit recommendations with
on-column DNase I treatment. Globin RNA was reduced
using the Ambion GLOBINCclear-mouse/rat kit (Thermo-
fisher). RNA yields were quantified using the NanoDrop
ND1000 spectrophotometer (Thermofisher) and RNA
quality was checked by the 2100 Bioanalyzer (Agilent).
High quality RNA with an RNA integrity number of at least
7.0 was used for microarray hybridization.

Microarray hybridization and data analysis
Cyanine-3 labeled cRNA was prepared using the One-
Color Low input Quick Amp Labeling kit (Agilent). Dye
incorporation and cRNA vyield were measured with a
NanoDrop ND1000 spectrophotometer (Thermofisher).
Labeled cRNA was fragmented and hybridized to
Agilent Mouse Gene Expression 4x44K v2 Microarray
Kit (G4846A). Slides were scanned with the Agilent
DNA microarray scanner (G2505B) and the images
were analyzed with Feature Extraction software (Agi-
lent) using default parameters for background correc-
tion and flagging non-uniform features.
Background-corrected hybridization intensities were
imported into BRB-ArrayTools, version 4.5.0, log,-trans-
formed and median normalized. Non-uniform outliers
or features not significantly above background intensity
in 25% or more of the hybridizations were filtered out.
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In addition, a minimum 1.5-fold change in at least 20%
of the hybridizations was set as a requirement. Further-
more, probes were averaged to one probe per gene and
duplicate features were reduced by selecting the one
with maximum signal intensity. A final set of 16,489 fea-
tures was used in subsequent analyses. The microarray
data is available through the Gene Expression Omnibus
with accession number GSE85323.

Class comparison was conducted in BRB-ArrayTools
to identify genes differentially expressed (p <0.001) be-
tween radiation exposed samples and time-matched un-
irradiated controls using a random variance t-test [17].
Time-matched controls were also compared with each
other but no significantly differentially expressed genes
(FDR > 0.05) were found. Genes with p-values less than
0.001 were considered statistically significant. The false
discovery rate (FDR) was estimated for each gene by the
method of Benjamini and Hochberg [18], to control for
false positives. All genes used in this analysis had a FDR
of less than 0.05.

Hierarchical clustering of microarray gene expression
data was performed with the Dynamic Heatmap Viewer
of the BRB-ArrayTools software using a one minus cor-
relation metric and average linkage. Genes differentially
expressed following exposure to 1 Gy neutron, and 1
and 4 Gy x-ray at either day 1 or day 7 post-irradiation
(a total of 494 probesets) were used to construct the
heatmap.

Gene ontology analysis

Lists of genes that were either significantly overexpressed
or underexpressed compared with controls were imported
separately into the Database for Annotation, Visualization,
and Integrated Discovery (DAVID), version 6.7 [19], to
identify enriched biological processes and gene ontology
(GO) terms using the functional annotation tool. Benjamini
corrected p values of < 0.05 were considered significant. To
construct Tables 2, 3, and 4, redundant GO terms were
grouped using the REVIGO software [20].

Quantitative RT-PCR

c¢DNA was prepared from total globin-cleared RNA using
the High-Capacity ¢cDNA Archive kit (Thermofisher).
Quantitative real-time PCR (qRT-PCR) was performed for
five genes (Ube2c, Fzrl, Ccna2, Cdc25b, and Nusapl) using
Tagman assays (Thermofisher). Fzrl (MmO00517239_m1),
Ccna2 (MmO00438063_m1l), Cdc25b (Mm00499136_ml),
Nusapl (Mm00505601_m1) were pre-designed validated
assays. Mouse Ube2c primers were designed using the
PrimerQuest Tool (Integrated DNA Technologies), and the
sequences were as follows: forward primer, CTGCTAGGA
GAACCCAACATG; reverse primer: GCTGGAGACCTG
CTTTGAATA; and probe: CTTTGAACACACACGCTG
CGGAAC. A pB-actin assay (MmO00607939_s1) was also
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performed alongside as control. The gene expression valid-
ation experiments were conducted with 20 ng cDNA using
Universal PCR Master Mix (Thermofisher) in an ABI 7900
Real Time PCR system. After an initial activation at 50 °C
for 2 min and 95 °C for 10 min, the PCR reaction was
performed by 40 cycles of 95 °C for 15 s and 60 °C for 60 s.
Relative fold-induction was calculated by the 2744¢T
method [21], using SDS version 2.3 (Thermofisher). Data
were normalized to S-actin gene expression levels.

Results

Microarray experiments

Mice were either sham-irradiated or exposed to 0.25 Gy
or 1 Gy of neutron irradiation or 1 Gy or 4 Gy of x-ray
irradiation.. All animals remained in apparent good
health, with no adverse events noted during the course
of the study. Total blood counts were within the normal
range in controls and all animals prior to irradiation and
at days 1 and 7 post irradiation.

Global gene expression was measured in the blood of
mice sacrificed 1 and 7 days post-irradiation using Agilent
Whole Mouse Genome Microarrays. Class comparison
using BRB-ArrayTools identified a total of 7285 and 5045
genes differentially expressed (p < 0.001, false discovery rate
(FDR) < 5%) between unirradiated controls and neutron or
x-ray exposed samples, respectively (Additional file 1). The
number of differentially expressed genes varied with time,
dose, and radiation quality (Table 1). Following neutron
exposures, genes were predominantly down-regulated, with
nearly all differentially expressed genes being under
expressed on day 7 post-exposure. Up- and down-regulated
genes were more evenly divided after x-ray exposure.

We also sought to determine the extent to which
neutrons and x-rays share common differentially
expressed genes. Venn diagrams revealed the overlap
of differentially expressed genes after 1 Gy neutron or

Table 1 Differentially expressed genes

Neutron X-rays

Sample  Up Down  Total Sample Up Down  Total

N025d1 15 31 46 X1d1 378 387 765
33%  67% 4950%  50.50%

N025d7 17 674 691 X1d7 167 396 563
250%  97.50% 30% 70%

N1d1 885 1071 1956 X4d1 1389 2188 3577
45%  55% 39% 61%

N1d7 614 5612 6226  X4d7 1094 491 1585
0%  90% 69% 31%

Significantly differentially expressed genes in mouse blood after neutron or x-ray
treatment relative to unirradiated controls (p < 0.001). Percent of upregulated and
downregulated genes are shown. N025d1: 0.25 Gy neutron, day 1; N025d7: 0.25 Gy
neutron, day 7; N1d1: 1 Gy neutron, day 1; N1d7: 1 Gy neutron, day 7; X1d1: 1 Gy
X-rays, day 1; X1d7: 1 Gy X-rays, day 7; X4d1: 4 Gy X-rays, day 1; X4d7: 4 Gy X-rays,
day 7
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x-ray irradiation to be, for neutron, 20.1% and 7.8% at
days 1 and 7, respectively, and, for x-rays, 51.5% and
79.7% at days 1 and 7, respectively. Comparing the
overlap of differentially expressed genes between 1 Gy
neutron and 4 Gy x-rays, we found the percentages to
be 73.9%, 11.7% (neutron) and 40.4%, 46.1% (x-rays) at
days 1 and 7, respectively (Fig. 1). In all, 272 genes
were common to the response to 1 Gy neutrons and
both 1 and 4 Gy x-rays at day 1 after exposure, and
256 were common to all three conditions at day 7 after
exposure. Hierarchical clustering of these most con-
sistently responsive genes was visualized as a heat map
to compare the relative expression across samples
(Fig. 2). Patterns of differential expression were seen to
vary by radiation quality and dose, and by time since
exposure, showing general consistency between repli-
cates. Control samples showed no obvious differences
in expression between days 1 and 7.

Finally, we searched for genes with sustained differen-
tial expression at both day 1 and day 7. The higher doses
produced the most sustained responses, with 1105 genes
differentially expressed at both times after 1 Gy neutron
and 555 after 4 Gy x-ray exposure. Only 2 genes were
regulated at both times after 0.25 Gy neutrons, and 110
after 1 Gy x-ray exposure. Thirty-four genes were com-
mon to both times after 1 Gy neutron and 1 and 4 Gy x-
ray exposure (Fig. 3a). Of these genes, 25 were uniformly
downregulated. Interestingly, the remaining nine genes
showed a bi-directional temporal response to irradiation.
These genes were downregulated at day 1 post-irradiation,
whereas they were upregulated at day 7 (Fig. 3b). One of
the genes temporally regulated was E2f2 (Fig. 3b), a
member of the E2F family of transcription factors that
play important roles in the control of the cell cycle. We
also performed a search for other differentially expressed
E2f factors and found that, unlike E2f2, E2fI, E2f3, and
E2f4 were downregulated only after 1 Gy neutron
exposure at day 7, showing respectively a 0.44-, 0.18-, and
0.38-fold change from control levels. In contrast, E2f1 and
E2f8 showed up regulation (2.38- and 2.05-fold) after 4 Gy
x-rays at day 7.

Gene ontology analysis

Differentially expressed genes were functionally classi-
fied into gene ontology categories by the Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) [19] analysis. Biological processes over-
represented among differentially expressed genes with
a Benjamini-corrected p-value of less than 0.05 were
considered significant (Additional file 2). Radiation
exposure to the lower dose of neutrons (0.25 Gy) pro-
duced few biological processes, and these were pri-
marily related to immune system response. Therefore,
we focused our analysis on the response to the higher
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DAY 1 DAY 7
1 Gy Neutron 1 Gy X-ray 1 Gy Neutron 1 Gy X-ray

1 Gy Neutron 4 Gy X-ray 1 Gy Neutron 4 Gy X-ray

Fig. 1 Differentially expressed genes. Venn diagram showing overlap patterns of genes that are differentially expressed at days 1 and 7 in response to
1 Gy neutron vs. 1 or 4 Gy x-ray irradiation

day 1 day 7
1Gy 1Gy 4 Gy 1 Gy 1 Gy 4 Gy
control __neutron x-ray x-ray control neutron x-ray x-ray

Fig. 2 Heat map illustrating relative gene expression at days 1 and 7 post-irradiation. Hierarchical cluster analysis was performed on 494 probesets
responding to both 1 Gy neutrons and 1 and 4 Gy x-rays relative to unexposed controls at either 1 or 7 days after exposure. Red indicates high
expression, green indicates low expression as indicated in the color key. Each row represents one gene and each column represents an individual
mouse, ordered by exposure dose and radiation type as labeled in the figure
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(A) 1 Gy Neutron 1 Gy X-ray
4 Gy X-ray
(B)
Genes differentially expressed at all times and all doses = 1 Gy that show bidirectional regulation
Gene Nidi Nid7 Xidi Xi1d7 X4d1 X4d7 Full Name
Mta3 0.38 224 0.38 1.98 021 213 metastasis associated 3
Eif5 0.38 2.8 045 291 0.24 246 eukaryotic translation initiation factor 5
Mtmr3  0.36 2.51 0.4 2.26 0.23 255 myotubularin related protein 3
Wdr26  0.36 3.62 0.35 3.33 0.22 4.32 WD repeat domain 26
acidic (leucine-rich) nuclear
Anp32e 0.36 3.99 0.43 3.37 0.21 2.06 phosphoprotein 32 family, member E
Ubac1 0.31 1.86 0.34 1.75 0.16  2.09 ubiquitin associated domain containing 1
Bsdc1 0.31 2.47 0.3 2.44 0.16 2.13 BSD domain containing 1
E2f2 0.27 2.37 0.22 2.08 0.11 253 E2F transcription factor 2
Slc25a51 0.2 2.45 0.2 255 0.097 2.76 solute carrier family 25, member 51
Fig. 3 Genes differentially expressed at both times. a, Venn diagram showing the number of genes differentially expressed at both time
points after exposure to 1 Gy neutrons or 1 or 4 Gy x-rays. b, list of bi-directionally regulated genes common to all conditions other than
0.25 Gy neutron (P < 0.001) with fold change relative to controls for each dose and time. N1d1: 1 Gy neutron, day 1; N1d7: 1 Gy neutron,
day 7; X1d1: 1 Gy x-rays, day 1; X1d7: 1 Gy x-rays, day 7; X4d1: 4 Gy x-rays, day 1; X4d7: 4 Gy x-rays, day 7

dose exposures (1 Gy neutron and 1 Gy and 4 Gy x-
rays). The top biological processes among differen-
tially expressed genes were related to immune system
response, which was significantly enriched among
genes downregulated in response to both 4 Gy of x-
rays and 1 Gy neutron irradiation after 1 and 7 days,
and after 1 Gy x-rays at day 1.

A significant class of biological processes among down-
regulated genes responding to both x-rays (Table 2) and,
particularly, neutrons (Table 3) was the one related to
DNA and RNA metabolism and processing. In the x-ray
data, biological processes such as DNA replication and
regulation of transcription were significant only among
genes downregulated on day 1 after 4 Gy of x-rays. The

Table 2 DNA and RNA metabolism-related biological processes in response to x-ray exposure

Term X4d1_UP X4d1_DN X4d7_UP X4d7_DN
GO:0006259 DNA metabolic process - 3.80E-10 - -
GO:0016071 mRNA metabolic process - 4.06E-10 - -
GO:0006396 RNA processing - 440E-10 - -
GO:0006397 mRNA processing - 567E-10 - -
GO:0006412 translation - 7.39E-10 - -
GO:0006260 DNA replication - 0.0003 - -
GO:0010629 negative regulation of gene expression - 0.0136 - -
GO:0006261 DNA-dependent DNA replication - 0.0181 - -
GO:0006310 DNA recombination - 0.0271 - -
GO:0040029 regulation of gene expression, epigenetic - 0.0382 - -
GO:0042127 regulation of cell proliferation - 0.0396 - 0.0097

Significantly enriched biological processes among genes downregulated in response to 1 and 4 Gy x-ray irradiation at days 1 and 7. Benjamini-corrected p values

are shown. Processes unique to x-rays are in bold. X4d1: 4 Gy X-rays, day 1; X4d7:

4 Gy X-rays, day 7. UP, upregulated; DN: downregulated
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Table 3 DNA and RNA-metabolism related biological processes in response to neutron exposure

Term N1d1_UP N1d1_DN N1d7_UP N1d7_DN
GO:0006396 RNA processing - - - 3.27E-18
GO:0050658 RNA transport - - - 3.35E-06
GO:0000956 nuclear-transcribed mRNA catabolic process - - - 0.0204
GO:0006260 DNA replication - 9.59E-06 - 2.17E-06
GO:0006399 tRNA metabolic process - - - 1.38E-06
GO:0006412 translation - 0.0002 - 4.55E-11
GO:0008380 RNA splicing - 0.0097 - 321E-13
GO:0034660 ncRNA metabolic process - - - 2.23E-05
GO:0016071 mMRNA metabolic process - 0.0145 - 9.63E-14
GO:0006259 DNA metabolic process - 2.06E-13 - ERRI=N
GO:0006403 RNA localization - - - 1.52E-06
GO:0045892 negative regulation of transcription, DNA-templated - 00119 - -
GO:0016444 somatic cell DNA recombination - 0.0034 - -
GO:0006401 RNA catabolic process - - - 0.0427
GO:0016458 gene silencing - - - 0.0358
GO:0006310 DNA recombination - 0.0027 - 4.15E-05
GO:0051052 regulation of DNA metabolic process - - - 0.0047

Significantly enriched biological processes among genes downregulated in response to 1 Gy neutron irradiation at days 1 and 7. Benjamini-corrected p values are
shown. Processes unique to neutrons are in bold. N1d1: 1 Gy neutron, day 1; N1d7: 1 Gy neutron, day 7. UP, upregulated; DN: downregulated

profile of DNA/RNA-related biological processes signifi-
cant at day 1 after 1 Gy neutron irradiation (Table 3) was
very similar to that of 4 Gy x-rays. However, at day 7, the
biological processes enriched at day 1 after neutron irradi-
ation were not only retained, but additional DNA/RNA
categories became significant, again only among down-
regulated genes. tRNA metabolism (GO:0006399; p =
1.38E-06), RNA localization (GO:0006403; p = 1.52E-06)
and transport (GO:0050658; p = 3.35E-06), and noncoding
RNA metabolism (GO:0034660; p = 2.23E-05) were among
the new biological processes over-represented at day 7.

Arguably, the most pronounced differences in the
transcriptomic profiles of blood cells after neutron
and x-rays were in the area of cellular metabolism.
Neutron irradiation resulted in the downregulation of
genes involved in metabolic processes, including co-
enzyme, hexose, and lipid biosynthetic processes. In
contrast, exposure of mice to 1 Gy x-rays resulted in
an overrepresentation of metabolic processes among
up-regulated genes, especially those involved in lipid,
cofactor, and vitamin biological processes (Table 4).
These processes were detected at day 1, whereas they
were no longer significant at day 7. Fatty acid metab-
olism (GO:0006631; p=1.10E-42), lipid biosynthesis
(GO:0008610; p =5.83E-50), and sterol (GO:0016125;
p =4.44E-28) and steroid (GO:0008202; p = 1.54E-33)
metabolism were among the top enriched biological
processes.

DNA repair pathways were also differentially regu-
lated, showing significant enrichment among down-
regulated genes, especially after neutron irradiation.
Thus, mismatch repair (MMR, mmu03430; p = 0.04)
appeared downregulated 1 day after 1 Gy neutrons,
whereas at day 7, besides MMR (p = 0.001), base exci-
sion repair (BER, mmu03410; p<0.03), nucleotide
excision repair (NER, mmu03420; p = 0.002), and non-
homologous end joining (NHE], mmu03450; p = 0.02)
were downregulated, as well. In contrast, no DNA
repair pathways were significant after 1 Gy x-rays,
whereas MMR (p=0.03) and BER (p=0.03) were
downregulated after 4 Gy x-rays at days 1 and 7,
respectively.

So far, DAVID analysis had suggested biological pro-
cesses that appeared to be regulated in blood in response
to radiation. These processes were either significant at
only one time point, or if they persisted at both 1 and 7
days post-irradiation, they were consistently either up- or
down-regulated. However, a careful examination of the
biological processes revealed that the cell cycle regulation
processes displayed a more complex temporal pattern.
Specifically, cell cycle regulation processes were significant
among down-regulated genes at day 1 after 4 Gy x-rays
exposure. However the same processes were significant
among up-regulated genes at day 7. At day 1, 54 cell cycle
genes were differentially underexpressed, whereas, at day
7, 52 cell cycle genes were overexpressed. We searched for
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Table 4 Lipid-related biological processes

Term Benjamini
GO:0008610  lipid biosynthetic process 5.83E-50
GO:0006631  fatty acid metabolic process 1.10E-42
GO:0008202  steroid metabolic process 1.54E-33
GO:0016125  sterol metabolic process 4.44E-28
GO:0016042  lipid catabolic process 3.98E-25
GO:0006869  lipid transport 1.70E-20
GO:0010876  lipid localization 7.57E-20
GO:0055114  oxidation-reduction process 1.02E-12
GO:0044242  cellular lipid catabolic process 1.27E-09
GO:0006662  glycerol ether metabolic process 0.0010
GO:0006638  neutral lipid metabolic process 0.0010
GO:0000038  very long-chain fatty acid metabolic process ~ 0.0012
GO:0019216  regulation of lipid metabolic process 0.0027
GO:0055088  lipid homeostasis 0.0038
GO:0006775  fat-soluble vitamin metabolic process 0.0038
GO:0042157  lipoprotein metabolic process 0.0081
GO:0006637  acyl-CoA metabolic process 0.0105
G0O:0034369  plasma lipoprotein particle remodeling 00118
GO:0006625  protein targeting to peroxisome 00118
GO:0043574  peroxisomal transport 0.0118
GO:0007031  peroxisome organization 00119
GO:0034754  cellular hormone metabolic process 0.0148
GO:0042632  cholesterol homeostasis 0.0202
GO:0006665  sphingolipid metabolic process 0.0267

Significant lipid biosynthesis processes among genes upregulated in response
to 4 Gy x-rays at day 1 with Benjamini-corrected p values

genes that appeared in both the downregulated and upreg-
ulated columns. We discovered 6 genes, namely Mnsl
(meiosis-specific nuclear structural protein 1), Fzrl (fizzy/
cell division cycle 20 related 1 (Drosophila)), Ube2c (ubi-
quitin-conjugating enzyme E2c), Ccna2 (cyclin A2), Anin
(anillin, actin binding protein), Smc2 (structural mainten-
ance of chromosomes 2) and Ncapd?2 (non-SMC condensin
I complex, subunit D2). We examined the expression of
these genes in the samples that had been exposed to 1 Gy
x-rays and 1 Gy neutrons and found 3 genes (Fzrl, UbeZ2c,
Ccna2) with the same trend of temporal regulation after 1
Gy x-rays (p = 0.005) and after 1 Gy neutrons (p = 0.01).
Performing gene ontology analysis on the genes
differentially expressed in samples exposed to 1 Gy
neutrons using a less stringent p value (0.01), we dis-
covered that, similar to the x-ray samples, cell cycle
biological processes were downregulated at day 1 and
upregulated at day 7. Sixty-six genes with cell cycle
gene ontology annotations were underexpressed at day
1 and 44 genes were upregulated at day 7. Besides
Ube2c, Fzrl, and Ccna?2 that were present in both the
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downregulated and upregulated lists, two more genes,
Cdc25b (Cell division cycle 25b), and Nusapl (Nucleolar
and spindle associated protein 1) showed a 0.24-fold
(Cdc25b) and 0.16-fold (Nusapl) change at day 1, and
1.63-fold (Cdc25b) and 1.71-fold (Nusapl) at day 7 com-
pared with controls. When these genes were examined
against the x-ray gene profiles, they were found to be bi-
directionally temporally regulated, as well. A heatmap of
these five genes (Ube2c, Fzrl, Ccna2, Cdc25b, Nusapl) is
depicted in Fig. 4. The levels of gene expression among
control (unirradiated) samples were not significantly
different between days 1 and 7.

Quantitative real-time RT-PCR validation of cell cycle gene
expression

We confirmed the expression pattern of the five cell
cycle genes, shown by microarray analysis to be first
under- then over-expressed after irradiation, by quantita-
tive real-time PCR (Fig. 5). Analysis of gene expression
of Ube2c, Fzrl, Ccna2, Cdc25b, and Nusapl by qRT-
PCR confirmed that these genes are temporally regulated
by irradiation and reverse the direction of their change
during the first week after exposure. The fold-change of
these genes in response to x-rays was in good agreement
with the fold-change calculated by the microarray ex-
periment, whereas qRT-PCR measurements indicated
generally greater fold-changes than the microarrays in
response to neutrons.

Discussion

The overall goal of this study was to identify differentially
regulated genes in response to neutron or x-ray irradiation
and perform a comparative analysis of biological processes
between the two types of radiation at time points spanning
the range of interest for biodosimetry. Our data suggest
that the gene transcriptional response varied widely de-
pending on radiation quality, dose, and time since exposure.
It should be noted that these characteristics of gene expres-
sion response may contribute to the apparently large
number of “unique” genes responding to only one radiation
quality. Previous studies have shown differences in the

Neutron X-ray
025Gy
1d 7d
Ube2c
Fzr1
Ccna2
Cdc25b
Nusap1

<0.20 0.21-0.67 0.68-1.49 1.50-2.50 >2.51

Fig. 4 Heatmap illustrating relative expression of cell cycle genes
bi-directionally regulated after neutron and x-ray irradiation. The
mean (n = 6) fold change in gene expression relative to controls is
color coded according to the scale bar at the bottom of the figure.

Measurements were made by microarray analysis




Broustas et al. BMC Genomics (2017) 18:2 Page 9 of 13

-

o
(S
i3
D
N
o

10 Fzr1

()

jo2

c

: I I

5 i

31 L

©

&

0.1 0.1 0‘1\’\\'\\’\

NA N AN A NN NoQA O A WO A WO WO

LT S WS T

10 Cdc25B 10 Nusap1

l 0.1
RS
L

Relative fold-change

o

1
SIS BRI S
> » .*:\ *_b( .\_b‘

> &8 AN

A
RS
Fig. 5 Gene expression measured by gqRT-PCR. Expression of five genes (Ube2c, Fzr1, Ccna2, Cdc25b, and NusapT) that were shown by microarray
analysis to be bi-directionally regulated is depicted relative to controls and normalized to Actb expression. Data represent the mean + SEM. (n = 6).
N1d1: 1 Gy neutron, day 1; N1d7: 1 Gy neutron, day 7; X1d1: 1 Gy x-rays, day 1; X1d7: 1 Gy x-rays, day 7; X4d1: 4 Gy x-rays, day 1; X4d7: 4 Gy x-rays,
day 7

timing of gene expression responses at high and low doses, B and T cell physiology. These genes were downregulated
and following exposure to different radiation qualities. It is  starting at day 1 and reduced expression persisted until the
likely that many of the genes seen to respond to only one end of the experiments at day 7. Widespread decreased
radiation quality in this study would show a response to the  expression of immune function genes has been shown pre-
other radiation quality in a different time-dose combin-  viously in both human blood irradiated ex vivo, as well as
ation. Some of the observed differences may also be attrib-  in vivo mouse peripheral blood following ionizing radiation
utable to the different nature of x-rays vs. neutrons. Up to  exposure or *°Sr as an internal emitter [22—24]. High-dose
2/3 of damage from low-LET (e.g. x-rays) is due to indirect  radiation (> 1 Gy) has been shown to disrupt immune cell
action, (mediated by free radicals), whereas high-LET neu-  functions, leading to increased cell death of blood cells in
trons cause direct damage to the DNA (Hall and Giaccia, mice [25, 26]. Moreover, in patients with acute radiation
2012), which is more complex and difficult to repair, and  syndrome, hematopoietic cell proliferation is inhibited by
may result in different signaling responses. radiation exposure [27]. A preponderance of down-
A small number of genes showed similar changes after  regulated genes has previously been associated with higher
exposure to neutrons and x-rays, and displayed a bidirec- doses or later times after irradiation (e.g. [6]), perhaps
tional mode of regulation. A similar temporal pattern of reflecting greater damage or a failure of repair. In our study,
expression for some genes has been described previously  even 0.25 Gy of neutron radiation resulted in the downreg-
in mice injected with **’CsCl [6]. In that study, genes were  ulation of genes involved in immune cell function.
upregulated by day 2 or 3, and then downregulated by day A significant number of genes that were downregu-
20 or 30 after isotope administration. Many gene ontology  lated by both neutron and x-ray exposure at day 1 were
categories, including actin and the cytoskeleton and integ-  related to DNA and mRNA metabolism, gene transcrip-
rin signaling pathways, showed the same temporal pattern.  tion, RNA processing and splicing. However, at day 7,
In the present study, we identified a number of differen-  these processes were no longer overrepresented follow-
tially expressed genes that were significantly different from  ing x-ray exposure, but they were present after neutron
controls at all radiation types and doses. A number of exposure. Moreover, in response to neutron exposure,
these genes were downregulated at day 1, and upregulated  these processes were enriched with additional related
at day 7. Gene ontology analysis revealed that one bio-  processes, such as tRNA metabolism/processing, RNA
logical function, cell cycle, was significant among down-  transport/localization, and noncoding RNA functions.
regulated genes at day 1 and then significant among up- The contribution of DNA and RNA related func-
regulated genes at day 7. All other biological functions tions in response to DNA damage has only recently
were either significant at one dose and time of irradiation,  been appreciated. A genome-wide siRNA screen looking
or they were uniformly up- or down-regulated irrespective ~ for modulators of DNA damage signaling revealed that
of time. the largest number of hits were those targeting gene
Most of the genes differentially expressed in both neutron  products responsible for nucleic acid metabolism, particu-
and x-ray exposures were related to immune response, and  larly those involved in mRNA binding and processing
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[28]. Furthermore, a phosphoproteomic analysis showed a
close link between genome stability and RNA synthesis
metabolism [29]. Likewise, it has been shown that the
largest subset of ATM/ATR/DNA-PK substrates identified
in a phosphoproteomic screen were proteins linked to
RNA and DNA metabolism, particularly those proteins
involved in posttranscriptional mRNA regulation [30].
These observations, employing different experimental ap-
proaches, highlight the importance of regulatory circuits
controlling RNA metabolism and stability in DNA repair
and checkpoint function. In addition to these findings, our
study suggests that neutron (but not photon) irradiation
affects biological processes enriched in tRNA regulation
and RNA transportation and localization, as well as non-
coding RNA metabolism and processing. tRNAs have
been viewed as passive players involved in protein synthe-
sis. However, recent evidence suggests that they have
more active roles and tRNA modulation represents a
mechanism by which cells achieve altered expression of
specific transcripts and proteins. tRNA pools in cells can
be divided into those that favor proliferation and those
that support differentiation [31]. As a result, modifications
in tRNA and their corresponding enzymes are implicated
in diseases, including diabetes and cancer. For example,
upregulation of certain tRNAs increases metastasis in
breast cancer patients [32]. Furthermore, control of RNA
transport and localization would be expected to impact on
the rate of protein translation [33].

A difference observed between neutron and x-ray
response was the enrichment in biological processes
involved in lipid biosynthesis and metabolism that was
seen only in response to x-ray exposure. It has long been
known that the cellular targets of ionizing radiation,
such as x-rays, are not limited to nuclear DNA, but that
proteins and lipids in other cellular compartments, such
as the plasma membrane [34], are also affected. The
action of x-rays has been attributed to the generation of
reactive oxygen species that oxidize DNA, lipids and
proteins [35]. We can speculate that in response to x-
rays, cells upregulate lipid, coenzyme, and vitamin bio-
synthetic and metabolic processes as a means of repairing
the damage caused by x-ray irradiation to the cell mem-
brane. The latter two processes could also serve as anti-
oxidant responses [36]. In addition, fatty acid oxidation
processes, which are also overrepresented in the x-ray
irradiation, would be required by the cells to meet the
energy demands of various metabolic processes.

In response to DNA damage, cells activate the DNA
damage and repair signaling pathway. DNA damage that
cannot be repaired efficiently leads to cell death or senes-
cence. Although protein abundance and activity do not al-
ways follow gene expression changes, our Gene Ontology
analysis suggests an apparent down regulation of several
DNA repair pathways after neutron but not after x-ray
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irradiation, especially at day 7, perhaps reflecting a failure
to repair the more complex damage resulting from high
LET radiation. At day 1 after 1 Gy neutron exposure, GO
analysis suggested suppression of MMR, whereas at day 7,
in addition to MMR, NER, BER, and NHE] genes were all
significantly =~ over-represented among downregulated
genes. In contrast, exposure to 4 Gy of x-rays transiently
downregulated expression of MMR genes at day 1 and
BER genes at day 7. Homologous recombination, which
along with NHE] constitutes the major DNA double-
strand break repair mechanism, was not significantly over-
represented among differentially expressed genes. It has
been shown previously that high-LET radiation induces
complex DNA damage that is not easily repaired and
NHE] is not involved [37-40]. More recently, it has been
shown that high-LET irradiation with protons or carbon
ions causes a shift away from NHE] toward HRR in the re-
pair of double-strand breaks [41]. Consistent with these
data, our observed downregulation of genes in the NHE]
and other DNA repair pathways in response to neutron
exposure may reflect the fact that these lesions are not
repaired by these processes. Regulation at the gene expres-
sion level suggests a potential mechanism for favoring the
homologous recombination pathway in the attempted
repair of neutron damage, and is worthy of further
investigation.

A major biological function that is affected by radiation
is the cell cycle. Cell cycle regulating genes are important
determinants of radiosensitivity and cell fate in response
to DNA damage. We studied the effect of neutron radi-
ation on mouse cell cycle-regulated genes and compared
it with that of x-rays. Unlike genes in other biological
processes, which were either up or downregulated after
neutron or x-ray irradiation, many cell cycle genes showed
a bidirectional expression based on time. A group of 5
genes, namely Ube2c, Fzrl, Ccna2, Cdc25b, and Nusapl,
were downregulated 1 day after irradiation, whereas the
same genes were overexpressed 7 days post-irradiation.
These temporal changes were further confirmed by qRT-
PCR. A literature search revealed that these genes play im-
portant roles in the control of mitosis. Additionally, their
protein products are related to the anaphase promoting
complex/cyclosome (APC/C) either as subunits of APC/C
(Ube2c, Fzrl) or as substrates (Ccna2, Nusapl).

The APC/C is an E3 ubiquitin ligase, which is com-
posed of at least 14 core subunits. The APC/C is active
during mitosis and G1 phase of the cell cycle. Because of
its role in cell cycle regulation, APC/C is important for
maintaining genomic integrity [42]. Furthermore, APC/
C has been implicated in an array of diverse functions
ranging from cell differentiation to apoptosis and senes-
cence, as well as cellular metabolism, cell motility, and
gene transcription through the degradation of specific
substrates [42].
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APC/C targets a large repertoire of substrates and re-
cruits them for ubiquitylation via one of two co-activators,
Cdc20 and Cdhl (Fzrl, the mouse homolog) [42]. The
physiological role of Cdhl has been extensively studied in
the context of human cancer, since downregulation of
Cdh1 has been reported in many cancers, including those
of prostate, ovary, liver, brain, and during the malignant
progression of a B-lymphoma cell line. In mice, Fzrl
heterozygosity results in the development of epithelial
tumors, suggesting that Fzrl may be a haploinsufficient
tumor suppressor [43]. Downregulation of Cdhl in post-
mitotic neurons has been implicated in neurodegenerative
diseases, such as Alzheimer’s disease [44].

In addition to its role in mitosis, Cdhl has important
functions in mediating DNA damage response to geno-
toxic stress [45] that ensure genomic integrity [46]. Cdhl-
null cells fail to maintain DNA damage-induced G2 arrest
and APC/C*™ s activated by x-irradiation-induced DNA
damage (but not UV irradiation). Interestingly, the levels
of mitotic cyclins in Cdh1”" cells after DNA damage were
similar to those of wild-type cells. These data imply that
cyclin A and cyclin B cannot be substrates for APC/C*™"
when it is activated irregularly by DNA damage at G2
[47].

Protein ubiquitination-mediated degradation involves
two distinct steps: the covalent attachment of ubiquitin
to proteins catalyzed by the sequential actions of the
activating (E1), conjugating (E2), and ligating (E3)
enzymes, followed by the degradation of the poly-
ubiquitylated protein by the 26S proteasome complex.
For APC/C the E2 enzymes are Ube2c, which is one of
the temporally controlled cell cycle genes in this study,
and Ube2s [48], which is not differentially regulated in
response to either neutrons or x-rays. Abundant experi-
mental evidence has shown a role for Ube2c in human
tumor initiation and progression. On the other hand,
there are very few reports that implicate Ube2c in DNA
damage response to radiation [49, 50]. Moreover, the
mechanistic details of Ube2c response to radiation, as
well as their pathophysiological significance remain
unexplored.

APC/C regulates spindle formation by promoting the
degradation of a number of spindle-binding proteins,
including Nusapl [51]. The nucleolar spindle-associated
protein 1 (Nusapl) is a protein highly expressed in
proliferating cells and interacts with microtubules [52].
Depletion of Nusapl caused faulty mitotic spindles,
aberrant chromosome segregation, and defective cyto-
kinesis. Overexpression of Nusapl caused microtubule
bundling and cell cycle arrest at the G2/M checkpoint
[53].

Cyclin A2 interacts with Cyclin-dependent kinase 2
and controls essential functions in DNA replication and
cellular proliferation [54]. Cyclin A2 expression is
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associated with a poor prognosis in several types of can-
cer [55]. Cyclin A2 mRNA as well as protein are cell
cycle regulated [56] with mRNA and protein abundance
increasing 4-fold and 20-fold, respectively, as cells pro-
gress from G1 to G2 phase. APC/C degrades Cyclin A2
at the end of mitosis, while mRNA persists longer than
the protein in cells.

To fully appreciate the significance of the temporal
differential expression of APC-related genes in the radi-
ation response, we will require knowledge about the status
of protein levels and their posttranslational modifications
(e.g. phosphorylation). However, we can speculate that
these changes may be relevant to cell cycle progression,
and especially mitosis, thus ensuring genomic stability
after irradiation.

Another cell cycle regulated gene that appears in the list
of temporally bi-directionally expressed genes in the
present study is E2f2. While this gene was consistently
downregulated at day 1 post-irradiation, it always appeared
upregulated at day 7. This was in sharp contrast with other
E2f genes that showed no change at day 1 and downregula-
tion (E2f1, E2f3, E2f4) at day 7 post neutron irradiation, or
significant upregulation (E2fI, E2f8) at day 7 post x-ray
irradiation. The E2f family of transcription factors has well
known functions in the control of cell cycle, and E2f1-3,
especially, in promoting G1/S cell cycle transition and thus
cell proliferation [57]. Target genes of E2f include several
hundred genes that are involved not only in DNA replica-
tion and cell cycle progression, but also in DNA damage
repair, apoptosis, differentiation and development [58]. The
role of E2fs in mitosis has been shown in cancer cells
[59-63]. Although the specific function of E2f2 in
response to radiation has not been studied, E2f2 tran-
script and protein levels increase in response to geno-
toxic stress and maintain genomic stability in neuronal
cells [64]. Why E2f2 shows bi-directional expression
changes, whereas other E2f members (i.e., E2f1, E2f3,
E2f4, and E2f8) do not, is currently not known.

Conclusion

In the current work we identify genes that are differen-
tially expressed following exposure to neutrons or x-rays,
as well as genes that showed similar responses to the two
radiation modalities. In summary, our results show that
genes involved in cell cycle regulation are differentially
regulated by neutron and x-ray radiation. However, a few
cell cycle genes show a consistent temporal regulation that
is common across the two radiation modalities. These
genes are functionally interconnected and play important
roles during mitosis.

We have found differing patterns of gene expression
response to x-rays and neutrons that vary with both dose
and time since exposure. These findings support the
possibility of using gene expression to detect the
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neutron component of exposures resulting from an IND
detonation, thus providing triage information more rele-
vant to the actual radiation injury than an estimate of
total dose alone. Further work will be needed to develop
gene expression patterns specific to neutron exposure
that would be useful for triage following an IND event.
The identification of biomarkers predictive of both dose
and type of radiation would be an important advance-
ment in biodosimetry to determine an individuals
exposure and allow more accurate triage for further
medical treatment.

The ultimate goal of our neutron studies is to investi-
gate whether we can separately estimate the photon and
the neutron component after a mixed photon/neutron
exposure, and to develop gene expression signatures
capable of discriminating between photon/neutron and
pure photon exposures. Following our initial investigation
of the gene expression response to neutrons, reported
here, our future studies will focus on mixed exposures,
including the possibility of synergistic responses.
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