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Abstract

Background: Transcription factors (TFs) often interact with one another to form TF complexes that bind DNA and
regulate gene expression. Many databases are created to describe known TF complexes identified by either
mammalian two-hybrid experiments or data mining. Lately, a wealth of ChIP-seq data on human TFs under
different experiment conditions are available, making it possible to investigate condition-specific (cell type
and/or physiologic state) TF complexes and their target genes.

Results: Here, we developed a systematic pipeline to infer Condition-Specific Targets of human TF-TF complexes
(called the CST pipeline) by integrating ChIP-seq data and TF motifs. In total, we predicted 2,392 TF complexes and
13,504 high-confidence or 127,994 low-confidence regulatory interactions amongst TF complexes and their target
genes. We validated our predictions by (i) comparing predicted TF complexes to external TF complex databases, (ii)
validating selected target genes of TF complexes using ChIP-qPCR and RT-PCR experiments, and (iii) analysing target
genes of select TF complexes using gene ontology enrichment to demonstrate the accuracy of our work. Finally, the
predicted results above were integrated and employed to construct a CST database.

Conclusions: We built up a methodology to construct the CST database, which contributes to the analysis of
transcriptional regulation and the identification of novel TF-TF complex formation in a certain condition. This
database also allows users to visualize condition-specific TF regulatory networks through a user-friendly web
interface.

Keywords: Transcription factor, TF-TF complexes, Condition-specific target, ChIP-seq, Database

Background
Transcription factors (TFs) interact with one another
and with their co-factors to form TF complexes, with
constituents that vary in different cell types or under dif-
ferent cellular conditions. These TF complexes regulate
different sets of target genes to determine cellular state
[1]. Given the high variability of TF complex compos-
ition, it is critical to examine TF complexes and their

target genes in a condition-specific manner to accurately
reveal their regulatory activities.
TF-TF interactions can be experimentally identified

using electrophoretic mobility shift assays (EMSAs), X-ray
crystallography, immunoprecipitation, yeast two-hybrid
systems, mammalian two-hybrid systems and luciferase
assays. Because of technical limitations, most human TF-
TF interactions represent potentials of physical binding
rather than physiological interactions under specific con-
ditions. For example, Ravasi et al. developed a database of
physical TF-TF interactions using a mammalian two-
hybrid system in hamster cells [2], in which approximately
1,600 TF-TF interactions were identified among human
and mouse TFs. However, these data merely indicated
the potential interactions amid the pertinent TF pairs
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in the experimental model. These data did not reflect
the condition-specific target genes of TF-TF complexes,
which are essential for understanding their regulatory
mechanisms.
Chromatin immunoprecipitation followed by DNA

microarray or high-throughput sequencing (ChIP-chip/
ChIP-seq) techniques are powerful for identifying TF
binding sites. These approaches discover binding “peaks”,
i.e. regions of chromatin and the corresponding sequences
enriched for TFs. Consequently, condition-specific TF
peaks can be identified by altering cellular conditions,
which further reveal motifs recognized by DNA-binding
TFs or their co-regulatory counterparts. For example, the
CENTDIST web server identifies co-regulatory TFs in
complexes by investigating TF motifs enriched in the
ChIP-seq peaks for a TF [3]. In addition, the spacing of
TF-pair binding motifs is often inflexible [4], allowing the
SpaMo algorithm to identify TF-TF pairs by interrogating
motif spacings [5]. However, in light of many binding
peaks having been shown to be non-functional [6, 7], such
methods may not be informative for identifying functional
binding sites.
Thanks to a comprehensive TF motif database, CST is

the first pipeline that uses data from a single ChIP-seq

experiment to predict both TF partners and their target
genes. Chen et al. predicted TF complexes and their tar-
get genes using yeast TF ChIP-chip data [8], but their
method required paired ChIP-chip data: one assay to de-
termine the binding sites of a primary TF and the other
the binding sites of a partner TF. Therefore, we believe
CST will lower the cost of using ChIP-seq for these pur-
poses and be valuable to the community.
CST uses ChIP-seq data after immunoprecipitation of

the primary TF along with a database containing known
TF binding sequence motifs to identify partner TFs.
Finally, we integrated the predicted results and con-
structed a database called DBCST. DBCST allows users
to upload their own ChIP-seq data and analyse them for
TF complexes and their regulatory targets. DBCST is
freely available at http://syslab3.nchu.edu.tw/DBCST.

Results
Prediction of TF complexes and their target genes
Using high-confidence criteria (see Methods and Fig. 1);
our pipeline identified 13,504 relationships between
2,392 predicted TF complexes and 3,272 predicted target
genes. By contrast, when using low-confidence criteria
(see Methods and Fig. 1), we identified 127,994

Fig. 1 Overview of the CST pipeline. a Given a ChIP-seq sample, primary TF target genes are identified using the TIP algorithm. b For motif discovery,
the binding peaks on target gene promoters are first identified using the narrow peaks located in the putative promoters of the TIP-predicted target
genes. c For binding motif discovery, the binding peaks on the target genes are selected, and MEME is used to discover primary TF binding motifs.
d FIMO is used to locate the primary TF binding motifs in the binding peaks of the primary TF target genes. e Using the binding motifs generated
from MEME for all TFs and adding in motifs from the JASPAR database, SpaMo is used to search for binding motifs of potential partner TFs and to
analyse their statistical significances based on their spacings. f The resulting predicted TF complexes and their target genes are reported with GO
enrichment results. Target genes are stratified into high- and low-confidence groups based on the SpaMo-calculated statistical significance of their TF
complex binding motif spacing
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relationships. In addition, the correlation between
gene expression and TF binding was highly significant
(P = 2.2× 10−16, see Additional file 1 Supplementary
Methods) and the likelihood of a TF complex near
transcriptionally active genes showed that the TF
complexes are most likely located -1kbp to 0.5kbp
around TSS (Fig. S1). The numbers of ChIP-seq datasets
for each cell line used in our database are provided in
Additional file 1: Table S1. The high-confidence and low-
confidence target genes of the predicted USF2-NFYA
complex using the ChIP-seq data for USF2 in K562 cells
are partially listed in Fig. S2. Brief instructions for users
and a detailed tutorial of DBCST can be found in the
Additional file 1 Supplementary Information and on the
web page, respectively.

Validation of CST-predicted TF complexes by comparison
to other databases
To evaluate CST, we examined the presence of predicted
condition-specific TF complexes in two external databases.
The first database was to demonstrate the perform-
ance of CST (Fig. 2a and b), whereas the second was

to investigate the accuracy in a condition-specific
circumstance (Fig. 2c and d).
For the first validation, we compared the degree of en-

richment for the CST-predicted TF complexes present
in an empirically determined TF complex database (see
Methods) against that of TF complexes created ran-
domly among potential TF pairs in the CST pipeline (i.e.
a background). We also included TF complexes pre-
dicted by SpaMo [5] for a fair comparison (Fig. 2a and b).
After ordering the TF complexes by p-values in an as-
cending manner and calculating enrichment ratios, we
discovered that TF complexes identified by CST were
highly enriched compared with those by SpaMo. The
peak enrichment for CST was approximately 32 (at the
40% confidence decile), whereas that for SpaMo was
approximately 18 (at the 60% decile). These results in-
dicated that Target Identification from Profiles (TIP)
method [9] together with SpaMo, equivalent to CST, sig-
nificantly improved the prediction of TF complexes over
the use of SpaMo alone. Similar results are suggested in
Fig. 2b, in which the top N of TF complexes are selected.
For the second validation, we compared the CST-

predicted TF complexes to the TF-specific transcriptional

Fig. 2 Comparison and validation of CST-predicted TF complexes. In (a) and (b), we compared the presence of CST-predicted TF complexes
relative to SpaMo-predicted TF complexes in an external, experimentally derived database of TF complexes to demonstrate the performance of
CST. a The x-axis represents the TF complexes ordered by their SpaMo-calculated p-values (from most to least significant), and the y-axis represents
the enrichment ratio. The best enrichment ratios of CST and SpaMo were approximately 32 and 18, respectively. CST has greater enrichment than
SpaMo across all p-values. The enrichment ratio was calculated as the ratio of predicted TF complexes in the database relative to the number of 1000
randomly generated TF complexes in the database. b Similar to (a), the top N of TF complexes calculated by p-values are used. The best enrichment
ratios of CST and SpaMo were approximately 32 and 14, respectively. CST demonstrated greater enrichment than SpaMo across the entire N range. In
(c) and (d), we validated the condition-specific TF-TF interactions using TRMs to demonstrate the condition-specific accuracy. The nodes are TFs, and
the edges indicate interactions. GATA2 and TAL1 (grey colour) are present in both TRM and ENCODE ChIP-seq data. Combined GATA2 and TAL1 TRMs
in HSCs contained 16 TF-TF interactions (c), whereas 10 predicted TF-TF interactions were identified in CST using GATA2 and TAL1 ChIP-seq data in
K562 cells (d). The bold edges indicate TF-TF interactions common between TRMs and CST. Four significant TF complexes between TRMs and CST are
indicated with bold edges (P = 3*10−4; Fisher’s exact test), suggesting the consistency of TRM and CST
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regulatory modules (TRMs) in haematopoietic stem cells
(HSCs) proposed by Diez et al. (see Methods) [10]. Briefly,
Diez et al. used ChIP-seq to identify condition-specific
binding sites. After scanning enriched motifs in these
binding sites and integrating protein-protein interaction
data, the authors discovered condition-specific TRMs for
each immunoprecipitated TF. Although there were 9
TRMs in HSCs (ERG, FLI1, GATA2, GFI1B, LMO2,
MEIS1, SFPI1, RUNX1 and TAL1), two TRMs were ob-
served in CST (including GATA2 and TAL1 in K562
cells). Four significant TF complexes were observed in
both TRM and CST (3 in the TAL1 and 1 in the GATA2
datasets; P = 3*10−4; Fisher’s exact test) after further com-
parisons for the TRM-predicted TF complexes (Fig. 2c)
and for the CST-predicted TF complexes (Fig. 2d). In
order to compare CST and SpaMo predictions, Additional
file 1: Figure S3 shows SpaMo-predicted TF complexes
from GATA2 and TAL1 ChIP-seq data in K562 cells. The
result of CST is more significant than the SpaMo predic-
tion (P = 0.02; Fisher’s exact test). Notably, the predicted
motif spacings of TAL1-STAT1 and TAL1-GATA1 inter-
actions in CST are 85 and 23 bps, respectively (Additional
file 1: Table S2). According to a previous study claiming
that a TF-TF interaction is likely indirect if the spacing of
the interaction exceeds 30 bps [11], we speculated that
interactions between TAL1 and STAT1 are indirect,
whereas between TAL1 and GATA1 are direct. This result
is consistent with the TRM database, in which TAL1 indir-
ectly interacts with STAT1 by the WDR5 bridge protein,
whereas TAL1 directly interacts with GATA1.

Validation of CST-predicted target genes using ChIP-qPCR
and RT-PCR
Using USF2 ChIP-seq data in K562 cells, our pipeline
predicted that USF2 and NFYA form a TF complex that
possesses a significant motif spacing of 9 bps and binds
to five genomic locations, regulating eight target genes
with high confidence (Table 1). USF2 is a basic helix-
loop-helix leucine zipper protein recognizing the E-box
(CACGTG) DNA-binding motif, whereas NF-Y is a

trimeric TF consisting of two histone-like subunits
(NFYB and NFYC) and a CCAAT binding subunit
(NFYA). Using EMSA, Zhu et al. reported that USF2
and NFYA form a TF complex at the HoxB4 promoter in
K562 cells [12], which supports our prediction that USF2
and NFYA together form a TF complex in K562 cells.
To experimentally validate the interactions between

the predicted USF2-NFYA TF complex and its targets,
we used ChIP-qPCR in K562 and HeLa cells for in vitro
validation. For qPCR amplification targets, we selected
the promoters of high-confidence target genes (EIF4E
and GLYR1), a low-confidence target gene (HoxB7) and
HoxB4 (a positive control according to Zhu et al.). To
ensure PCR accuracy, we designed two primer sets for
HoxB7 (see Additional file 1: Table S3). Relative to IgG-
IP normalization, the qPCR fold enrichment of all tar-
gets was large and highly significant for both NFYA
(Fig. 3a) and USF2 (Fig. 3b) in both K562 and HeLa cell
lines. In addition, the regular PCR amplification from
USF2-IP and NFYA-IP DNA also demonstrated the
interaction between the USF2-NFYA complex and the
promoter of the target genes (Additional file 1: Fig. S4).
Although these ChIPs against USF2 and NFYA were in-
dependent of one another, the results supported the con-
clusion that both TFs bind to the same target sequences
on target genes predicted in CST.
To experimentally validate that these targets were

activated by USF2-NFYA complex in HeLa cells, we
interfered with the complex formation by silencing
USF2 (Fig. 3c) and then investigated the expression
levels of three downstream genes with real-time RT-
PCR (Fig. 3d). The data clearly demonstrated that the
expression levels of predicted target genes (EIF4E,
GLYR1 and HoxB7) of the USF2-NFYA complex were
reduced while USF2 was silenced.

Clustering target genes for each TF complex separately
results indifferent GO enrichment results
Changes in the interacting partner (s) of a given TF
often result in alterations in target genes to elicit differ-
ent biological functions. To examine these phenomena,
we performed gene ontology (GO) enrichment analysis
of target genes for given TF complexes to determine
how they varied with TF complex composition. Using
USF2 ChIP-seq data in K562 cells, CST predicted that
USF2 and IRF1 form a TF complex. Among the top 10
GO enrichment results for the USF2-IRF1 complex targets
(Table 2, upper panel), the second, third and tenth GO
terms are related to iron transport. Previous studies re-
ported that USF2 and IRF1 co-regulate β2-microglobulin,
which can regulate iron metabolism and transport
[13, 14]. This result is completely different from the
GO enrichment results of the predicted USF2-NFYA TF
complex targets, which are related to DNA catabolic

Table 1 Eight high-confidence target genes of the USF2-NFYA
complex derived from K562 USF2 ENCODE ChIP-seq data

Location of motif pairsa Target geneb Motif spacingsc

Chr14: 20923275-20923304 OSGEP, APEX1 9 bps

Chr7: 108210264-108210293 THAP5, DNAJB9 9bps

Chr4: 99850329-99850358 EIF4E 9bps

Chr16: 4897410-4897439 GLYR1, UBN1 9bps

Chr12: 104359548-104359577 TDG 9bps
aThe location of the predicted USF2 and NFYA motif pair from K562 USF2
ChIP-seq data and the motif database
bThe target genes for which the motif pairs occur in their putative promoters
and are TIP-derived target genes of USF2 (the primary TF)
cThe spacing of the USF2-NFYA motif pairs on the putative promoters of the
target genes
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processes and activity (Table 2, lower panel). CST fully
distinguishes the functionality of the USF2-IRF1 com-
plex from that of USF2-NFYA, implying that the USF2-
IRF1 and USF2-NFYA TF complexes recruit different
downstream target genes to determine phenotypes in
K562 cells.

Discussion
ChIP-seq/ChIP-chip techniques are powerful methods for
identifying TF binding sites. However, these approaches
currently are prone to a high false positive rate in

predicting target genes [6, 7]. Therefore, we employed TIP
[9] to remove binding peaks not located in predicted tar-
get genes and obtain better results than SpaMo [5] (Fig. 2a
and b). Due to CST predicting TF complexes based on
SpaMo, CST and SpaMo have similar curve treads in
Fig. 2a. Other than TIP, many other methods exist for
scoring target genes, such as TFAS [15] and ClosestGene
[16], which can also be used to predict rankings. These
methods all require binding peaks from a peak-calling
algorithm [17–19]. Notably, the number of binding peaks
is sensitive to the parameters of the peak-calling algorithm

Fig. 3 Validation of predicted targets of the USF2-NFYA complex using ChIP-qPCR and RT-PCR. a ChIP-qPCR with a NFYA pull-down and qPCR
amplification against CST NFYA-USF2-predicted target genes. The genomic DNA from K562 cells (left panel) and HeLa cells (right panel) that
immunoprecipitated with NFYA and nonspecific IgG antibodies was used for qPCR to assess the fold enrichment of the respective gene promoters in
NFYA-IP DNA over IgG-IP for each gene. The fold enrichments were the averages of three independent experiments and the data were presented as
the means ± standard errors. HoxB4 was used as a positive control (see Methods). b Same as (a) with a USF2 pull-down. c The expression level of USF2
in HeLa cells with USF2 silencing by siRNA. Upper panel: Western blot; β-tubulin: internal control. Lower panel: real-time RT-PCR; TBP: internal control.
d The expression levels of three downstream genes of USF2 in HeLa cells with USF2 silencing, as determined by real-time RT-PCR. *P < 0.05, compared
with scramble control
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and thus can affect the accuracy and consistency of target
gene prediction.
A previous study showed that USF2 and NFYA form

TF complexes on the HoxB4 promoter in the K562 cell
line [12], but this observation was not detected by CST.
Our further scrutiny found that, among 9,428 narrow
peaks from ENCODE K562 USF2 ChIP-seq data [20],
there are no narrow peaks on the HoxB4 putative pro-
moter (+/-3kbp around the TSS). We postulated that
this is why CST was not able to detect it. To prevent
such incidents from occurring, we suggest that the

criteria for calling narrow peaks should be loosened. In
CST, we used SpaMo to facilitate the prediction of TF
complexes. SpaMo can predict whether two TFs belong
to the same complex [5], but cannot confirm whether
the interactions of the TF pair are direct or indirect. For
example, the different motif spacings of the USF2-NFYA
complex on different promoters (HoxB7, 21 bps; and
HoxB4, 10 bps [12]) in K562 cells may arise from differ-
ent interactions or conditions. USF2 and NFYA may
interact indirectly when binding to HoxB7 but directly
when binding to HoxB4, indicating that binding to
HoxB7 may require more protein components than
binding to HoxB4. This rationale may explain the obser-
vation in our qPCR experiments that the USF2-NFYA
complex exhibited a higher binding affinity and enrich-
ment on the HoxB7 promoter than on the HoxB4
promoter (Fig. 3a and b).
The accuracy of CST-predicted TF complexes from

HeLa S3 NFYA ChIP-seq data can be confirmed by
many studies (Table 3). Of the 7 CST-predicted TF com-
plexes for NFYA in HeLa S3 cells, 5 have been previ-
ously reported: FOS [11], RFX5 [21], SREBP2 [22], TBP
[23], and SP1 [2]. The experimental techniques involved
in the above studies included immunoprecipitation,
mammalian two-hybrid assays or luciferase assays for TF
complex identification. Furthermore, CST-predicted TF
complexes are supported by the published molecular
structure data. Our results indicated that both IRF3-JUN
and NFKB-IRF3 are TF complexes, consistent with a
crystal structure in which ATF2/JUN, IRF3/IRF7 and

Table 3 Literature approval of the predicted TF complex
formation from NFYA ChIP-seq data in HeLa S3 cells

Partner binding
motifa

Predicted
partnerb

SpaMo
p-valuec

Referenced

E HeLa S3/FOS FOS 5e-06 Fleming et al., [11]

E Sknsh/RFX5 RFX5 3.6e-05 Jabrane-Ferrat et al., [21]

E Hep G2/SREBP2 SREBP2 0.0015 Dooley et al., [22]

J NFIC NFIC 0.0015 NA

J TBP TBP 0.0076 Lee et al., [23]

E GM12878/TBLR1 SP1 0.014 Ravasi et al., [2]

E GM12878/CDP SP1 0.015 Ravasi et al., [2]

E H1hesc/Rad21 Rad21 0.018 NA

J SP1 SP1 0.021 Ravasi et al., [2]

E K562/GTF2B TBP 0.022 Lee et al., [23]

E Hep G2/MAZ SP1 0.023 Ravasi et al., [2]
aThe source of the partner binding motif. Summary names are used in the first
column, in which “E HeLa S3/FOS” indicates the secondary motif from the
ENCODE FOS ChIP-seq sample in the HeLa S3 cell line, and “J NFIC” indicates
the motif from the JASPAR NFIC motif
bThe list of the NFYA-partner TF complexes
cThe p-value for the significant spacing of the binding motifs from SpaMo
dThe external studies that support the existence of the TF complex
NA: reference is not available

Table 2 A partial list of the GO analysis results of target genes
predicted by two different putative complexes using the K562
USF2 ChIP-seq data

Rank Enrichment GO term p-value

Predicted USF2-IRF1 complexa

1 GO:0032870 cellular response to
hormone stimulus

2.15E-07

2 GO:0033572 transferrin transport 7.16E-07

3 GO:0015682 ferric iron transport 7.16E-07

4 GO:0071495 cellular response to
endogenous stimulus

1.20E-06

5 GO:0071375 cellular response to
peptide hormone stimulus

1.55E-06

6 GO:0015031 protein transport 2.94E-06

7 GO:0044437 vacuolar part 3.21E-06

8 GO:0005654 nucleoplasm 3.82E-06

9 GO:0043434 response to peptide
hormone stimulus

7.11E-06

10 GO:0006826 iron ion transport 7.92E-06

Predicted USF2-NFYA complexb

1 GO:0004536 deoxyribonuclease activity 1.53E-04

2 GO:0016798 hydrolase activity,
acting on glycosyl bonds

2.58E-04

3 GO:0019104 DNA N-glycosylase activity 3.79E-04

4 GO:0006886 intracellular protein transport 5.00E-04

5 GO:0044419 interspecies interaction
between organisms

5.43E-04

6 GO:0006308 DNA catabolic process 6.97E-04

7 GO:0044265 cellular macromolecule
catabolic process

7.91E-04

8 GO:0016799 hydrolase activity, hydrolysing
N-glycosyl compounds

1.16E-03

9 GO:0060674 placenta blood vessel
development

1.29E-03

10 GO:0032507 maintenance of protein
location in cell

1.42E-03

aGO enrichment results for targets of the predicted USF2-IRF1 complex. The
second, third and tenth GO terms are related to iron transport. A previous
study reported that USF2 and IRF1 co-regulate β2-microglobulin, which
regulates iron metabolism and transport
bGO enrichment results for targets of the predicted USF2-NFYA complex. The
top ten GO term results are associated with DNA catabolism and clearly
differed from the results of the predicted USF2-IRF1 complex
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NFKB form an enhanceosome on the interferon beta
enhancer [24].
In addition, we found that complex formation is

dynamically changed in various conditions, even from
the same cells. For example, the TF partners of MYC in
K562 cells treated with interferon gamma are different
from that with interferon alpha (Additional file 1:
Table S4). Furthermore, even the same drug treatment,
the different time points showed different complex forma-
tion. Notably, MYC appears to interact with the AP1
family in K562 cells exposed to interferon, independent of
gamma or alpha subtype (Additional file 1: Table S4). The
similar results were also observed in the TF partners of
JUN in K562 cells (Additional file 1: Table S5).
The attraction of CST for predicting condition-specific

TF complexes arises from its rich database containing
vast vertebrate TF motifs. Thus, the results of CST are
not hindered by cell lines that have little ChIP-seq data.
There are thousands published ChIP-seq datasets,
among which the MCF-7 cell line has a maximum of 40
distinct TF ChIP-seq datasets [25]. When Chen et al. [8]
proposed an algorithm to identify TF complexes using
paired ChIP-seq data, there were only 780 (C2

40) poten-
tial TF complexes for scrutiny in MCF-7 cell lines. By
contrast, there are 966 distinct vertebrate TF motifs in
the TRANSFAC database (version 2013.2), resulting in
966 × 40 potential combinations for CST. Hence, CST is
powerful and insightful, particularly for cell lines having
few ChIP-seq datasets.
We are confident that CST will be helpful for detect-

ing condition-specific TF complexes and their target
genes because of its top-performing methods for target
gene prediction (TIP [9]) and for partner TF prediction
(MEME, FIMO and SpaMo [5, 26, 27]). Current bio-
informatics approaches of TF target genes do not con-
sider the fluidity of TF complexes [28]. Therefore, many
important nuances in TF function and transcriptional
regulation are missing. For example, USF2 could regu-
late iron transport and DNA catabolic processes when
forming TF complexes with IRF1 and NFYA, respect-
ively (Table 2). However, the top 10 GO terms of USF2
target genes identified by processing USF2 ChIP-seq
data in the K562 cell line using the TIP algorithm (see
Methods) are related to chromatin structure (Additional
file 1: Table S6). If we only examine the GO results for
USF2 targets, we may ignore important regulatory func-
tions of USF2, including iron transport and DNA
catabolic processes from the USF2-IRF1 and USF2-
NFYA complexes, respectively.

Conclusions
To the best of our knowledge, CST is the first pipeline
that infers both condition-specific TF complexes and
their target genes using human ChIP-seq datasets.

Integrating the results of CST pipeline from 359 ChIP-
seq ENCODE datasets, we constructed DBCST database.
DBCST provides a searchable platform for TF complex
and regulatory function discovery. DBCST is not only a
database but also a web server and can perform CST
pipeline from user’s own ChIP-seq experiment. User also
can download CST package, which reports the list of
primary TF targets and its binding sites when inputting
wig file and narrow peak data, from DBCST download
function. Using the result of CST package and then run-
ning MEME, FIMO and SpaMo, user can perform CST
pipeline in their computer. We hope that DBCST will be
a useful resource and provide insightful assistance for biol-
ogists studying transcriptional regulation going forward.

Methods
Data collection
Wiggle files and narrow peak data of 359 SYDH (Stanford/
Yale/USC/Harvard) ENCODE ChIP-seq experiments were
downloaded from the UCSC Genome Browser [29]. One
hundred forty-six TF binding motifs were collected from
the JASPAR CORE database [30]. To obtain a complete
set of TF binding motifs across various conditions/cell
types, we added 278 de novo motifs extracted from EN-
CODE ChIP-seq data using MEME [27] to our motif data-
base. Genomic sequences and annotation files for RefSeq
genes (both in hg19 version) were downloaded from the
UCSC Genome Browser [20]. GO annotations were re-
trieved from the gene2go file (Dec 2012 version) on the
NCBI Entrez Gene FTP site (ftp://ftp.ncbi.nlm.nih.gov/
gene) [31].

CST pipeline
The main steps of the CST pipeline are described
below (Fig. 1).

Step 1. Identify target genes using TIP
Conventionally, TF target genes are identified by first
selecting the binding peaks of the TF using a peak-calling
algorithm (e.g., MACS [18]) and then by finding the genes
with peaks in their putative promoters. However, this ap-
proach is known to produce many false positive target
genes [6, 7]. In CST, the TF target genes are predicted
using the Target Identification from Profiles (TIP) method
[9] (Fig. 1a), which evaluates the confidence score of each
putative target gene using a probabilistic model based on
ChIP-chip or ChIP-seq data. TIP is one of the most accur-
ate TF target gene prediction methods [16]. For all 359 EN-
CODE ChIP-seq samples, the selected TIP-derived target
genes had to pass a confidence threshold of Q-value < 0.1.

Step 2. Identify binding peaks within target gene promoters
To examine TF binding motifs and their relative spacing,
for each primary TF, the locations of binding peaks at the
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promoters of TIP-predicted target genes must first be iden-
tified. To accomplish this goal, we used the ENCODE
narrow peak data to search for these peaks (Fig. 1b). Puta-
tive promoters were defined as the genomic regions +/- 3
kbp starting from the TSSs of the target genes. These
regions are where the highest densities of accumula-
tive TF binding peaks and histone modification sig-
nals both occur [32].

Step 3. Discover primary TF binding motifs using MEME
To discover primary TF binding motifs, we retrieved
120bps DNA sequences centred at the summits of the
top 500 binding peaks (ranked by p-value) and used
MEME (version 4.9.0_4 in the MEME suite) [27] with
the “–mod zoops –maxw 10” options (Fig. 1c).

Step 4. Locate the primary TF binding motif using FIMO
A given binding peak may contain different motifs other
than the primary binding motif for a primary TF. We
employed FIMO (version 4.9.0_4 in the MEME suite
with a p-value < 1e-4) [26] to select peaks containing the
primary binding motif for each primary TF (Fig. 1d).

Step 5. Identify TF partners using SpaMo
We selected 300 bps DNA sequences centred on the pri-
mary binding motif after referencing a thermodynamic
model of TF-TF interactions [33] in which 150 bps were
the maximum distance for TF interactivity. These se-
quences were then used in SpaMo (version 4.9.0_4 in
MEME suite) [5] to search for the presence of binding
motifs of potential partner TFs (Fig. 1e).
SpaMo identified TF-TF pairs with enriched spacing

between the primary and secondary motif. Given inter-
vals centred on the primary TF binding sites from the
ChIP-seq data to identify the significant spacing between
motif pairs, SpaMo assumes that the number of ob-
served spacings between the primary TF and the second-
ary TF motifs follows a binomial distribution. Our
pipeline for the secondary binding motifs included the
de novo motifs identified in step 3 (278 in total; derived
from the ENCODE data) and 146 additional motifs from
the JASPAR CORE motif database [30]. The primary-
secondary TF pair is reported when the spacing between
the primary and secondary motif was significant (SpaMo
p-value < 0.05 and E-value < 10).

Step 6. Report the target genes with GO enrichment
analysis for each TF complex
GO enrichment analysis was performed for predicted
target genes (Fig. 1f ) using Fisher’s exact test scores
based on the hypergeometric distribution for each GO
term. CST provides two sets of target genes: high-
confidence and low-confidence. A high-confidence tar-
get gene is called if the following standards are fully met:

(i) it is the target gene for a primary TF; (ii) it has a pri-
mary and a secondary motif on its promoter, and its
motif spacing is ≤ 150 bases [33]; and (iii) the spacing of
the motif pair is significant (SpaMo p-value < 0.05 and
E-value < 10). By contrast, a low-confidence target gene
is called if standard (iii) is not met. The latter is used to
describe TFs with variable spacing because of their bind-
ing on wrapped DNA strings or nucleosomes.

Validation
To validate our results, we employed a three-step
approach: (1) comparison of predicted TF complexes
against an external and empirically derived TF complex
database; (2) spot validation of the target genes using
ChIP-qPCR and RT-PCR; and (3) GO enrichment ana-
lysis of the target genes.

Step 1. Comparison of predicted TF complexes against
external TF complex databases
Two procedures were used in this step. First, we com-
pared our list of TF complexes to a TF-TF interaction
database experimentally derived and collected by Ravasi
[2]. To calculate their enrichment ratios against this
database, we rank ordered our predicted TF complexes
based on their p-values and then examined the TF com-
plexes in groups (TF complexes with the lowest 10% of
p-values followed by TF complexes with the lowest 20%
of p-values up to 100% of TF complexes). Similar steps
were conducted on TF complexes predicted using
SpaMo as a reference. Next, enrichment ratios for CST
and SpaMo were determined relative to a randomly gen-
erated list of TF complexes in CST or SpaMo based on
the following formula: the observed number (CST or
SpaMo TF complexes in the Ravasi database) divided by
the expected number (randomly generated TF com-
plexes in the Ravasi database).
Second, we used another external TF repository of

transcriptional regulatory modules (TRMs) [10] for fur-
ther comparisons. Briefly, we conducted hypergeometric
distribution Fisher’s exact tests on the degrees of overlap
between CST and TRMs to check for consistency.

Step 2. Validation of CST-predicted target genes using
ChIP-qPCR and RT-PCR
Chromatin immunoprecipitation quantitative PCR
(ChIP-qPCR). Four ChIP-qPCR experiments for the
NFYA and USF2 TFs in the K562 and HeLa cell lines
were performed using a selection of the NFYA-USF2-
predicted TF complex target genes. HoxB4, a literature-
derived external positive control from Zhu et al., was
one of the qPCR amplification targets [12]. ChIP was
performed using a ChIP kit (Millipore, Billerica, MA,
USA) according to the manufacturer’s instructions and
described in the Additional file 1 Supplementary Methods.
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The selected qPCR amplification targets were HoxB7,
GLYR1 and EIF4E (which were derived from the CST-
predicted target gene list of the NFYA-USF2-predicted TF
complex) and HoxB4 (which was derived from external
work confirming NFYA-USF2 regulation and used as a
positive control [12]). The forward and reverse primers
used for the ChIP-qPCR are listed in Additional file 1:
Table S3. The locations of these primers are illustrated in
Additional file 1: Fig. S5.
Real-time reverse transcription-polymerase chain reac-

tion (RT-PCR) and Western blotting. USF2-specific
siRNA (SI02780785) and scrambled control were pur-
chased from Qiagen (Massachusetts, USA) and employed
to silence the USF2 expression in HeLa cells. Subse-
quently, total RNAs were purified by Trizol reagent (Invi-
trogen) and then subjected to SYBR Green RT-PCR using
an ABI Prism 7300 sequence detection system (Applied
Biosystems, Philadelphia, PA, USA), as described previ-
ously [34]. The primers used for amplification are listed in
Additional file 1: Table S3. The expression of the mRNA
normalized to that of the internal control (TATA box-
binding protein, TBP) was defined as -ΔCT = -(CTTarget -
CTTBP), whereas the relative expression of the target gene
was calculated using the 2–ΔCT method. The detailed pro-
cedures of immunoblotting were performed as described
previously [35]. The antibodies included anti-USF2
(Abcam, Burlingame, CA, USA) and anti-β-tubulin
(Millipore, Bedford, MA, USA), primary antibody as well
as horseradish peroxidase-conjugated secondary antibody
(Santa Cruz Biotechnology Inc.). The β-tubulin acted as
an internal control.

Step 3. Gene ontology enrichment analysis of the target
genes of selected TF complexes
To validate that CST captured the phenomenon men-
tioned in Mullen, A. C. et al [1], we performed GO
enrichment analysis for target genes of a primary TF
with a different partner TF.

Additional file

Additional file 1: Supplementary Instruction for Browsing Web Interface
and Supplementary Methods. Figure S1. The likelihood of TF complexes
near a transcriptionally active gene. Figure S2. High-confidence and low-
confidence target genes. Figure S3. SpaMo-predicted TF complexes from
GATA2 and TAL1 ChIP-seq experiments in K562 cells. Figure S4. ChIP-PCR
and slab gel electrophoresis against CST NFYA-USF2-predicted target genes.
Figure S5. The schema of ChIP-PCR primers. Figure S6. DBCST’s partners
view. Figure S7. DBCST’s network view. Figure S8. DBCST’s target genes
view. Figure S9. DBCST’s upload functionality. Table S1. Statistics for the TF
and ChIP-seq datasets used in the construction of DBCST for each cell line.
Table S2. The intersection of TF-TF interactions predicted by TRMs and CST.
Table S3. A list of PCR primers. Table S4. Dynamic TF complexes and
binding motifs from K562 MYC ChIP-seq data in various conditions.
Table S5. Dynamic TF complexes and binding motifs from K562 JUN
ChIP-seq data in various conditions. Table S6. A partial list of the GO

analysis results of target genes predicted by USF2 ChIP-seq data in the
K562 cell line. (PDF 1190 kb). (DOC 2001 kb)
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