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Abstract

Background: Measuring genome-wide changes in transcript abundance in circulating peripheral whole blood is a
useful way to study disease pathobiology and may help elucidate the molecular mechanisms of disease, or
discovery of useful disease biomarkers. The sensitivity and interpretability of analyses carried out in this complex
tissue, however, are significantly affected by its dynamic cellular heterogeneity. It is therefore desirable to quantify
this heterogeneity, either to account for it or to better model interactions that may be present between the
abundance of certain transcripts, specific cell types and the indication under study. Accurate enumeration of the
many component cell types that make up peripheral whole blood can further complicate the sample collection
process, however, and result in additional costs. Many approaches have been developed to infer the composition of a
sample from high-dimensional transcriptomic and, more recently, epigenetic data. These approaches rely on the
availability of isolated expression profiles for the cell types to be enumerated. These profiles are platform-specific,
suitable datasets are rare, and generating them is expensive. No such dataset exists on the Affymetrix Gene
ST platform.

Results: We present ‘Enumerateblood’, a freely-available and open source R package that exposes a multi-response
Gaussian model capable of accurately predicting the composition of peripheral whole blood samples from Affymetrix
Gene ST expression profiles, outperforming other current methods when applied to Gene ST data.

Conclusions: ‘Enumerateblood’ significantly improves our ability to study disease pathobiology from whole blood
gene expression assayed on the popular Affymetrix Gene ST platform by allowing a more complete study of the
various components of this complex tissue without the need for additional data collection. Future use of the model
may allow for novel insights to be generated from the ~400 Affymetrix Gene ST blood gene expression datasets
currently available on the Gene Expression Omnibus (GEO) website.

* Correspondence: casey.shannon@hli.ubc.ca
1PROOF Centre of Excellence, Vancouver, BC, Canada
7Centre for Heart Lung Innovation, University of British Columbia, Vancouver,
BC, Canada
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Shannon et al. BMC Genomics  (2017) 18:43 
DOI 10.1186/s12864-016-3460-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3460-1&domain=pdf
mailto:casey.shannon@hli.ubc.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Key Points

� We introduce a model that accurately predicts the
cellular composition of blood from Affymetrix Gene
ST gene expression profiles.

� This model outperforms existing methods when
applied to Affymetrix Gene ST expression profiles
from whole blood.

� The model is available on GitHub: https://github.com/
cashoes/enumerateblood

Background
Measuring genome-wide changes in transcript abun-
dance in circulating peripheral whole blood cells is a
useful way to study disease pathobiology [1]. By provid-
ing a relatively comprehensive survey of the status of the
immune system, peripheral whole blood transcript abun-
dances may help elucidate molecular mechanisms [2].
The sensitivity and interpretability of analyses carried
out in this tissue, however, are significantly affected by
its dynamic heterogeneity [3]. It is therefore desirable to
quantify this heterogeneity, either to account for it or to
model interactions that may be present between the
abundance of certain transcripts, some cell types, and
some phenotypic indication.
Accurate enumeration of the many component cell

types that make up peripheral whole blood can be costly,
however, and further complicates the sample collection
process. Furthermore, the majority of publicly available
peripheral whole blood-derived gene expression profiles
on the Gene Expression Omnibus [4] do not include any
composition information. Accurate quantification of the
cellular composition of blood samples from gene expres-
sion data without performing additional experiments is
useful, allowing for re-analysis of existing public data,
for example.
Many approaches have been developed to infer the cel-

lular composition of a sample from high-dimensional
transcriptomic [3, 5–9] and, more recently, DNA methyla-
tion data [10, 11]. Briefly, if X, W, and H are matrices with
entries Xij (observed expression for sample i, gene j), wik

(for sample i, proportion of cell type k), and hkj (cell type-
specific contribution to the observed expression for cell
type k, gene j), then the problem can be stated: having ob-
served X, we wish to estimate W, based on the assumed
relationship between expression and composition:

Xij ¼
XK

k¼1

wikhkj þ eij

where eij represents the expression information for
sample i, gene j that is not predictable by the cell
composition.

We further assume that, for each component cell type
k, there exists a subset of features Xk

ij’ in X whose ob-
served expression in sample i is proportional to the rela-
tive abundance of cell type k in sample i. More formally:

Xk
ij′∝w

k
i

These composition-discriminating features are termed
marker genes. For such genes, the elements of the H can
be derived from e.g. omics profiles obtained from cells
isolated from the tissue to be deconvolved (we refer to
collections of such profiles as “reference datasets”), and
W estimated by regression [5–11]. In this treatment, H
is referred to as the basis matrix for deconvolution. We
have previously used this approach to study cell-specific
differential expression in the context of acute kidney
allograft rejection, using GSE28490 as an Affymetrix
U133 plus 2.0 “reference dataset” and identifying the
basis matrix genes by using elastic net to derive a min-
imal multinomial classification model for the profiled
cell types [12]. Importantly, mapping such marker genes
across technology platforms is not always tractable. Not
all genes can be readily mapped across gene expression
platforms and the values derived from reference datasets
may be specific to the platform on which the gene ex-
pression was measured. This limits application of these
techniques to platforms on which suitable reference
datasets exist. Unfortunately, generating such datasets is
costly and replicating suitable existing studies on new
platforms of limited scientific (and funding) interest.
Reference datasets are correspondingly rare.
More recently, so-called reference-free approaches

have been proposed to address this issue [13–15]. These
approaches still require the identification of suitable
marker genes for the cell types to be quantified, how-
ever, and this selection is of paramount importance to
achieve optimal performance. The general strategy for
marker selection is to identify genes whose expression in
one cell type differs from that observed in all other cell
types being considered [13], a process that itself relies
on reference datasets. In fact, all approaches discussed
thus far leverage one of a handful of publicly available
reference datasets to derive a basis matrix or identify
suitable marker genes [11, 16, 17]. No such suitable ref-
erence dataset exists on the newer Affymetrix Gene ST
platform.
Here we apply a multi-task learning algorithm to

construct a statistical model capable of predicting the
composition of peripheral whole blood samples from
Affymetrix Gene ST expression profiles. We demon-
strate its performance on both Gene 1.0 ST (GEO plat-
form GPL6244) and Gene 1.1 ST (GPL11532) datasets,
which represent the bulk of the Gene ST arrays on GEO.
Gene ST data summarized using custom CDF files (e.g.
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GPL16977, GPL15648 or GPL19370), or summarized to
exon, rather than transcript, level (GPL10739), could be
processed from the raw CEL files to a suitable format,
though we did not evaluate performance in this case.
We also show that the genes that make up this model
can directly serve as marker genes, suggesting that it
may be possible to identify marker gene sets for new
technology platforms, or cell populations, using mixture
gene expression profiles with corresponding cell com-
position information rather than using the more conven-
tional reference dataset strategy.
The strategy we described in the current work could

be readily applied to other tissues and/or platforms,
which would allow for the development of tools to
accurately segment and quantify a variety of admixed
tissues from their gene expression profiles, to account
for cellular heterogeneity across indications or model in-
teractions between gene expression, some cell types and
the indication under study. The described model is
freely-available and open source, outperforms other
current methods when applied to Gene ST data, and
could significantly improve our ability to study disease
pathobiology in blood by allowing a more complete
study of the various components of the immune com-
partment of blood from whole blood gene expression.

Methods
Patient cohorts used
We used previously unpublished gene expression pro-
files from two large clinical cohorts to train and validate
the new statistical model. The Rapid Transition Program
(RTP) included prospectively enrolled patients with
chronic obstructive pulmonary disease (COPD), present-
ing either to St. Paul’s Hospital or Vancouver General
Hospital (Vancouver, Canada). Subjects presenting to the
emergency department or those visiting the COPD clinic
were approached for consent to participate in the study.
Matched, peripheral blood derived, genome-wide tran-
script abundance and DNA methylation profiles were
available for 172 blood samples from this cohort. The
DNA methylation profiles were used to obtain estimates
of the cellular composition of the blood samples, while
the gene expression profiles were used to train a model
to predict these inferred cell proportions and estimate
its performance using cross-validation. Complete blood
counts, including leukocyte differentials (CBC/Diffs)
were available for all blood samples and used as an inde-
pendent measure of blood composition (excluding
lymphocyte subtypes).
The chronic heart failure (HF) program (CHFP) included

prospectively enrolled HF patients presenting to St. Paul’s
Hospital or Vancouver General Hospital (Vancouver,
Canada). Subjects were approached during their visit to
the heart function, pre-transplant, or maintenance clinics,

and those who consented were enrolled in the study. A
blood sample was collected at the time of enrollment.
Genome-wide transcript abundance profiles and complete
blood count, including leukocyte differential (CBC/Diffs)
were available for 197 HF patients. This data was used to
independently validate the performance of the statistical
model.
The model’s performance was further validated using

gene expression profiles obtained from a previously pub-
lished asthma cohort (GSE40240) for which monocyte, B
and T cell proportions were known [18, 19].

Sample processing
The following describes sample processing for the RTP
and CHFP cohorts. For details regarding sample process-
ing for GSE40240 (asthma cohort) refer to Singh, et al.
[18]. For all subjects, blood was collected in PAXgene
(PreAnalytix, Switzerland) and EDTA tubes. The EDTA
blood was spun down (200 x g for 10 min at room
temperature) and the buffy coat aliquoted out. Both
PAXgene blood and buffy coat samples were stored
at −80 °C.

Transcript abundance
Total RNA was extracted from PAXgene blood on the
QIAcube (Qiagen, Germany), using the PAXgene Blood
miRNA kit from PreAnalytix, according to manufac-
turer’s instructions. Human Gene 1.1 (GPL6244; RTP
and CHFP cohorts) ST array plates (Affymetrix, United
States) were used to measure mRNA abundance. This
work was carried out at The Scripps Research Institute
DNA Array Core Facility (TSRI; La Jolla, CA). The
resulting CEL files were processed using the ‘oligo’ R
package [20].

DNA methylation
For the RTP cohort samples only, DNA was extracted
from buffy coat using Qiagen’s QIAamp DNA Blood
Mini kits. DNA was bisulfite-converted using the Zymo
Research EZ DNA methylation conversion kit, and
Infinium HumanMethylation450 BeadChips (Illumina,
United States) were used to measure methylation status
at >485,000 sites across the genome. This work was car-
ried out at The Centre for Applied Genomics (TCAG;
Toronto, Canada). The resulting IDAT files were proc-
essed using the ‘minfi’ R package [21].

Statistical analysis
Following preprocessing with their respective packages
(‘oligo’ or ‘minfi’), the normalized data were first batch
corrected using the ‘ComBat’ algorithm [22], as imple-
mented in the ‘sva’ R package [23]. A schematic repre-
sentation of the statistical analysis is shown in Fig. 1.
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Estimating cellular composition from DNA methylation
profiles
Next, we inferred the cellular composition of the RTP
cohort blood samples from their DNA methylation pro-
files using the ‘estimateCellCounts’ function provided by
‘minfi’. This function uses publicly available DNA
methylation profiles obtained from isolated leukocyte
sub-types to infer the relative abundance of granulo-
cytes, monocytes, B, CD4+ T, CD8+ T and NK cells
(details in Table 1) with very high accuracy [11, 21].
These estimates of the cellular composition of our training
samples were used as a ‘silver standard’ to train the model
in the absence of gold standard (e.g. flow cytometry) data
to provide us with a ground truth. In order to gain

additional confidence in these estimates, we compared
them to those obtained from a hematology analyzer
(CBC/Diffs) to assess accuracy and tested the 600 CpG
sites used by ‘estimateCellCounts’ for associations with
age, sex, or disease status in our training cohort (after
adjusting for cellular composition using the CBC/Diffs) to
determine whether these factors could be introducing any
bias into the predictions.

Model training
We then fit a multi-response Gaussian model using elastic
net regression via the ‘glmnet’ R package [24] on the
genome-wide transcript abundance data, using the DNA
methylation-derived cell proportions as response variables.
The multi-response Gaussian model family is useful when
there are a number of possibly correlated responses — a so
called “multi-task learning” problem — as is the case for
these cell proportions. Sparsity was an additional require-
ment: using a minimal set of features to predict cell pro-
portions is desirable because it reduces the risk of bias
being introduced under varied experimental conditions.
Conversely, redundancy in the information provided by the
features ensures robustness to such bias when it is present.
We chose to use ‘glmnet’ because it is amenable to multi-
task learning problems (using family = ‘mgaussian’) and

Table 1 Description of predicted leukocytes

Cell name Abbreviation used Description

Granulocytes Gran CD15+ granulocytes

Monocytes Mono CD14+ monocytes

B cells Bcell CD19+ B-lymphocytes

T cells (CD4+) CD4T CD3 + CD4+ T-lymphocytes

T cells (CD8+) CD8T CD3 + CD8+ T-lymphocytes

NK cells NK CD56+ Natural Killer (NK) cells

Fig. 1 Schematic representation of the experiment. Cell proportions were estimated from DNA methylation profiles for 172 samples (1; COPD patients).
These DNA methylation-derived cell proportions were used as a ‘silver’ standard in the absence of the ground truth. This ‘silver standard’ dataset was used
to train a multi-response Gaussian model using the gene expression data (2). Out-of-sample performance was evaluated using a repeated (20x) 10-fold
cross-validation (3) and in two independent sets of samples, in different clinical indications: granulocyte, monocyte, and lymphocyte performance was
evaluated in a large set of samples (4; 197 samples, heart failure), while monocyte, B, and T cell prediction performance was evaluated in a smaller set
(4; 28 samples, asthma)
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can provide a balance between sparse models and redun-
dancy in the model features (by tuning the parameter α),
but any machine learning method that meets these re-
quirements could potentially have been substituted.
Probesets with minimum log2 expression < 5.5 across

all samples (22,251) were first excluded using the ‘ex-
clude’ parameter. Next, we performed hyper-parameter
tuning by running the ‘cv.glmnet’ function for a number
of different values of α (α = 1, 0.9, 0.5, 0.1, 0), letting
‘cv.glmnet’ construct models using a sequence of λ values
(default behavior). Briefly, the elastic net mixing parameter
α provides a way to tune between ridge (α = 0) and lasso
(α = 1) penalized regression, and the complexity parameter
λ a means of adjusting the degree of shrinkage being
applied to the coefficients. The optimal value for each
parameter was that which minimized out-of-sample error
rate in cross-validation, using the mean-square error
criterion (‘cv.glmnet’ parameter type.measure = ‘mse’).

Estimating out-of-sample performance
Out-of-sample performance of our model was first eval-
uated using 10-fold cross-validation, repeated 20 times
to eliminate any potential biases introduced by the parti-
tioning of the data. We then validated the accuracy and
calibration of our model by comparing its predicted pro-
portions to that obtained from CBC/Diffs data in the
CHFP cohort. Unfortunately, a more complete enumer-
ation of the lymphocyte compartment (e.g., by flow
cytometry) was not available in this large cohort, so we
could not independently validate performance in the
various lymphocyte sub-types. Instead, the sum of the
predicted B, CD4+ T, CD8+ T and NK cell proportions
was compared to total lymphocyte proportions from the
CBC/Diffs. In addition, we accessed a small asthma co-
hort from GEO (GSE40240) for which monocyte, B- and
pan T-cell (CD3+) proportions were available (Epiontis
qPCR cell quantification assay) [19]. This dataset was
used to independently validate the performance of the
model’s B- and T-cell predictions.
In all cases, we report both model error (root-mean-

square error) and correlation (Pearson’s product–moment
correlation) to the actual cell proportions. The latter is
more pertinent, however, as accurate multivariate calibra-
tion is not necessary for our intended use for these pre-
dicted proportions, namely as proxy measures useful for
statistical work in the absence of more direct, clinically
relevant, measures.

Performance compared to the method described in
Abbas et al.
We also compared the performance of our model to an
alternative approach for determining the composition of
blood samples from their gene expression profiles, de-
scribed in Abbas et al. [5], in both the CHFP and asthma

cohorts. The basis matrix from Abbas et al., derived
from the IRIS (Immune Response In Silico) reference
dataset [16], was used to predict the cell proportions of
neutrophils, monocytes, B, CD4+ T, CD8+ T and NK
cells. These predicted proportions were compared to
those obtained from CBC/Diffs (CHFP), or an Epiontis
qPCR cell quantification assay (asthma), as above.

Model features as marker genes for the reference-free
approach described in Chikina et al.
Finally, we evaluated whether our approach could be
used to identify more suitable marker gene sets com-
pared to using a reference dataset obtained on a differ-
ent platform. The reference-free approach described by
Chikina et al. [13], does not require a basis matrix, rely-
ing instead on a set of putative marker genes. These are
used to guide the decomposition of the dataset’s covari-
ance structure into separate variance components, using
singular value decomposition. Marker genes for each cell
type are summarized in this manner, a technique known
as eigengene summarization [25]. Given a good set of
marker genes, these summarized values, termed surro-
gate proportion variables (SPVs), should track with mix-
ture proportions. Because SPVs are estimated directly in
the dataset, platform mapping issues should be mini-
mized, but whether marker genes identified on one plat-
form may perform well when applied to another has not
been evaluated before.
We used the reference-free approach described by

Chikina et al. (as implemented in the ‘CellCODE’ R
package) and marker genes derived either from the IRIS
reference dataset, as recommended by Chikina et al., or
the model features. Features were deemed marker genes
for specific cell types based on the absolute value of
their coefficient weights across cell types in the model.
We then compared the SPVs produced by ‘CellCODE’,
using either marker gene sets, to the CBC/Diffs, as
above. Pearson’s product–moment correlation (r) was
used to summarize association between predictions.

Results
DNA methylation-derived predictions of the cellular com-
position of the RTP cohort blood samples were accurate
when compared to those obtained from CBC/Diffs (root
mean squared error [RMSE] = 0.01 – 0.08, Pearson’s
r = 0.87 – 0.96; Additional file 1: Figure S1). The ob-
served error rates for granulocytes and monocytes were
consistent with those previously reported [10, 11]. We
could not determine the accuracy of the B, CD4+ T, CD8+
T and NK cell predictions directly. The sum of these
predicted proportions were well correlated to the
lymphocyte proportions obtained from the CBC/Diffs
(Pearson’ r = 0.87), however. When controlling for cellu-
lar composition using the CBC/Diffs, none of the 600
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CpG sites used by ‘estimateCellCounts’ were significantly
associated with disease status, but 8 were significantly as-
sociated with sex, and 70 with age, in our data (Additional
file 2: Tables S1-S3).
These predictions were used as the response variables

to train a multi-response Gaussian model in the RTP
cohort gene expression data using elastic net regression.
The optimal model hyper-parameterization (α = 0.1,
λ = 0.8857) retained 491 features. Its fit to the data is vi-
sualized in Fig. 2, against both the DNA methylation
derived composition estimates (Fig. 2a), and CBC/Diffs
(Fig. 2b). Model fit was good across all cell types, with the
exception, perhaps, of CD8+ T cells. When considering
the model fit to the CBC/Diffs data, we noted slight bias,
with granulocyte proportions tending to be under-
predicted and lymphocyte proportions over-predicted.
To characterize the potential performance of this

model on new data, we carried out a 20 × 10-fold cross-
validation. We summarize the RMSE and Pearson’s r

observed across 200 (20 × 10) left-out sets in Table 2
and the data is visualized in Fig. 3. Estimated out-of-
sample performance varied across cell types; RMSE was
lowest for monocytes and highest for granulocytes. Error
rates compared favorably to other methods for inferring
cellular composition of samples from gene expression
data [5–7, 12]. Correlation between predicted and actual
in the 200 left-out sets was highest for granulocytes
(0.926), followed by monocytes (0.824), NK cells (0.812),
CD4+ T cells (0.785), B cells (0.731), and CD8+ T cells
(0.671).
Next, we applied the model to gene expression profiles

from the CHFP (Fig. 4a) and asthma cohorts (Fig. 4b) in
order to independently validate its performance.
Performance in these cohorts is summarized in Table 2.
The predicted proportions for granulocytes and mono-
cytes were well correlated with those obtained from
CBC/Diffs across all 197 samples in the CHFP cohort
(r = 0.89 and 0.74 respectively; Fig. 4a). While we could

Fig. 2 Assessing model fit. Predicted proportions from the model are plotted against the DNA methylation-derived cell proportions for each
sample in the training data (a) or that obtained from CBC/Diffs (b). For (a), linear best-fit line to the data is plotted (blue line) with 95% point-wise
confidence interval for fit (grey band) and compared with perfect agreement (red dashed line). For (b), predicted monocyte proportions are
compared directly to the CBC/diffs. The predicted granulocyte proportions are compared to the sum of neutrophil, eosinophil and basophil
proportions from the CBC/diffs, while the sum of the predicted B, CD4+ T, CD8+ T and NK cell proportions is compared to the total lymphocyte
proportions from the CBC/diffs. For each cell type, Pearson’s product–moment correlation (Pearson’s r) and the root mean squared error (RMSE)
are reported
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not determine the accuracy of the B, CD4+ T, CD8+
T and NK cell predicted proportions directly, the sum of
these predicted proportions were well correlated to the
lymphocyte proportions obtained from the CBC/Diffs
(r = 0.90). Monocyte, B and pan T-cell proportions were
known in the smaller asthma cohort (Epiontis qPCR cell
quantification assay [19]). There, B-cell predicted propor-
tions were highly correlated to those obtained from the
Epiontis assay (Fig. 4b). Again, we could not determine
the accuracy of the CD4+ T and CD8+ T cell predicted
proportions directly, but the sum of these predicted pro-
portions was well correlated to the pan T cell propor-
tions obtained from the Epiontis assay (r = 0.91). We
also applied the basis matrix described by Abbas and
others in [5] to predict cell proportions in both the CHFP
and asthma cohorts (Additional file 3: Figure S2) by map-
ping the Affymetrix U133 identifiers to the corresponding
Gene 1.1 (CHFP) or 1.0 (asthma) ST identifiers using

the Biomart service [26, 27]. Our model generally per-
formed better, especially for monocytes, though this was
expected given that the Abbas, et al. basis matrix was de-
veloped on the Affymetrix U133 platform.
More recently, reference-free approaches to quantifying

the composition of mixed tissue samples from gene ex-
pression [13] or DNA methylation [14] profiles have been
proposed. Such approaches may offer a solution to the
platform mapping issues we describe. Reference-free ap-
proaches rely on the availability of marker genes for the
cell types to be quantified. Many strategies have been de-
scribed for identifying such marker genes [5, 12, 13, 28],
but, so far, all have leveraged existing reference datasets:
collections of gene expression profiles derived from cells
isolated from the mixed tissue to be quantified. In order
to determine whether marker gene selection exhibits
platform-bias, we compared CellCODE SPVs derived
using either marker genes identified from the IRIS

Fig. 3 Cross-validation performance. Distribution of root mean square error (RMSE; (a)) and Pearson’s product–moment correlation (Pearson’s r; (b)) for
out-of-sample predictions across repeated (20x) 10-fold cross-validations are visualized using boxplots. The mean and 95% CI are shown as a point and
range in the center of each boxplot and represent the expected out-of-sample performance

Table 2 Model performance

Cell type 20x 10-fold cross-validation Independent test set

RMSE (mean ± sd) Pearson’s r (mean ± sd) RMSE (n) Pearson’s r (n)

Bcell 0.021 ± 0.007 0.755 ± 0.188 0.04 (28) 0.93 (28)

CD4T 0.038 ± 0.01 0.813 ± 0.09 0.06 (28) 0.91 (28)

CD8T 0.034 ± 0.006 0.683 ± 0.138

Gran 0.054 ± 0.013 0.923 ± 0.046 0.06 (197) 0.89 (197)

Mono 0.018 ± 0.003 0.842 ± 0.068 0.02 (197) 0.74 (197)

NK 0.027 ± 0.006 0.816 ± 0.083 NA NA
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reference dataset (U133 platform; mapped to Gene ST
platform identifiers) or the features in our model. Marker
genes derived from our model outperformed those identi-
fied from the IRIS reference dataset and mapped to Gene
ST platform identifiers, when used with the CellCODE ap-
proach (Fig. 5). Interestingly, the marker gene sets showed
minimal overlap (granulocytes = 3/51, monocytes = 4/58,

B cells = 0/55, CD4+ T cells = 0/11, CD8+ T cells = 1/15,
NK cells = 6/22). We confirmed that the genes in our
model varied significantly across the included cell types by
performing ANOVA in the GSE28490 dataset, which in-
cludes replicate profiles of the relevant cell types isolated
from blood. Most (461/491; 94%) mapped identifiers var-
ied across cell types (adjusted p-value < 0.05).

Fig. 5 Our model identifies better performing marker genes for use with reference-free approaches in Affymetrix Gene ST data. Surrogate proportion
variables obtained from CellCODE are plotted against the cell proportions obtained from CBC/Diffs in an independent dataset (CHFP cohort). The sum
of the surrogate proportion variables obtained for B, CD4+ T, CD8+ T and NK cells is compared to the total lymphocyte proportions from the CBC/Diffs.
Marker genes used by CellCODE were derived from the coefficients of the model (a) or using the recommended set of marker genes (b) derived from
the IRIS reference dataset. For each cell type, Spearman’s rank correlation (ρ) is reported

Fig. 4 Our model accurately predicts the cellular composition of blood samples and outperforms existing approaches in Affymetrix Gene ST data.
Predicted cell proportions are plotted against the cell proportions obtained from CBC/diffs ((a); CHFP cohort) or a cell-type specific DNA methylation
cell-typing assay ((b); Epiontis asthma cohort). In (a), the sum of the predicted B, CD4+ T, CD8+ T and NK cell proportions is compared to the total
lymphocyte proportions from the CBC/diffs. The predicted granulocyte and monocyte proportions are directly compared. In (b), the sum of the
predicted CD4+ and CD8+ T cell proportions is compared to T cell proportion from the Epiontis assay. The predicted monocyte and B cell proportions
are directly compared. For each cell type, Pearson’s product–moment correlation (Pearson’s r) and the root mean squared error (RMSE) are reported
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Finally, we applied the model to predict the compos-
ition of the RTP cohort blood samples from their gene
expression. This is a contrived example, as this informa-
tion was already available to us, but it serves to illustrate
a possible application of the approach: to adjust for the
confounding effect of changes in cellular composition
when studying the effect of prednisone on whole blood
gene expression. As expected, we observed large differ-
ences in the predicted proportions of the various cell
types between patients given prednisone or not (Fig. 6).
Patients on prednisone had proportionally lowered
monocytes, B, CD4+ T, CD8+ T, and NK cells, and pro-
portionally elevated granulocytes. This was consistent
with the CBC/Diffs, and 460/491 genes in our model
showed no significant residual association between their
expression and prednisone status (adj. p-value > 0.05),
after adjusting for cellular composition using the CBC/
Diffs, suggesting that the observed differences reflect
true changes in the cellular composition of the samples
in response to prednisone, rather than changes in the
gene expression of the underlying model features.

Discussion
We introduce ‘Enumerateblood’, a freely available and
open source R package that exposes a statistical model for
predicting the composition of blood samples from
Affymetrix Gene ST gene expression profiles. We demon-
strate that this model has suitable performance across all
included cell types in cross-validation, and validate its per-
formance in two independent cohorts. The training and
validation cohorts represent two major clinical indica-
tions, COPD and HF, and include patients with various

comorbidities, on various medications, some with strong
effects on blood gene expression (e.g., prednisone), sug-
gesting that our model may generalize well and be broadly
applicable. All training and validation samples were from
older individuals, however, and it may be that this model
will not generalize well to pediatric populations. A loss of
performance in pediatric populations has been noted
when using a similar approach with DNA methylation
data [29].
We also show that platform-specific marker gene sets

can be derived without the need for “reference datasets”:
collections of gene expression profiles obtained from the
isolated cells types we wish to enumerate. Using the
model features as marker genes in combination with the
reference-free approach proposed by Chikina et al. re-
sulted in better performance compared to using marker
genes derived from isolated leukocyte gene expression
profiles obtained on another microarray platform. Inter-
estingly, the reference-free approach performed only
slightly worse than our model, although with loss of
scale. This suggests that the coefficient weights of the
model may be estimated directly in the data, and that
these marker genes may be context-independent surro-
gates of cell proportions.
More generally, the strategy we adopted to train our

model and identify suitable marker genes could be readily
applied to other platforms, or tissues of interest. The only
requirements are accurate quantification of the cell types
of interest across a large cohort with matched omics
profiling. For many popular platforms (e.g., RNA-seq), this
schema may be more cost effective than sorting and
profiling a number of replicates for all cells of interest,

Fig. 6 Model predicted cell proportions highlight prednisone-dependent changes in peripheral blood composition. Treatment of acute exacerbations
(AE) in COPD with prednisone results in important changes in the cellular composition of peripheral blood. The distributions of granulocyte, monocyte,
B, CD4+ T, CD8+ T and NK cell proportions are visualized for patients from the Rapid Transition Program (RTP) cohort that were given prednisone or
not (p-value is for the unpaired Student’s t-test comparing the two groups in each case)
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particularly when we consider how costs would scale with
additional cell types to be quantified. Moreover, for low
abundance cell types (e.g. Tregs), obtaining a sufficient
quantity to profile may not be feasible, depending on
the efficiency of available separation techniques, and
amount of admixed tissue that can be collected in
practice. Single cell RNA-seq may change all this in
the near future, however.
The lack of independent validation for some of the

lymphocyte sub-types (CD4+ T, CD8+ T, and NK cells)
is a limitation, though cross-validation performance was
good across all cell types. We believe it is unlikely that
poor performance in some or all lymphocyte sub-types
would result in good performance when summed and
compared to CBC/Diffs. Model fit exhibits some degree
of shrinkage (flattening of the plot of predicted vs. ob-
served away from the 45 degree line). This is expected,
however, and related to the phenomenon of regression
to the mean. Performance in cross-validation was not-
ably worse for CD8+ T cells. This could be because of
the preponderance of zero values for this particular cell
type. We also note that performance in monocytes drops
significantly in the validation cohort. It is unclear why
this is, but one possibility is the difference in the
distribution of values in the validation cohort (mean
monocyte proportion in training: 0.073 vs. 0.090 in the
validation; p = 1.39 × 10−7). We have observed poor
performance of various deconvolution approaches in
quantifying monocytes in the past [12, 30]. It might be
that circulating monocyte diversity is poorly reflected in
our current framework and we may be selecting poor
marker genes for this cell type as a result. A similar ra-
tionale could be applied to explain the poor CD8+ T cell
performance results in cross-validation. Certainly, it of-
fers the opportunity for further exploration of the true
complexity of these cell types in peripheral blood.

Conclusion
In summary, our freely-available and open source R
package, ‘Enumerateblood’, exposes a statistical model
capable of accurately inferring the composition of per-
ipheral whole blood samples from Affymetrix Gene ST
expression profiles. The strategy we adopted to derive
this model is readily applicable to other tissues and/or
platforms, which would allow for the development of
tools to accurately segment and quantify a variety of
admixed tissues from their gene expression profiles, to
account for cellular heterogeneity across indications or
model interactions between gene expression, some cell
types and the indication under study. The described
model outperforms other current methods when applied
to Gene ST data. By allowing a more complete study of
the various components of the immune compartment of
blood from whole blood gene expression, this model will

significantly improve our ability to study disease patho-
biology in blood, and may generate novel insights from
existing Affymetrix Gene ST blood gene expression
datasets.

Additional files

Additional file 1: Figure S1. DNA methylation-derived composition
vs. CBC/Diffs. Predicted proportions were obtained by applying the
‘estimateCellCounts’ function from the ‘minif R package to peripheral blood
derived DNA methylation profiles in the Rapid Transition Program (RTP)
cohort and plotted against cell proportions obtained from CBC/Diffs. The
sum of the predicted B, CD4+ T, CD8+ T and NK cell proportions is
compared to the total lymphocyte proportions from the CBC/Diffs. For each
cell type, Spearman’s rank correlation (ρ) and the root mean squared error
(RMSE) are reported. (PNG 47 kb)

Additional file 2: Association of the 600 CpG sites used by minfi's
‘estimateCellCounts’ function with disease status (Table S1), sex (Table
S2), or age (Table S3), after adjusting for cellular composition using CBC/
Diffs in the RTP cohort. (XLSX 172 kb)

Additional file 3: Figure S2. Performance of Abbas et al. method in
our validation datasets (Gene ST). Predicted cell proportions (using the
method from Abbas et al.) are plotted against the cell proportions
obtained from CBC/diffs (A; CHFP cohort) or a cell-type specific DNA
methylation cell-typing assay (B; Epiontis asthma cohort). In A, the sum of
the predicted B, CD4+ T, CD8+ T and NK cell proportions is compared to
the total lymphocyte proportions from the CBC/diffs. The predicted
granulocyte and monocyte proportions are directly compared. In B, the
sum of the predicted CD4+ and CD8+ T cell proportions is compared to
T cell proportion from the Epiontis assay. The predicted monocyte and B
cell proportions are directly compared. For each cell type, Pearson’s
product–moment correlation (Pearson’s r) and the root mean squared
error (RMSE) are reported. (PNG 83 kb)
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