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Abstract

Background: A fundamental assumption of all widely-used multiple sequence alignment techniques is that the left-
and right-most positions of the input sequences are relevant to the alignment. However, the position where a
sequence starts or ends can be totally arbitrary due to a number of reasons: arbitrariness in the linearisation
(sequencing) of a circular molecular structure; or inconsistencies introduced into sequence databases due to different
linearisation standards. These scenarios are relevant, for instance, in the process of multiple sequence alignment of
mitochondrial DNA, viroid, viral or other genomes, which have a circular molecular structure. A solution for these
inconsistencies would be to identify a suitable rotation (cyclic shift) for each sequence; these refined sequences may
in turn lead to improved multiple sequence alignments using the preferred multiple sequence alignment program.

Results: We present MARS, a new heuristic method for improving Multiple circular sequence Alignment using
Refined Sequences. MARS was implemented in the C++ programming language as a program to compute the
rotations (cyclic shifts) required to best align a set of input sequences. Experimental results, using real and synthetic
data, show that MARS improves the alignments, with respect to standard genetic measures and the inferred
maximum-likelihood-based phylogenies, and outperforms state-of-the-art methods both in terms of accuracy and
efficiency. Our results show, among others, that the average pairwise distance in the multiple sequence alignment of
a dataset of widely-studied mitochondrial DNA sequences is reduced by around 5% when MARS is applied before a
multiple sequence alignment is performed.

Conclusions: Analysing multiple sequences simultaneously is fundamental in biological research and multiple
sequence alignment has been found to be a popular method for this task. Conventional alignment techniques cannot
be used effectively when the position where sequences start is arbitrary. We present here amethod, which can be used
in conjunction with any multiple sequence alignment program, to address this problem effectively and efficiently.
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Background
The one-to-one mapping of a DNA molecule to a
sequence of letters suggests that sequence comparison is
a prerequisite to virtually all comparative genomic anal-
yses. Due to this, sequence comparison has been used
to identify regions of similarity which may be a byprod-
uct of evolutionary, structural, or functional relationships
between the sequences under study [1]. Sequence com-
parison is also useful in fields outside of biology, for
example, in pattern recognition [2] or music analysis [3].
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Several techniques exist for sequence comparison; align-
ment techniques consist of either global alignment [4, 5]
or local alignment [6] techniques. Alignment-free tech-
niques also exist; they are based on measures referring
to the composition of sequences in terms of their con-
stituent patterns [7]. Pairwise sequence alignment algo-
rithms analyse a pair of sequences, commonly carried
out using dynamic-programming techniques [5]; whereas
multiple sequence alignment (MSA) involves the simulta-
neous comparison of three or more sequences (see [8] for
a comprehensive review).
Analysing multiple sequences simultaneously is funda-

mental in biological research and MSA has been found to
be a popular method for this task. One main application

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-016-3477-5&domain=pdf
mailto: solon.pissis@kcl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ayad and Pissis BMCGenomics  (2017) 18:86 Page 2 of 10

of MSA is to find conserved patterns within protein
sequences [9] and also to infer homology between spe-
cific groups of sequences [10]. MSA may also be used in
phylogenetic tree reconstruction [11] as well as in protein
structure prediction [12].
Using a generalisation of the dynamic-programming

technique for pairwise sequence alignments works effi-
ciently for MSA for only up to a few short sequences.
Specifically, MSA with the sum-of-pairs score (SP-score)
criterion is known to be NP-hard [13]; and, therefore,
heuristic techniques are commonly used [14–16], which
may not always lead to optimal alignments. As a result,
suboptimal alignments may lead to unreliable tree esti-
mation during phylogenetic inference. To this end, several
methods aimed to have shown that removing unreli-
able sites (columns) of an alignment may lead to better
results [17].
Several discussions of existing filtering methods pro-

vide evidence that the removal of blocks in alignments
of sufficient length leads to better phylogenetic trees.
These filtering methods take a variety of mathematical
and heuristic approaches. Most of the methods are fully
automated and they remove entire columns of the align-
ment. A few of these programs, found in [18, 19], are
based on site-wise summary statistics. Several filtering
programs, found in [20–24], are based on mathemati-
cal models. However, experimental results found in [17]
oppose these findings, suggesting that generally, not only
do the current alignment filteringmethods not lead to bet-
ter trees, but there also exist many cases where filtering
worsened the trees significantly.
Circular molecular structures are present, in abun-

dance, in all domains of life: bacteria, archaea, and eukary-
otes; and in viruses. They can be composed of both amino
and nucleic acids. Exhaustive reviews can be found in [25]
(proteins) and [26] (DNA). The most common examples
of such structures in eukaryotes are mitochondrial DNA
(mtDNA). mtDNA is generally conserved from parent
to offspring and replication of mtDNA occurs frequently
in animal cells [27]. This is key in phylogenetic analysis
and the study of evolutionary relationships among species
[11]. Several other example applications exist including
MSA of viroid or viral genomes [28] andMSA of naturally-
occurring circular proteins [29].
A fundamental assumption of all widely-used MSA

techniques is that the left- and right-most positions of
the input sequences are relevant to the alignment. How-
ever, the position where a sequence starts (left-most)
or ends (right-most) can be totally arbitrary due to
a number of reasons: arbitrariness in the linearisation
(sequencing) of a circular molecular structure; or incon-
sistencies introduced into sequence databases due to dif-
ferent linearisation standards. In these cases, existing
MSA programs, such as Clustal � [30], MUSCLE [31], or

T-Coffee [16], may produce an MSA with a higher aver-
age pairwise distance than the expected one for closely-
related sequences. A rather surprising such instance
is the published human (NC_001807) and chimpanzee
(NC_001643) mtDNA sequences, which do not start in
the same genetic region [32]. It may be more relevant to
align mtDNA based on gene order [33], however, the tool
we present in this paper may be used to align sequences
of a broader type. Hence, for a set of input sequences,
a solution for these inconsistencies would be to identify
a suitable rotation (cyclic shift) for each sequence; the
sequences output would in turn produce an MSA with a
lower average pairwise distance.
Due to the abundance of circular molecular structures

in nature as well as the potential presence of inconsis-
tencies in sequence databases, it becomes evident that
multiple circular sequence alignment (MCSA) techniques
for analysing such sequences are desirable. Since MCSA is
a generalisation ofMSA it is easily understood that MCSA
with the SP-score criterion is also NP-hard. To this end, a
few programs exist which aim to improve MCSA for a set
of input sequences. These programs can be used to first
obtain the best-aligned rotations, and then realign these
rotations by using conventional alignment programs, such
as Clustal �, MUSCLE, or T-Coffee. Note that unlike other
filtering programs, these programs do not remove any
information from the sequences or from their alignment:
they merely refine the sequences by means of rotation.
The problem of finding the optimal (linear) alignment

of two circular sequences of length n and m ≤ n under
the edit distance model can be solved in timeO(nm logm)

[34]. The same problem can trivially be solved in time
O(nm2) with substitution matrices and affine gap penalty
scores [5]. To this end, alignment-free methods have been
considered to speed-up the computation [35, 36]. The
more general problem of searching for a circular pattern in
a text under the edit distance model has also been studied
extensively [37], and an average-case optimal algorithm is
known [38].
Progressive multiple sequence alignments can be con-

structed by generalising the pairwise sequence alignment
algorithms to profiles, similar to Clustal � [30]. This gen-
eralisation is implemented in Cyclope [39], a program
for improving multiple circular sequence alignment. The
cubic runtime of the pairwise alignment stage becomes a
bottleneck in practical terms. Other fast heuristic meth-
ods were also implemented in Cyclope, but they are only
based on some (e.g. the first two) sequences from the
input dataset.
Another approach to improve MCSA was implemented

in CSA [32]; a program that is based on the generalised cir-
cular suffix tree construction [40]. The best-aligned rota-
tions are found based on the largest chain of non-repeated
blocks that belong to all sequences. Unfortunately, CSA is
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no longer maintained; it also has the restriction that there
can be only up to 32 sequences in the input dataset, and
that there must exist a block that occurs in every sequence
only once.
BEAR [41] is another program aimed to improve

MCSA computation in terms of the inferred maximum-
likelihood-based phylogenies. The authors presented two
methods; the first extends an approximate circular string
matching algorithm for conducting approximate circular
dictionary matching. A matrix M is outputted from this
computation. For a set of d input sequences s0, . . . , sd−1,
M holds values e and r between circular sequences si
and sj, where M[ i, j] .e holds the edit distance between
the two sequences and M[ i, j] .r holds the rotation of
sequence si which will result in the best alignment of si
with sj. Agglomerative hierarchical clustering is then used
on all values M[ i, j] .e, to find sufficiently good rotations
for each sequence cluster. The second method presented
is suitable for more divergent sequences. An algorithm
for fixed-length approximate string matching is applied
to every pair of sequences to find most similar factors of
fixed length. These factors can then determine suitable
rotations for all input sequences via the same method of
agglomerative hierarchical clustering.

Our contributions. We design and implement MARS,
a new heuristic method for improving Multiple circular
sequence Alignment using Refined Sequences. MARS is
based on a non-trivial coupling of a state-of-the-art pair-
wise circular sequence comparison algorithm [35] with
the classic progressive alignment paradigm [42]. Exper-
imental results presented here, using real and synthetic
data, show that MARS improves the alignments and out-
performs state-of-the-art methods both in terms of accu-
racy and efficiency. Specifically, to support our claims, we
analyse these results with respect to standard geneticmea-
sures as well as with respect to the inferred maximum-
likelihood-based phylogenies. For instance, we show here
that the average pairwise distance in the MSA of a dataset
of widely-studiedmtDNA sequences is reduced by around
5% whenMARS is applied before MSA is performed.

Definitions and notation
We begin with a few definitions, following [43], to allow
further understanding. We think of a string (or sequence)
x of length m as an array x[ 0 . .m − 1] where every x[ i],
0 ≤ i < m, is a letter drawn from some fixed alphabet
� of size |�| = O(1). String ε denotes the empty string
which has length 0. Given string y, a string x is considered
a factor of y if there exist two strings u and v, such that
y = uxv. Consider the strings x, y,u, and v, such that y =
uxv. We call x a prefix of y if u = ε; we call x a suffix of
y if v = ε. When x is a factor of y, we say that x occurs in
y. Each occurrence of x can be denoted by a position in y.

We say that x occurs at the starting position i in y when
y[i. . i+m−1]= x; alternatively wemay refer to the ending
position i + m − 1 of x in y.
A circular string of length m may be informally defined

as a standard linear string where the first- and last-
occurring letters are wrapped around and positioned next
to each other. Considering this definition, the same circu-
lar string can be seen as m different linear strings, which
would all be considered equivalent. Given a string x of
length m, we denote by xi = x[ i . .m − 1] x[ 0 . . i − 1],
0 < i < m, the ith rotation of x and x0 = x. By look-
ing at the string x = x0 = baababac; this string has the
following rotations: x1 = aababacb, x2 = ababacba,
x3 = babacbaa, etc.
Given a string x of length m and a string y of length n,

the edit distance [44], denoted by δE(x, y), is defined as
the minimum total cost of operations required to trans-
form string x into string y. In general, the allowed edit
operations are as follows:

• Insertion: insert a letter in y, not present in x;
(ε, b), b �= ε

• Deletion: delete a letter in y, present in x; (a, ε), a �= ε

• Substitution: replace a letter in y with a letter in x;
(a, b), a �= b, and a, b �= ε.

A q-gram is defined as any string of length q over alpha-
bet �. The set of all such q-grams is denoted by �q. The
q-gram profile of a string x of lengthm is the vectorGq(x),
where q > 0, and Gq(x)[ v] denotes the total number of
occurrences of q-gram v ∈ �q in x.
Given strings x of lengthm and y of length n ≥ m and an

integer q > 0, the q-gram distance Dq(x, y) is defined as:

∑

v∈�q

∣∣Gq(x)[ v]−Gq(y)[ v]
∣∣ . (1)

For a given integer parameter β ≥ 1, a generalisation
of the q-gram distance can be defined by partitioning x
and y in β blocks as evenly as possible, and computing the
q-gram distance between each pair of blocks, one from x
and one from y. The rationale is to enforce locality in the
resulting overall distance [35]. Given strings x of lengthm
and y of length n ≥ m and integers β ≥ 1 and q > 0, the
β-blockwise q-gram distance Dβ ,q(x, y) is defined as:

β−1∑

j=0
Dq

(
x
[
jm
β

. . .
(j + 1)m

β
− 1

]
, y

[
jn
β

. . .
(j + 1)n

β
− 1

])
.

(2)

We assume that the lengths m of x and n of y are both
multiples of β , so that x and y are partitioned into β

blocks, each of size m
β
and n

β
, respectively.
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Implementation
AlgorithmMARS
We present MARS; a heuristic algorithm for improving
MCSA using refined sequences. For a set of d input
sequences s0, . . . , sd−1, the task is to output an array R of
size d such that sR[i], for all 0 ≤ i < d, denotes the set of
rotated sequences, which are then input into the preferred
MSA algorithm to obtain an improved alignment. MARS
is based on a three-stage heuristic approach:

1. Initially a d × d matrix M holding two values e and r
per cell, is computed; whereM[ i, j] .e holds the edit
distance between sequences sM[i,j].r

i and sj. Intuitively,
we try to compute the value r that minimises e, that
is, the cyclic edit distance.

2. The neighbour-joining clustering method is carried
out on the computed distances to produce a guide
tree.

3. Finally, progressive sequence alignment using refined
sequences is carried out using the sequence ordering
in the guide tree.

Stage 1. Pairwise cyclic edit distance
In this stage, we make use of a heuristic method for
computing the cyclic edit distance between two strings.
This method is based on Grossi et al’s alignment-free
algorithm [35] for circular sequence comparison, where
the β-blockwise q-gram distance between two circular
sequences x and y is computed. Specifically, the algorithm
finds the rotation r of x such that the β-blockwise q-gram
distance between xr and y is minimal.
The second step of this stage involves a refinement of

the rotation for a pair of sequences, to obtain a more accu-
rate value for r. An input parameter 0 < P ≤ β

3 is used to
create refined sequences of length 3× P × m

β
using xr and

y, where m is the length of xr . The first refined sequence
is xr0x

r
1x

r
2: x

r
0 is a prefix (of P out of β blocks) of string

xr ; xr1 is a string of the same length as the prefix consist-
ing only of letter $ /∈ �; and xr2 is a suffix (of P out of β

blocks) of string xr . The same is done for string y, resulting
in a refined sequence of the same form y0y1y2. Note that
large values for P would result in long sequences, improv-
ing the refinement of the rotation, but slowing down the
computation. A score is calculated for all rotations of
these two smaller sequences using Needleman-Wunsch
[4] or Gotoh’s algorithm [5], making use of substitution
matrices for nucleotides or amino acids accordingly. The
rotation with the maximum score is identified as the new
best-aligned rotation and r is updated if required.
The final step of this stage involves computing the edit

distance between the new pair of refined sequences. For
unit costs, this is done using Myers bit-vector algorithm
[45] in time O

(⌈m
w

⌉
n
)
, where w is the word size of the

machine. For non-unit costs this is computed using the

standard dynamic programming solution for edit distance
[44] computation in timeO(mn). Hence, for a dataset with
d sequences, a d × d matrix M is populated with the edit
distance e and rotation r for each pair of sequences.

Remark for Stage 1 The simple cost scheme used in
Stage 1 for the pairwise cyclic edit distance is sufficient
for computing fast approximate rotations. A more complex
(biologically relevant) scoring scheme is used in Stage 3 for
refining these initial rotations. A yet more complex scoring
scheme, required for the final MSA of the sequences out-
put byMARS, can be carried out later on by using any MSA
program, and is therefore beyond the scope of this article.

Stage 2. Guide tree
The guide tree is constructed using Saitou and Nei’s
neighbour-joining algorithm [46], where a binary tree is
produced using the edit distance data from matrixM.

Stage 3. Progressive alignment
The guide tree is used to determine the ordering of the
alignment of the sequences. Three types of alignments
may occur:

• Case 1: A sequence with another sequence;
• Case 2: A sequence with a profile;
• Case 3: A profile with another profile;

where a profile is an alignment viewed as a sequence by
regarding each column as a letter [14]. We also need to
extend the alphabet to �′ = � ∪ {−} to represent inser-
tions or deletions of letters (gaps). For the rest of this stage,
we describe our method using the Needleman-Wunsch
algorithm for simplicity althoughGotoh’s algorithm is also
applicable.
For Case 1, where only two sequences are to be aligned,

note that rotation r has been previously computed and
stored in matrixM during Stage 1 of the algorithm. These
two sequences are aligned using Needleman-Wunsch
algorithm and stored as a new profile made up of the
alignment of two individual sequences which now include
gaps. In this case, for two sequences si and sj, we set
R[ i] := M[ i, j] .r and R[ j] := 0, as the second sequence is
left unrotated.
The remaining two cases of alignments are a gener-

alisation of the pairwise circular sequence alignment to
profiles. In the alignment of a pair of sequences, matrixM
provides a reference as to which rotation r is required. In
the case of a sequence and a profile (Case 2), this may also
indirectly be used as we explain below.
As previously seen, when two sequences si and sj are

aligned, one sequence sj remains unrotated. This pair then
becomes a profile which we will call profile A. Given the
same occurs for another pair of sequences, profile B is cre-
ated also with one unrotated sequence, sj′ . When profile
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A is aligned with profile B, another profile, profile C is
created. In this case, only the sequences in profile B are
rotated to be aligned with profile A. This results in sj to
be left unrotated in profile C where sj previously occurred
in profile A. Given a sequence sk to be aligned with pro-
file C, this sequence has a current rotation of 0 as has not
yet been aligned with another sequence or a profile. We
can identify which rotation is needed to rotate sequence
sk to be aligned with profile C, by using the single rotation
M[k, j] .r.
The same condition applies when aligning two pro-

files (Case 3). All sequences in profile B will need to
be rotated to be aligned with profile A. However, once
a single sequence sj in profile A as well as a single
sequence sj′ in profile B with r = 0 have been identi-
fied, in this case sj′ has already been aligned with other
sequences. This means gaps may have been inserted and
M[ j′, j] .r will no longer be an accurate rotation. By count-
ing the total number g of individual gaps inserted in
sj′ , between positions 0 and the single rotation M[ j′, j] .r
of sj′ , the new suitable rotation for profile B would be
M[ j′, j] .r + g.

Example Consider the following sequences:

s0: TAGTAGCT
s1: AAGTAAGCTA
s2: AAGCCTTTAGT
s3: AAGTAAGCT
s4: TTAATATAGCC

Let profile A be:
s0: A-G-C--TTA-GT
s1: AAG-C--TAAAGT
s2: AAGCC-TTTA-GT

Let profile B be:
s3: A---AGTAAG-C--T
s4: A-ATA-TA-GCC-TT

Profile C:
s0: A-G-C--TT-A--GT
s1: AAG-C--TA-A-AGT
s2: AAGCC-TTT-A--GT
s3: AAG-C--TA---AGT
s4: A-GCC-TTA-ATA-T

By looking at the original set of sequences, it is clear s2
in profile A and s3 in profile B have a rotation of 0. The
other sequences have been rotated and aligned with the
remaining sequences in their profile. It is also clear from
the original sequences that M[ 3, 2] .r = 4. When aligning
profile B with profile A, the rotation of r = 4 is no longer
accurate due to gaps inserted in s3. As g = 3 gaps have been

inserted between positions 0 and r of sequence s3, the final
accurate rotation for profile B is M[3, 2] .r+ g = 4+ 3 = 7
(see profile C).

In the instance when a sequence is to be aligned with
a profile or two profiles are to be aligned, a generalisa-
tion of the Needleman-Wunsch algorithm is used, similar
to that by [47], to compute the alignment score. Profile A
will always hold the largest number of sequences, allowing
profile B with fewer sequences to be rotated.
A frequency matrix F is stored, which holds the fre-

quency of the occurrence of each letter in each column
in profile A. Equation 3 shows the scoring scheme used
for each alignment, where S[ i, j] holds the alignment score
for column i in profile A and column j in profile B. gA is
the cost of inserting a gap into profile A and gB likewise
for profile B. Matrix S is initialised in the same way as
in the Needleman-Wunsch algorithm; and sim(B[ k, j] , c)
denotes the similarity score between letter c ∈ �′ and the
letter at column j of row k (representing sequence sk) in
profile B.

S[i, j] = max

⎧
⎨

⎩

S[ i − 1, j − 1]+pScore(i, j)
S[ i − 1, j]+gB
S[ i, j − 1]+gA

pScore(i, j) =
∑

c∈�′
sim(B[k, j] , c) × F[c, i] 0 ≤ k< |B| (3)

This scoring scheme can be applied naïvely for profile
A and every rotation of profile B to find the maximum
score, equating to the best-aligned rotation. However, as
information about rotations has already been computed
in Stage 1, we may use only some part of profile B to fur-
ther refine these rotations. This refinement is required
due to the heuristic computation of all pairwise cyclic
edit distances in Stage 1 of the algorithm. To this end,
we generalise the second step of Stage 1 to profiles. This
step of Stage 1 involves a refinement of the rotation for
a pair of sequences via considering only the two ends
of each sequence, to create two refined sequences. Sim-
ilarly here we generalise this idea to refine the rotation
for a pair of profiles via considering only the two ends
of each profile, to recreate the profiles into profiles with
refined sequences. The rotation r with the maximum
score according to the aforementioned scoring scheme
is identified as the best-aligned rotation and array R is
updated by adding r to the current rotation in R[ i], for all
si in profile B.

Results
MARS was implemented in the C++ programming lan-
guage as a program to compute the rotations (cyclic shifts)
required to best align a set of input sequences. Given a
set of d sequences in multiFASTA format, the length �
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of the β blocks to be used, the length q of the q-grams,
and a real number P for the refinement, MARS computes
an array R according to the algorithm described in the
“Implementation” section. There is also a number of
optional input parameters related to Gotoh’s algorithm,
such as the gap opening and extension penalty scores
for pairwise and multiple sequence alignment. A differ-
ent substitution matrix can be used for scoring nucleotide
or amino acid matches and mismatches. The output of
MARS is another multiFASTA file consisting of d refined
sequences, produced using the rotations computed in R.
The output of MARS can then be used as input to the
preferred MSA program, such as Clustal �, MUSCLE, or
T-Coffee.
The implementation is distributed under the GNU

General Public License (GPL), and it is available freely
at http://github.com/lorrainea/mars. Experimental results
were also produced for Cyclope and BEAR to compare
their performance against MARS. The experiments were
conducted on a computer using an Intel Core i5-4690
CPU at 3.50 GHz under GNU/Linux. All programs were
compiled with g++ version 4.8.5 at optimisation level
3 (O3).

Synthetic data
DNA datasets were simulated using INDELible [48], which
produces sequences in a multiFASTA file. A rate for inser-
tions, deletions, and substitutions are defined by the user
to vary similarity between the sequences. All datasets used
in the experiments are denoted in the form A.B.C, where
A represents the number of sequences in the dataset; B
the average length of the sequences; and C the percentage
of dissimilarity between the sequences. Substitution rates
of 5, 20, and 35% were used to produce the datasets under
the Jukes and Cantor (JC69) [49] substitution model. The
insertion and deletion rates were set to 4 and 6% respec-
tively, relative to a substitution rate of 1.
Nine datasets were simulated to evaluate the accuracy of

the proposed method. Each dataset consists of a file with
a varying number of sequences, all with an average length
of 2500 base pairs (bp). The files in Datasets 1 − 3 each
contain 12 sequences. Those in Datasets 4−6 each contain
25 sequences; and Datasets 7 − 9 contain 50 sequences.
All input datasets referred to in this section are publicly
maintained at theMARS website.
For all datasets, we made use of the following values

for the mandatory parameters of MARS: q = 5, � = 50,
and P = 1.0. Table 1 shows the results for the synthetic
datasets made up of three files which each contained
12 sequences (Datasets 1–3). The first column shows
results for the original datasets aligned using Clustal�. All
sequences in these datasets were then randomly rotated,
denoted in Table 1 by A.B.C.rot. The second column
shows the results produced when MARS was first used

Table 1 Standard genetic measures for Datasets 1-3

Program Clustal � MARS+ Clustal � MUSCLE MARS+ MUSCLE

Dataset 1 12.2500.5 12.2500.5.rot 12.2500.5 12.2500.5.rot

Length 2,503 2,503 2,503 2,503

PM Sites 698 698 689 689

Transitions 3,845 3,849 3,804 3,804

Transversions 4,245 4,251 4,205 4,205

Substitutions 12,254 12,264 12,111 12,111

Indels 360 360 388 388

AVPD 191 191 189 189

Dataset 2 12.2500.20 12.2500.20.rot 12.2500.20 12.2500.20.rot

Length 2,662 2,664 2,674 2,674

PM Sites 2,228 2,230 2,155 2,155

Transitions 16,819 16,502 16,171 16,184

Transversions 15,374 15,719 14,422 14,422

Substitutions 47,754 47,799 44,261 44,280

Indels 10,545 10,707 8,817 8,815

AVPD 883 886 804 804

Dataset 3 12.2500.35 12.2500.35.rot 12.2500.35 12.2500.35.rot

Length 2,526 2,528 2,528 2,528

PM Sites 2,062 2,070 2,045 2,045

Transitions 18,385 18,167 18,362 18,362

Transversions 17,642 17,728 17,316 17,316

Substitutions 54,573 54,533 53,807 53,807

Indels 2,403 2,575 2,253 2,253

AVPD 863 865 849 849

to refine the sequences in the A.B.C.rot dataset, to find
the best-aligned rotations; and then aligned them again
using Clustal �. The third and fourth columns show like-
wise using MUSCLE to align the sequences. Tables 2 and 3
show the results produced for Datasets 4–6 and 7–9,
respectively.
To evaluate the accuracy of MARS seven standard

genetic measures were used: the length of the MSA; the
number of polymorphic sites (PM sites); the number of
transitions and transversions; substitutions, insertions,
and deletions were also counted; as well as the average
distance between each pair of sequences in the dataset
(AVPD).

Remark for accuracy The use of standard genetic mea-
sures to test the accuracy of MARS with synthetic data is
sufficient. This is due to the fact that the main purpose of
this test is not to check whether we obtain an MSA that is
biologically relevant. The ultimate task here was to show
that whenMARS is applied on the A.B.C.rot datasets before
MSA is performed we obtainMSAs whose standard genetic

http://github.com/lorrainea/mars
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Table 2 Standard genetic measures for Datasets 4–6

Program Clustal � MARS+ Clustal � MUSCLE MARS+ MUSCLE

Dataset 4 25.2500.5 25.2500.5.rot 25.2500.5 25.2500.5.rot

Length 2,515 2,515 2,515 2,515

PM Sites 1,243 1,238 1,230 1,230

Transitions 20,438 20,422 20,353 20,353

Transversions 20,672 20,587 20,498 20,498

Substitutions 61,780 61,523 61,289 61,289

Indels 2,582 1,932 1,842 1,842

AVPD 214 211 210 210

Dataset 5 25.2500.20 25.2500.20.rot 25.2500.20 25.2500.20.rot

Length 2,600 2,595 2,590 2,591

PM Sites 2,585 2,577 2,572 2,572

Transitions 105,738 105,596 106,070 106,256

Transversions 104,778 104,451 103,335 103,238

Substitutions 313,329 312,311 309,953 310,056

Indels 20,524 20,658 13,678 13,784

AVPD 1,112 1,109 1,078 1,079

Dataset 6 25.2500.35 25.2500.35.rot 25.2500.35 25.2500.35.rot

Length 2,726 2,751 2,722 2,716

PM Sites 2,700 2,727 2,684 2,679

Transitions 101,801 102,471 104,001 103,796

Transversions 104,993 104,632 100,595 101,078

Substitutions 310,597 311,468 304,100 304,481

Indels 47,080 58,288 35,956 35,110

AVPD 1,192 1,232 1,133 1,131

measures are similar or even identical to the MSAs of the
A.B.C datasets (and this cannot occur by chance) when
using the same MSA program.

The results show indeed that MARS performs extremely
well for all datasets. This can be seen through the high
similarity between the measurements for the original and
the refined datasets. Notice that, in particular with MUS-
CLE, we obtain an identical or less average pairwise dis-
tance in 8 out of 9 cases between the original and the
refined datasets produced by usingMARS, despite the fact
that we had first randomly rotated all sequences (compare
the A.B.C to the A.B.C.rot columns).
RAxML [50], a maximum-likelihood-based program for

phylogenetic analyses, was used to identify the sim-
ilarity between the phylogenetic trees inferred using
the original and refined datasets. A comparison with
respect to the phylogenetic trees obtained using MUS-
CLE and RAxML was made between the alignment of the
original datasets and that of the datasets produced by
refining the A.B.C.rot datasets using MARS, BEAR, and

Table 3 Standard genetic measures for Datasets 7–9

Program Clustal � MARS+ Clustal � MUSCLE MARS+ MUSCLE

Dataset 7 50.2500.5 50.2500.5.rot 50.2500.5 50.2500.5.rot

Length 2,524 2,524 2,524 2,524

PM Sites 1,875 1,882 1,861 1,861

Transitions 86,781 87,190 86,628 86,628

Transversions 91,334 91,584 91,040 91,040

Substitutions 262,804 263,687 261,248 261,248

Indels 11,531 10,771 8,231 8,231

AVPD 223 224 219 219

Dataset 8 50.2500.20 50.2500.20.rot 50.2500.20 50.2500.20.rot

Length 2,576 2,580 2,582 2,582

PM Sites 2,568 2,573 2,575 2,575

Transitions 284,302 284,667 282,638 282,670

Transversions 283,651 284,673 279,451 279,462

Substitutions 852,738 855,055 842,564 842,672

Indels 39,273 45,769 33,371 33,369

AVPD 728 735 715 715

Dataset 9 50.2500.35 50.2500.35.rot 50.2500.35 50.2500.35.rot

Length 2,675 2,697 2,679 2,667

PM Sites 2,675 2,696 2,678 2,666

Transitions 424,910 423,592 426,230 426,063

Transversions 431,453 428,874 423,113 422,916

Substitutions 1,282,515 1,278,286 1,267,683 1,267,699

Indels 92,060 97,398 73,890 72,718

AVPD 1,122 1,123 1,095 1,094

Cyclope. The Robinson–Foulds (RF) metric was used to
measure the distance between each pair of trees. The
same parameter values were used for MARS: q = 5,
� = 50, and P = 1.0. The fixed-length approximate
string matching method with parameter values w = 40
and k = 25 under the edit distance model, were used
for BEAR, where w is the factor length used and k is
the maximum distance allowed. Parameter v was used
for Cyclope to compute, similar to MARS, a tree-guided
alignment.
Table 4 shows that the relative RF distance between the

original datasets and those refined with MARS is 0 in all
cases, showing that MARS has been able to identify the
best-aligned rotations, with respect to the inferred trees,
for all nine datasets, outperforming BEAR and Cyclope, for
which we obtain non-zero values in some cases.

Real data
In this section we present the results for three datasets
used to evaluate the effectiveness of MARS with real
data. The first dataset (Mammals) includes 12 mtDNA
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Table 4 Relative RF distance between trees obtained with
original and refined datasets

Dataset BEAR Cyclope MARS

12.2500.5 0.000 0.000 0.000

12.2500.20 0.000 0.000 0.000

12.2500.35 0.000 0.000 0.000

25.2500.5 0.000 0.000 0.000

25.2500.20 0.000 0.000 0.000

25.2500.35 0.000 0.045 0.000

50.2500.5 0.021 0.000 0.000

50.2500.20 0.000 0.000 0.000

50.2500.35 0.000 0.000 0.000

Non-zero values shown in bold

sequences of mammals, the second dataset (Primates)
includes 16 mtDNA sequences of primates, and the last
one (Viroids) includes 18 viroid RNA sequences. All input
datasets referred to in this section are publicly maintained
at the MARS website. The average sequence length for
Mammals is 16,777 bp, for Primates is 16,581 bp, and for
Viroids is 363 bp.
Table 5 shows the results from the original alignments

and the alignments produced after refining these datasets
with MARS. It is evident that using MARS produces a sig-
nificantly better alignment for these real datasets, which
can specifically be seen through the results produced by
aligning with MUSCLE. For instance, the average pairwise
distance in the MSA of Primates is reduced by around
5% when MARS is applied before MSA is performed with
MUSCLE.
Since time-accuracy is a standard trade-off of heuristic

methods, in order to evaluate the time performance of the
programs, we compared the resulting MSA along with the
time taken to produce it using BEAR, Cyclope, and MARS
withMUSCLE. Parameter values h = 100 and k = 60 were
used to measure accuracy for the Mammals and Primates
datasets for BEAR; w = 40 and k = 25 were used for
the Viroids dataset. Parameter v was used for Cyclope to
compute a tree-guided alignment. The following param-
eter values were used to test the Mammals and Primates
datasets for MARS: q = 5, � = 100, and P = 2.0; q = 4,
� = 25, and P = 1.0 were used to test the Viroids dataset.
Table 6 shows the time taken to execute the datasets;

for the sake of succinctness, Table 6 only presents the
average pairwise distance measure for the quality of the
MSAs. The results show that MARS has the best time-
accuracy performance: BEAR is the fastest program for
two of the three datasets, but produces very low-quality
MSAs; Cyclope is very slow but produces much better
MSAs than BEAR; and MARS produces better MSAs than
both BEAR and Cyclope and is more than four times faster
than Cyclope.

Table 5 Standard genetic measures for real data

Program Clustal � MARS+ Clustal � MUSCLE MARS+ MUSCLE

Mammals

Length 19,452 18,829 19,784 19,180

PM Sites 12,913 12,265 13,076 12,454

Transitions 135,380 137,589 135,794 137,835

Transversions 81,945 84,188 76,894 78,067

Substitutions 295,684 302,331 282,608 286,747

Indels 82,494 59,348 91,164 71,042

AVPD 5729 5479 5663 5421

Primates

Length 18,176 17,568 18,189 17,669

PM Sites 11,086 10,450 11,023 10,454

Transitions 259,921 261,995 262,179 264,245

Transversions 100,708 102,336 95,403 96,010

Substitutions 439,929 445,252 429,532 432,993

Indels 80,851 52,727 82,117 55,525

AVPD 4339 4149 4263 4070

Viroids

Length 566 498 486 476

PM Sites 555 484 475 459

Transitions 7567 7485 9338 9101

Transversions 5837 5998 5491 5393

Substitutions 19,436 19,291 20,828 20,374

Indels 19,003 18,383 14,323 13,491

AVPD 251 246 229 221

A common reliability measure of MSAs is the compu-
tation of the transitive consistency score (TCS) [51]. The
TCS has been shown to outperform existing programs
used to identify structurally correct portions of an MSA,
as well as programs which aim to improve phylogenetic
tree reconstruction [8]. BEAR, Cyclope, and MARS were
used to identify the best rotations for the sequences in
the Viroids dataset; the output of each, as well as the
unrotated dataset was then aligned using MUSCLE. The
following TCS was computed for the Viroids dataset when
unrotated: 260, as well as when rotated with BEAR, Cyc-
lope, andMARS, respectively: 249, 271, and 293. The same

Table 6 Elapsed-time comparison using real data

Program BEAR Cyclope MARS

Dataset AVPD Time (s) AVPD Time (s) AVPD Time (s)

Mammals 5517 262.96 5422 1367.17 5421 333.50

Primates 4167 465.17 4080 2179.68 4070 463.25

Viroids 232 0.30 223 1.44 221 0.82
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was done using Clustal � to align the output sequences,
with a TCS of 249 for the unrotated dataset. The fol-
lowing scores were computed for the rotated dataset in
the respective order: 233, 244, and 269. These results
show that when using two different MSA programs,MARS
obtains a higher TCS than the unrotated dataset in both
cases, outperforming BEAR and Cyclope, which do not
always obtain a higher TCS compared to that of the
unrotated dataset.

Conclusions
A fundamental assumption of all widely-used MSA tech-
niques is that the left- and right-most positions of the
input sequences are relevant to the alignment. This is not
always the case in the process of MSA of mtDNA, viroid,
viral or other genomes, which have a circular molecular
structure.
We presented MARS, a new heuristic method for

improving Multiple circular sequence Alignment using
Refined Sequences. Experimental results, using real and
synthetic data, show that MARS improves the align-
ments, with respect to standard genetic measures and
the inferred maximum-likelihood-based phylogenies, and
outperforms state-of-the-art methods both in terms of
accuracy and efficiency. We anticipate that further devel-
opment of MARS would be desirable upon dissemination.
Our immediate target is to employ low-level code optimi-
sation and thread-level parallelism to further enhance the
performance ofMARS. A web-service for improvingmulti-
ple circular sequence alignment based onMARS is already
under way.
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