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Integration of VDR genome wide binding ® e
and GWAS genetic variation data reveals
co-occurrence of VDR and NF-kB binding

that is linked to immune phenotypes

Prashant K. Singh'", Patrick R. van den Berg®', Mark D. Long', Angie Vreugdenhil’, Laurie Grieshober?,
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Abstract

Background: The nuclear hormone receptor superfamily acts as a genomic sensor of diverse signals. Their actions
are often intertwined with other transcription factors. Nuclear hormone receptors are targets for many therapeutic
drugs, and include the vitamin D receptor (VDR). VDR signaling is pleotropic, being implicated in calcaemic function,
antibacterial actions, growth control, immunomodulation and anti-cancer actions. Specifically, we hypothesized that
the biologically significant relationships between the VDR transcriptome and phenotype-associated biology could be
discovered by integrating the known VDR transcription factor binding sites and all published trait- and disease-
associated SNPs. By integrating VDR genome-wide binding data (ChIP-seq) with the National Human Genome
Research Institute (NHGRI) GWAS catalog of SNPs we would see where and which target gene interactions and
pathways are impacted by inherited genetic variation in VDR binding sites, indicating which of VDR's multiple
functions are most biologically significant.

Results: To examine how genetic variation impacts VDR function we overlapped 23,409 VDR genomic binding
peaks from six VDR ChIP-seq datasets with 191,482 SNPs, derived from GWAS-significant SNPs (Lead SNPs) and
their correlated variants (> 0.8) from HapMap3 and the 1000 genomes project. In total, 574 SNPs (71 Lead and
503 SNPs in linkage disequilibrium with Lead SNPs) were present at VDR binding loci and associated with 211
phenotypes. For each phenotype a hypergeometric test was used to determine if SNPs were enriched at VDR
binding sites. Bonferroni correction for multiple testing across the 211 phenotypes yielded 42 SNPs that were
either disease- or phenotype-associated with seven predominately immune related including self-reported allergy;
esophageal cancer was the only cancer phenotype. Motif analyses revealed that only two of these 42 SNPs reside
within a canonical VDR binding site (DR3 motif), and that 1/3 of the 42 SNPs significantly impacted binding and
gene regulation by other transcription factors, including NF-kB. This suggests a plausible link for the potential
cross-talk between VDR and NF-kB.
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Conclusions: These analyses showed that VDR peaks are enriched for SNPs associated with immune phenotypes
suggesting that VDR immunomodulatory functions are amongst its most important actions. The enrichment of
genetic variation in non-DR3 motifs suggests a significant role for the VDR to bind in multimeric complexes containing
other transcription factors that are the primary DNA binding component. Our work provides a framework for the
combination of ChIP-seq and GWAS findings to provide insight into the underlying phenotype-associated biology of a

given transcription factor.
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Background

The annotation of the human genome by ENCODE,
Roadmap Epigenome, FANTOM and other consortia
[1-6] has revealed the widespread distribution of tran-
scription factor binding loci throughout the genome.
These patterns, known as cistromes, include numerous
enhancers that are often extremely distal to genes [7-13].
The diversity and function of these distal enhancer sites
suggests a hitherto unsuspected level of complexity to
transcriptional control (reviewed in [14]). Recently, it has
emerged that transcription factors including nuclear hor-
mone receptors can bind at enhancers in both direct con-
tact with DNA (cis) and indirectly in contact with another
protein that in turn bind to DNA (trans). Furthermore
this type of trams binding is often absent of canonical
motifs but associated with significant levels of tran-
scription factor clustering [15-17]. In parallel, large
scale genome-wide association studies (GWAS) of gen-
etic variation have revealed that the vast majority of
SNPs are contained in areas of the genome that are
outside of gene exons, and therefore do not have the
potential to make a direct contribution to protein struc-
ture [18]. Taken together, these findings of genomic distri-
bution of transcription factor binding sites and widespread
genetic variation at non-coding sites raises the possibility
that phenotype- and disease-associated SNPs at distal
regions impact transcription factor binding that in turn
is associated with disease [18, 19].

Testing the possibility that genetic variation impacts
transcription factor function that underpins trait differ-
ences and disease phenotypes is analytically challen-
ging, given the size of the datasets and the potential for
false discovery. Various groups have addressed this
challenge; notably, both the ENCODE and Roadmap
Epigenome consortia leveraged the remarkable volume
of ChIP-seq xdata they generated and merged the binding
sites with GWAS data to reveal and rank sites where
SNPs appear to have a significant impact on the activity
of multiple transcription factors [4, 20, 21]. Whilst
these analyses represented a highly comprehensive
approach, undertaking ChIP-seq with several hundred
DNA binding factors, this still represents a fraction of

the approximately 3000 different transcription regula-
tory proteins in humans.

Rather than taking a SNP-centric approach [22], we
have approached this problem by focusing on a specific
transcription factor (one that is outside of those analyzed
by the ENCODE and Roadmap Epigenome consortia).
This is potentially a complementary and attractive
approach, as it overlays with the work flow of wet-lab
based biologists who generally approach biological
questions through the lens of an in-depth understanding
of a single transcription factor, or transcription factor
family. Specifically, we hypothesize that the biologically
significant relationships between transcription factor
genomic interactions and phenotype-associated biology
can be discovered by integrating the known binding
sites and all trait- and disease-associated common
SNPs. This exploits the value of both datasets to identify
the biologically significant intersection of transcription
factor binding and genetic variation.

In the current study we have addressed the challenge
of dissecting the multiple actions transcription factor
function by examining nuclear hormone receptor ac-
tions. The nuclear hormone receptor superfamily acts as
an integrated genomic sensor of dietary, environmental
and hormonal signals. These receptors represent some
of the most successful examples of targeted therapies
[23-26], and in human disease they represent the target
for approximately 15% of all pharmacologic drugs [27].
Furthermore members of this superfamily are expressed
in virtually all cell types and functionally are highly inte-
grated both with each other [28-30] and with the
actions of other signaling pathways [31].

As a model transcription factor we selected the vita-
min D receptor (VDR/NRI1I1) [32] from this superfamily,
and investigated the association between genetic variation
at VDR binding sites and disease susceptibility. The VDR
is an attractive transcription factor with which to dissect
pleotropic functions because its actions have been identi-
fied or implicated in many physiological processes. VDR
actions include classical endocrine functions to regulate
serum calcium levels, and are also related to the control of
cell proliferation and differentiation [33], anti-bacterial
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functions [34—-38] and immuno-modulatory functions
[39, 40]. As a result, roles for VDR function and dysfunc-
tion have been implicated in a wide range of complex phe-
notypes including autoimmunity, diabetes, cardiac health
and cancer [23, 33]. Reflecting the potential importance of
this receptor in public health, there are a number of
ongoing large-scale prospective studies that aim to address
whether supplementation of serum vitamin D levels can
have a significant health impact [41-43].

Attempts to explain this have focused heavily on how
the VDR impacts gene regulation. At the level of candi-
date target genes, the VDR has been demonstrated to
functionally interact with a wide range of other tran-
scription factors, including SP1 [44, 45] GATA4 [46],
HNF4a [47], CTCF [48], FOXO4 [49], STAT3 [50, 51],
and NF-kB [52, 53]. This latter interaction with NF-kB is
also supported by a number of studies that examined
the interactions between VDR signaling, and the control
of inflammatory phenotypes, and specifically the cross-
talk with NF-kB actions. These interactions are relatively
well described in intestinal systems and include direct
antagonism between VDR and NF-«B over the controls
of shared target genes [54—60].

Efforts to understand the DNA sequences bound by
the VDR have built on findings from other nuclear hor-
mone receptors [61-63], and biochemical approaches on
candidate target gene promoter regions. These approaches
identified a dual hexameric DNA motif spaced by 3 bp,
a so-called DR3 motif [64, 65], is bound with high affinity
by the VDR. However, other potential motifs have also
been identified [66], and the application of ChIP-seq
approaches to nuclear hormone receptors has revealed
binding site diversity and the importance of flanking
regions for cofactors to be biologically important to
determine function [67]. For example, VDR ChIP-seq
studies have been performed in different human cell
types [8—11, 68], in the presence and/or absence of ligand,
and revealed the impact of ligand binding on VDR
genomic targeting.

Each analysis revealed approximately 2,000 to 6,000
genomic loci normally distributed around transcription
start sites (TSS), reflecting the binomial distributions found
for other transcription factors [21, 68]. Another important
finding from these studies is that DR3 motif appears to be
the minority genomic element that directly binds the VDR,
and perhaps only 20% of genomic VDR binding sites con-
tain a DR3 motif. This low number may in part reflect
algorithm limitations for de novo motif discovery. Al-
though this number is increased following ligand treatment
(reviewed in [23]), this nonetheless suggests that the clas-
sical DR3 motif is the minority motif bound by the VDR.
This also suggests that there is considerable diversity in the
DNA sequences bound by VDR complexes, and that VDR
participates in both cis and trans genomic interactions.
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The apparently interactive nature of the VDR with
other transcription factors and the diversity in observed
binding sites for the VDR were catalysts for the current
study. Given the multiple actions that the VDR is impli-
cated in and the heterogeneity of VDR genomic binding
sites we further hypothesized that genetic variation may
be exploited to identify critical VDR genomic interactions.

Therefore the present study aimed to integrate VDR
genomic binding data (ChIP-seq) with GWAS SNPs to
provide novel insight into the interaction between disease/
phenotype associated SNPs and VDR binding. Further-
more, as it is clear that a SNP in linkage disequilibrium
with a GWAS SNP may be contained within a VDR bind-
ing region and we also included these SNPs in the total list
of SNPs examined (Fig. 1 Top). From these analyses, we
applied transcription factor motif searching and exploited
other ChIP-seq data to identify significant interactions
between the VDR and other transcription factors, notably
NF-kB. Taken together, we provide a statistically robust
approach and strong analytical framework centered
around transcription factor binding and the impact of
genetic variation to infer functionally significant pheno-
typic consequences of genetic variation on transcription
factor function.

Results

VDR binding overlaps with Lead and LD SNPs associated
with immune phenotypes

The analyses of the individual data sets from five VDR
ChIP-seq studies [8—11, 68] (Additional file 1: Table S1)
yielded a VDR consensus cistrome consisting of 23,409
non-overlapping genomic binding sites [68]. Lead SNPs
(10,432) were those downloaded directly from the
GWAS catalog, and LD SNPs selection resulted in
181,050 SNPs, respectively, for a total of 191,482 SNPs
associated with 930 unique phenotypes (as defined in
the GWAS catalog) from 1,566 studies (Fig. 1 Bottom
and Additional file 1: Table S2). The overlap of genomic
coordinates of these 191,482 SNPs with the 23,409 VDR
loci identified a total of 574 disease- or phenotype- asso-
ciated SNPs representing 211 unique traits under 506
unique VDR loci (Fig. 1 Bottom and Additional file 1:
Table S3). Hypergeometric analyses corrected for mul-
tiple testing yielded 42 unique SNPs associated with
seven different phenotypes. That is, the 42 SNPs that are
significantly associated, at the genome-wide level, with a
disease- or phenotype-associated trait, are also signifi-
cantly overrepresented at VDR binding loci in individual
and/or the combined dataset (Table 1).

To attempt to gauge if a VDR-SNP-trait relationship
was tissue specific we considered how common the rela-
tionships were across the different ChIP-seq data sets.
The seven traits significantly associated with the 42
disease- or phenotype-associated SNPs were identified in



Singh et al. BMC Genomics (2017) 18:132

Page 4 of 18

GWAS catalog

Eg§r€ fer
fREEL

FiF

# o
sy

KT "mrf-s"
ol ]
"'-'~m' s

TR

i¥

c
&
-

©

=
=

-

c

]
=
o
4
(%]

® cwassne |

? LD SNP

GWAS SNP under peak

VDR ChIP-seq

i —— sy o —

191482 SNPs

23409 VDR
peaks

LD SNP under peak

GWAS & LD SNP under peak

179221 1kG SNPs in LD
From 10,063 GWAS SNPs

12852 GWAS SNPss from

GWAS Catalog (4/3/14)

28520 HapMap SNPs in

From 6,154 GWAS SNPs

LD

181050 total LD SNPs
From 10,432 GWAS SNPs

!
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23409 VDR peaks

From 6 ChIP-seq experiments

DR3 motif analysis

9059 DR3-motifs from HOMER

574 trait SNPs under VDR peak: + 8897 out of 23409 VDR-peaks contain DR3
71 GWAS 483 LD SNPs * 191 outof 574 trait SNPs fall under DR3
+20LD + (from 363 containing peaks
GWAS SNps)

Associated with 211 traits

* 15 out of these
motif

191 SNPs fall under the DR3

in a DR3-type motif

Fig. 1 Schematic workflow and key findings of the study. (Top panel) shows the SNPs and ChiP-seq datasets. Examples of possible overlap of Lead
SNPs and SNPs in LD with Lead SNPs at genomic VDR loci are shown with examples of LD blocks. (Bottom panel) shows the number of SNPs identified
from individual data sets (GWAS catalog, HapMap3 and 1000 genome project). It also shows the number of SNPs under VDR peaks and SNPs

the lymphoblastoid cells and also in one other data set,
except for leprosy, which showed significant enrich-
ment in only the VDR ligand-stimulated colorectal

adenocarcinoma LS180 cells. Esophageal cancer (squa-
mous cell), showed significant enrichment in more than
one VDR dataset (p =0.0001), and it was also amongst
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Table 1 List of trait SNPs showing significant enrichment for associated traits

Trait (A) Trait SNPs (No of SNPs  (B) No. of Trait SNPs LD SNP/Lead Total No. of SNPs Corrected VDR peak set
associated with the trait ~ under VDR peaks SNP under VDR peaks p-value
(GWAS +LD)

Esophageal cancer 160 7 rs4686848/ 574 0.0001 Combined

(squamous cell) 152239612
152097461/
152239815
rs2239815/
rs2239815
152269577/
152239815
1s5752809/
152239815
1s5752812/
152239815
rs763073/
rs2239815

160 4 152097461/ 149 0.002 GM10855.D03
rs2239815
152269577/
rs2239815
rs5752809/
rs2239815
rs5752812/
rs2239815

Leprosy 187 4 rs11231770/ 78 0.0003  LS180.03

1s538147

rs11231771/

1s538147

rs10897487/

1s538147

rs475032/

15538147

Mean corpuscular 148 5 rs4366668/ 574 0.02 Combined
hemoglobin rs6494537

152974750/

rs11085824

rs131807/

470119

rs131806/

470119

rs131804/

1470119

148 4 1s4366668/ 121 0.0006 GM10861.Veh

1s6494537

152974750/

rs11085824

rs131806/

rs470119

rs131804/

rs470119

148 3 154366668/ 81 0.008 GM10855.Veh
rs6494537
152974750/
rs11085824
rs131806/
rs470119

Helicobacter pylori 22 3 rs10012017/ 574 0.008 Combined
serologic status rs10004195

rs10034903/

rs10004195

rs10004195/

rs10004195

22 3 rs10012017/ 316 0.001 GM10861.D3
rs10004195
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Table 1 List of trait SNPs showing significant enrichment for associated traits (Continued)
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Vitiligo 463

463

463

Self-reported allergy 400

Celiac disease 576

rs10034903/
rs10004195
rs10004195/
rs10004195

1510824732/
rs11593576
rs10876864/
rs10876864
rs4807000/
16510827
rs41271391/
rs59374417
rs16829980/
159374417
rs885654/
rs59374417
1867234/
159374417
157628982/
rs9851967

1510824732/
rs11593576
rs10876864/
rs10876864
rs4807000/
rs6510827
rs41271391/
1559374417
rs16829980/
159374417
rs885654/
1559374417
15867234/
159374417

rs10876864/
rs10876864
141271391/
1s59374417
rs16829980/
1s59374417
rs885654/
rs59374417
1867234/
1s59374417

rs10174949/
rs10174949
rs10178845/
rs10174949
rs5743566/
rs2101521
1s5743565/
rs2101521
rs45588337/
rs2101521
rs55830619/
rs2101521

rs1250567/
rs1250552
151250568/
rs1250552
1512924957/
rs12928822
rs12928822/
rs12928822
1534289272/
rs13098911

574

316

149

316

574

0.02

0.003

0.007

0.012

0016

Combined

GM10861.D3

GM10855.03

GM10861.D3

Combined
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Table 1 List of trait SNPs showing significant enrichment for associated traits (Continued)

1571327040/
rs13098911
rs17035355/
rs17035378
rs2984920/
2816316
rs4310388/
rs3748816

For each trait, the number of SNPs (GWAS + LD; (B)) under VDR peaks was compared to the total number of SNPs (GWAS + LD; (A)) associated with the trait.
The significance of enrichment was tested by a hypergeometric test and the p-values were corrected using Bonferroni (corrected p-value). LD SNP/Lead SNP
shows the SNPs under VDR peaks (Lead SNP and/or LD SNPs). The lead SNPs which are also present under VDR peaks are shown in bold. VDR peak set is the
the number of data sets in which the VDR peak and SNP relationship was found; Combined = all the peaks from six studies considered together, or cell line
and treatment specific data set (D3 = treated with VDR ligand, Veh = vehicle control). Peaks represent the data sets in which the traits showed significant
enrichment. This analysis revealed 42 unique SNPs associated with VDR binding and enrichment of a trait

the significant traits within the ligand-stimulated ChIP-
seq dataset in the CEPH cell line. Five of the other seven
traits identified that associated with VDR peaks had pre-
dominant immune phenotypes including Helicobacter
pylori serologic status, self-reported allergy and Celiac
disease (Table 1 and Additional file 1: Table S4).

Phenotype associated SNPs identify regions where the
VDR binding is coincident with other transcription factors
Previously, we mined the consensus VDR cistrome for
canonical DR3 motif using the de novo motif prediction
tool, HOMER [69]. Searching under a low stringency
motif score setting 38% of these sites (8,897) contain
canonical DR3 motifs [68] and 2.6% (n = 15) of the 574
disease- or phenotype-associated SNPs were under a
VDR peak that contained a DR3 motif (Table 2). Of
these 15 SNPs, rs10174949 (Lead) and rs16829980 (= 1
with another Lead SNP, rs59374417), were contained
within the 42 SNPs reported above that survived multiple
test correction.

Given that 40 of the 42 significantly associated GWAS
SNPs were not linked to a DR3 motif, we mined these
regions for significant enrichment of other transcription
factor associations. In the first instance we mined these
regions for transcription factor binding using Regulo-
meDB [20]. Analysis of these 42 SNPs with RegulomeDB
revealed that 39/42 SNPs were predicted to lie in a re-
gion bound co-incident with other transcription factors
(Additional file 1: Table S5). Filtering these interactions
to only consider SNPs that had a high RegulomeDB
score revealed phenotype-associated SNPs that signifi-
cantly impacted transcription factor binding (Table 3).
Six had scores from 1b-1f (likely to affect binding and
linked to expression of a gene target e-QTLs) and nine
had scores from 2a-2b (likely to affect binding) (Table 3
and Additional file 1: Table S5). It is also interesting to
note the breakdown of all NHGRI SNPs studied
(Table 3). 7324/191482 SNPs (3.8%) are in transcription
factor binding regions and are predicted to change
binding significantly with a score of 1 or 2. This is
increased to 37% when considering these SNPs under

VDR peaks and remains at 35% when considering VDR
peaks significantly associated with a trait. These findings
further support that the concept that these SNPs are func-
tionally relevant for the disruption of transcription by
multimeric transcription factor complexes that contain
the VDR.

The diversity of the transcription factors identified
suggest a high level of VDR-protein interactions that
may represent VDR binding in an indirect or trans rela-
tionship with gene regulation. That is, the VDR is
recruited to another protein complex, which is in turn
in direct contact with DNA. Focusing on the 15 trait-
associated SNPs that also had RegulomeDB scores of <2
suggest common VDR interactions with 95 different
transcription factors that were co-enriched in binding
sites for the VDR. For example, Fig. 2 illustrates the
TLRI gene locus, and in particular the location of the
rs5743565 SNP that is in LD with Lead SNP rs2101521,
reported to be significantly associated with self-reported
allergy [70]. This particular region of the gene also illus-
trates that it is commonly found to be associated with
the open chromatin histone mark H3K27ac and is coin-
cident with the significant binding of more than 30 dif-
ferent transcription factors as revealed by ENCODE
investigators and reported in RegulomeDB.

The RegulomeDB approach is highly comprehensive
approach and based on the actual binding of transcrip-
tion factors as identified by ENCODE. We complemen-
ted this by mining the 42 SNPs with HaploReg [71] to
identify the predicted impact of these SNPs on regula-
tory motifs. The predicted impact of the 42 disease- or
phenotype-associated SNPs on the affinity of regulatory
motifs is shown in Additional file 1: Table S6. Out of 42
SNPs analyzed, 37 SNPs showed potential to affect one
or more motifs. The HaploReg analyses also showed that
the 42 SNPs were highly enriched for strong enhancers
and DNase hypersensitive regions across multiple cell
lines (Additional file 1: Table S7).

Together the analyses of 42 disease- or phenotype-
associated SNPs with RegulomeDB and HaploReg sug-
gest that these SNPs affect binding motifs of important
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Table 3 The distribution of Regulome DB scores for different

SNP lists

Regulome  (A) (B) (@

DBscore No. of GWAS  No.of (&) SNPs  No. of (B) SNPs under
+ LD SNPs under VDR peaks VDR peaks enriched
(191482) (572) for trait association (42)

la 21 1 0

1b 272 15 1

1c 6 0 0

1d 148 3 0

le 7 0 0

1f 3182 43 5

2a 369 34 2

2b 3182 109 7

2¢ 137 8 0

Total 7324 213 15

All the GWAS + LD SNPs were analyzed using RegulomeDB. The table shows
the distribution of scores 1 and 2 SNPs under VDR peaks as well as for 42
significant trait associated SNPs

transcription factors. Also, they are present in enhancer
and DNAse sites, suggestive of active transcription factor
binding and they have a significant relationship with an
altered gene regulatory capacity.

Co-enrichment of VDR and NF-kB binding in CEPH cell
lines

RegulomeDB analysis [72] of the transcription factors
associated with all 42 SNPs established the most signifi-
cantly impacted transcription factor binding. NF-kB was
the most frequently enriched transcription factor when
considering either all 42 SNPs or focusing on the 15
SNPs with RegulomeDB scores of 1 and 2. We chose to
focus on the transcription factor enrichment amongst
the 15 SNPs with high RegulomeDB scores as we
reasoned these are likely to be functionally relevant. To
illustrate the frequency, we have adopted a similar
approach to motif analyses in which the size of the
nucleotide letter is proportional to significance. In the
current study we have exploited a wordcloud approach
to visualize the level of significance of the transcription
factors. Reflecting the active levels of transcription from
these regions the RNA polymerase POLR2A is very
commonly represented. However this does not bind in a
motif-specific manner, rather it is recruited through
protein-protein interactions. Clearly, after POLR2A,
NFKB1 is prominently featured (Fig. 3a) as indicated by
the font size of the transcription factor.

These findings suggested that disease and trait associ-
ated SNPs were significantly associated with VDR and
other transcription factor, most prominently with NEF-
kB. To test how the common the co-occurrence of the
VDR and NF-kB binding sites we exploited CEPH cell
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lines for which there are relevant ChIP-seq data. These
cells were chosen as they are not transformed and there-
fore transcription factor binding is not likely to be
altered. Specifically, we examined the genome-wide
overlap between basal and 1a,25(OH),D3-stimulated
VDR and TNFa-stimulated NF-kB. The Venn diagram
illustrates the overlap between these three cistromic data
sets (Fig. 3b). Notably, the intersection between
1a,25(0OH),D5 stimulated VDR and TNFa stimulated
NF-«kB cistromes is pronounced, with 5,635 genomic
regions shared. Furthermore, these shared binding re-
gions also contained 22 of the 42 disease- or phenotype-
associated SNPs (Fig. 3b). These findings further suggest
the potential biological importance of the interaction
between these two transcription factors. Finally, all of
the SNPs reported to affect gene expression (e-QTL)
were associated with immune phenotypes (Table 4).
Figure 3c shows an example of how genetic variation
may influence NF-kB binding. Specifically, rs10174949
on chromosome 2p lies in an intronic region of
LINC00299 and is reported to be significantly associated
with self-reported allergy [70]. HaploReg revealed that
the LOD score was 12 in the presence of reference allele,
whereas the altered allele reduced the LOD score to 0.3.
These findings suggest the altered allele (A) results in a
loss of predicted binding strength compared to the refer-
ence allele (G). These predictions were supported by
analyses of rs10174949 alleles in NF-kB ChIP-Seq data
available on nine different CEPH cell lines from Hap-
Map. Four out of five HapMap cell lines with the wild-
type allele (GG) have a pronounced NF-«B binding peak
at this region (Fig. 3c, peaks in blue), two of the three
heterozygote cell lines had intermediary binding (peaks
in green) whereas the one cell line with the homozygote
(AA) genotype showed little or no binding (peak in red).

Discussion

The goal of the current study was to test the hypothesis
that the pleotropic actions of the VDR could be dis-
sected by integrating VDR ChIP-Seq studies with GWAS
findings in a robust statistical framework. The approach
we describe is significant for several key reasons; the po-
tential impact on the understanding of VDR biology, the
generalizability of the approach to other nuclear hor-
mone receptors and its potential for resonance with bio-
logical investigators.

Firstly, the impact of genetic variation on VDR func-
tion has been very intensively investigated almost exclu-
sively in the context of SNPs either within the VDR gene
itself or genes that encode proteins that in turn regulate
VDR function (reviewed in [73-76]). Whilst these inves-
tigations highlight a role for VDR in human health and
disease, they are ultimately limited in terms of scope of
how genetic variation is considered and perhaps as a
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therefore been assigned a score in RegulomeDB of < = 2

result, few of the findings have been replicated at the
genome-wide level. By contrast, the current study identi-
fies genetic variation that is significant at the genome-
wide level is enriched in VDR binding sites and impacts
VDR function. This finding informs understanding of
the pleotropic actions of the VDR [44—60]. This has not
been reported previously.

Secondly, the approach is applicable to other members
of the nuclear hormone receptor superfamily, as well as
other disease relevant transcription factors. Interestingly,
despite their developmental and therapeutic relevance,
nuclear hormone receptors are not comprehensively
covered by either ENCODE or Roadmap Epigenome
consortia. However, given the preeminent position of
nuclear hormone receptors in human health and disease,
other members of this superfamily have been extensively

investigated by ChIP-seq approaches by other investiga-
tors. Indeed, there are hundreds of ChIP-seq datasets
available for nuclear hormone receptors that have not
been considered in the RegulomeDB approach that
builds on ENCODE data. For example, the androgen
receptor has been extensively investigated. This receptor
is intimately associated with prostate cancer and other
areas of men’s health [77, 78] and is associated with
breast cancer in women [79, 80]. Multiple investigators
have examined this receptor and to date there are over
130 individual ChIP-seq experiments for this receptor.
Similarly, the estrogen receptor, which is intimately asso-
ciated with breast cancer, bone health and a range of
other phenotypes in women’s health [81, 82] has also
been extensively investigated with over 200 ChIP-seq
data sets available. Outside of the sex steroids, the
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cell lines. The VDR ChlIP-seq in the unstimulated and ligand-stimulated
states in the CEPH cell lines GM10855 and GM10861 were intersected
to generate a consensus cistrome for VDR binding sites in the
unstimulated and stimulated states. Similarly, a consensus NF-kB
cistrome was generated by intersecting the ChIP-Seq from the cell
lines GM12878, GM12891, GM12892, GM15510, GM18505, GM18526,
GM18951, GM19099, GM19193. These consensus cistromes were then
intersected to reveal the unique and shared binding sites, and the
overlap with the identified SNPs. ¢ The effect of rs10174949 genotype
on NF-kB binding in ChiIP-seq from HapMap cell lines. The altered allele
of rs10174949 was predicted to decrease the strength of predicted
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shown in red. Samples with the homozygous altered allele (AA)
completely lost NF-kB binding compared to the homozygous (GG)
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glucocorticoid receptor is arguably one of the most
prominent drug targets in human health being the central
therapeutic target for a wide range of anti-inflammatory
therapies [83] and its actions are central to wide spectrum
of human phenotypes and diseases. Similarly, approxi-
mately 40 ChIP-seq datasets are currently available for this
receptor. Similar analyses can be undertaken for other
nuclear hormone receptors including peroxisome
proliferator-activated receptors (PPARs) and the retinoic
acid receptors (RARs) and can be extended to other
clinically important transcription factors. Therefore the
approach described in the current study has a signifi-
cant potential to resonate with investigators who work
with these other receptors.

We propose that these ChIP-seq datasets are very
attractive to build consensus cistromes in different cell
states for a given transcription factor. Specifically, the
intersection of each of the different cistrome data sets
established in different cell backgrounds can be generated
to increase the statistical accuracy of the binding sites.
Integration of these consensus cistromes with the
NHGRI GWAS catalog has the strong potential to
highlight how these receptors relate to human health
and disease and specifically, what critical pathways are
modulated by genetic variation. In this regard the
current study is an important proof of principle that
can be relatively quickly undertaken to highlight new
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Table 4 Showing e-QTLS and associated phenotypes for SNPs under VDR peak significantly enriched for trait association

Chrom ChromStart ChromEnd Strand Reference  Observed SNP under VDR RegulomeDB  e-QTL (affected Associated GWAS Trait
Allele Alleles peak (Lead + LD SNP) score gene)
chr4 38805982 38805983 - T A/G 155743565 b TLR10/TLR6/ Self-reported allergy
TLR1
chr4 38784723 38784724 + T AT rs10004195 1f TLR6 Helicobacter pylori
serologic status
chril 64140703 64140704 + C T rs10897487 1f ccbcss/ Leprosy
FLJ37970
chr11 64140736 64140737 + G C/G rs475032 1f ccbcss/ Leprosy
FLJ37970
chr12 56401084 56401085 + G A/G rs10876864 1f RPS26 Vitiligo

Five of 42 trait-associated SNPs which were e-QTLs with RegulomeDB score 1, e-QTL gene and traits associated with these SNPs in GWAS studies are shown

avenues of biological function that can be exploited in
diagnostic or therapeutic settings.

Finally, the current study has strong potential to
resonate with biologists who study in depth either single
members or related members from transcription factor
superfamilies. These researchers bring considerable insight
to research questions around a given transcription factor,
but perhaps are less comfortable considering the intersec-
tion of multiple genome-wide data sets as a functional
genomics approach. The current study therefore has the
potential to serve as a guide for data integration and func-
tional genomic discovery.

Applying this approach allowed us to be able to overlay
a consensus VDR cistrome with data from the NHGRI
GWAS catalog of SNPs, and identify disease and
phenotype-associated variants that were genome-wide sig-
nificant in the GWAS catalog and present at genomic
VDR binding loci. Of these relationships, the most pro-
nounced and significant related phenotype to emerge was
associated with immune functions and capacity. What is
also important is what did not emerge. Namely genetic
variants associated with cancer risk were not commonly
identified.

Within this framework, our study has demonstrated a
number of intriguing findings. Using genome wide ana-
lyses of germline genetic variation and ChIP-seq data we
identified the VDR binding loci significantly enriched for
42 disease- or phenotype-associated SNPs (significant
GWAS findings and/or LD SNPs). We selected SNPs
that were in LD, rather than in a certain genomic win-
dow (e.g., 10 kb from the binding site), as we wished to
leverage understanding of genomic structure to inform
how genetic variation impacted VDR function. Of these
42 SNPs, only two were associated with canonical DR3-
type VDR binding sequences, with the majority of SNPs
associated with other transcription factors, some of
which are known to interact with the VDR. The analyses
of shared enrichment of transcription factors by Regulo-
meDB and Haploreg also suggested that VDR interacts,
perhaps in shared multimeric complexes with other

transcription factors and potentially warrant further
exploration given the shared platform of identification.
The finding that the significantly enriched disease- or
phenotype-associated SNPs are not commonly found in
canonical DR3 VDR motifs is intriguing. All the pub-
lished VDR ChIP-Seq identified significant enrichment
of the DR3 motif but it was at best found in approxi-
mately 30% of VDR peaks [23]. However, in the current
study, the number of sites with disease- or phenotype-
associated SNPs did not appear as high as this, and argu-
ably was even less common. These findings collectively
suggest that the VDR may interact with the genome in a
number of direct and indirect mechanisms. The indirect,
trans, mechanisms remain enigmatic but the current
findings suggest a functional interaction between VDR
and NF-«B.

We have confidence in the strength of the findings.
Analysis of the 42 disease- or phenotype-associated
SNPs using ENCODE ChIP-Seq data demonstrated that
15 of these SNPS are “likely to affect transcription factor
binding,” designated by a Regulome score <2. Therefore
33.3% of our final SNP set is likely to affect transcription
factor binding. Across all GWAS and LD SNPs, EN-
CODE characterizes ~17% as likely to affect transcrip-
tion factor binding. Therefore, a simple one-tailed
Fisher’s exact test supports that indeed we can reject the
idea that our SNP set is like that of the GWAS and LD
background, meaning our SNPs show evidence of enrich-
ment for affecting TF binding. Furthermore (as we have
demonstrated) these functionally relevant SNPs are more
frequently found when VDR appears to co-bind with
another transcription factor explored, for example NF-«B.

Naturally, there are a number of caveats to these ap-
proaches and findings. For example, not all tissues express
all the transcription factors highlighted by RegulomeDB
and therefore interactions will be tissue specific. Similarly,
another caveat is that DR3 binding elements may be
under-represented in computational analyses due to
technical reasons and incomplete understanding. How-
ever, it is worth stressing that each group that
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undertook the primary VDR ChIP-seq analyses re-
ported that VDR regions containing DR3 elements rep-
resented a minority of VDR loci.

In a similar manner the significant enrichment SNPs
associated with immune traits under VDR peaks in part
reflects the role of VDR in immune function [84]. How-
ever these findings may reflect that VDR ChIP-seq were
included from two lymphocyte CEPH cell lines. These
cells contributed more VDR ChIP-peak enriched SNPs
(442 SNPs) than either THP1 (43 SNPs), LS180 (80
SNPs) or LX2 (36 SNPs). Therefore we cannot exclude
the possibility that this underpins the enrichment of
immune phenotypes. Of course to counter this is the
biological possibility that the VDR is intrinsically more
genomically engaged in the GM cell lines, and hence the
largest number of VDR peaks is identified in these cell
models. Furthermore the GWAS catalog contains many
more SNPs associated with non-immune phenotypes,
for example cancer phenotypes, and these were not
readily identified.

An intriguing new hypothesis generated by the current
study is that genetic variants at the sites of VDR and
NE-«B binding distort the control the of Toll-like receptor
1 (TLR1) and Long intergenic non- protein coding RNA
299 (LINC00299) to govern immunophenotypes. For
example the genetic variants may change the on-off
rates of the VDR- NF-kB complex binding at the site
such that it alters the potential to regulate the down-
stream gene target. Identification of the sites of inter-
action in the current study actually make testing the
significance of the sites through genome-editing ap-
proaches relatively easy for future studies (Figs. 2 and 3).
In this manner it may be intriguing to edit the genome
such that variants are added in and then the avidity of
VDR and NF-kB can be tested with ChIP and Re-ChIP
approaches as required. Such experiments would move
towards understanding how genetic variation differentially
impacts cis and trans binding events that in turn govern
gene expression. Genome editing approaches may also be
attractive for future studies as the SNPs in Table 2 are not
highly penetrant, that is they are common variants with
low/modest odds ratios, and are in syndromes that tend
to be chronic and even adult onset. We believe that this
reflects that VDR binding is part of a complex picture of
transcription factor interactions that relate to disease.
Thus looking for VDR binding at alleles associated with
low/modest risk has a high probably of not demonstrating
allele-VDR binding associations, not because the in silico
experiments were incorrect but rather because these are
complex disease phenotypes with several factors at play.
Again, although the literature supports cooperation
between these VDR and NF-«B signaling pathways, the
current approach provides statistical significance to this
interaction, and justifies the significant approaches
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required to test this in relevant biological settings. Precise
genome editing approaches will allow the definitive testing
of these possibilities.

The potential interactions between VDR and NF-xB
are given further relevance as the principal disease phe-
notypes associated with the SNPs are enriched for
immune-related phenotypes (Table 1). For example, lep-
rosy and vitiligo have different pathophysiology but both
have major immune components. Vitiligo is an auto-
immune disease [85, 86], whereas defects in cell-medi-
ated immunity have been reported in leprosy [87, 88].
Additionally, studies have shown the interaction of
Toll-like receptors (TLRs) and the vitamin D anti-
microbial pathway contribute to leprosy outcomes [88].
Given the large number of individuals around the world
who are currently enrolled in vitamin D intervention
and supplementation trials [41, 42, 89-96] the current
findings add to the genomic framework for interpreting
the health responses, and for investigating the genetic
basis for sensitivity and resistance to vitamin D exposure
and VDR function. A further interesting finding of the
current study is to some extent in the negative findings.
Despite the large body of literature supporting roles for
the VDR in various cancers (reviewed in [24]), only one
phenotype associated SNP related to cancer and this sug-
gests that genetic variation does not impact VDR signaling
in cancer phenotypes to a significant extent.

Conclusion

Taken together the current study has examined VDR
transcriptome behavior through integrative genomic ap-
proaches and demonstrated a number of intriguing and
statistically robust findings. Firstly, that the VDR binding
peaks were significantly enriched for 42 diseases or trait
associated SNPs, identified through GWAS studies. Sec-
ondly that only two of these SNPs were associated with
canonical DR-3 type VDR binding elements and the ma-
jority of SNPs were associated with other transcription
factors some of which are known to interact with the
VDR, whereas others are novel. Finally the disease phe-
notypes are overwhelmingly enriched for immune-re-
lated phenotypes. Given the large number of individuals
around the world who are currently enrolled in vitamin D
intervention and supplementation trials, the current
findings provide a framework for interpreting the
health responses and for investigating genetic the basis
for sensitivity and resistance to VDR function.

Methods

Study design

The study design is summarized in Fig. 1 and Additional
file 1: Table S2. Briefly, we merged peaks identified in
multiple VDR ChIP-seq data sets to build a consensus
VDR cistrome which was then overlapped with both



Singh et al. BMIC Genomics (2017) 18:132

SNPs identified by GWAS (we call the SNPs that are
reported to be statistically associated with a phenotype
lead SNPs) and SNPs in LD with lead SNPs. We then
identified lead plus LD SNPs under VDR peaks and
Hypergeometric testing was used to identify phenotypes
enriched for presence under VDR peaks. SNPs were fur-
ther annotated based on presence of absence of a VDR
motif e.g., a motif was identified as present under peak
or not. Statistically significant lead and LD SNPs were
further annotated for function and interaction with other
transcription factors.

Statistical and bioinformatics analyses

VDR ChIP-seq data sets and peak identification

As the individual ChIP-Seq data sets had been analyzed
using different workflows, we chose to re-align the reads,
and define enriched peaks with the same harmonized
workflow. In order to allow direct comparison across all
the published VDR ChIP-seq data, each VDR ChIP-seq
data set was analyzed again [68]. In summary, VDR
ChIP-seq data from five studies (six data sets) were
selected for analysis, including GM10855 and GM10861
lymphoblastoid cells [9], THP-1 monocyte-like cells [8],
LS180 colorectal cancer cells [11], LX2 hepatic stellate
cells [10] and LPS-differentiated THP-1 cells [68].
Sequence reads were aligned hgl9 Bowtie software ver-
sion 1.0.0 [97] and significant peaks were identified using
MACS version 2 [98] with the following essential com-
mand line arguments: macs2 callpeak —bw 150 —keep-dup
1 —g hs —qvalue = 0.01 —m 5 50 —bdg. Otherwise, default
parameters were used. From these the analyses the com-
bined data set was generated which contained in total
23,409 non-overlapping VDR peaks across these samples
and analyzed using HOMER to identify DR3-type
sequences [68]. Briefly, each data set was searched for de
novo motifs [99] on +100 bp peak summit regions using
the following essential command line arguments: annota-
tePeaks.pl < sample_name > hgl9 —noann —nogene —m <
motif file > -size —100, 100. Detailed methods for this
analysis are provided in our previous publication [68].

Selection of lead SNPs and linkage disequilibrium SNPs

To create a comprehensive SNP list associated with dis-
ease/phenotypes at genome-wide significance level we
downloaded the NHGRI GWAS Catalog (dated: 12/15/
2015) [100]. We used SNP Annotation and Proxy Search
(SNAP) tool to identify SNPs in strong linkage disequi-
librium (LD) with these GWA SNPs we used HapMap
and 1000 genome data from the Centre d’Etude du Poly-
morphisme Humain (CEU) population [101]. LD (r?)
and minor allele frequency (MAF) thresholds for SNP
selection were 0.8 and 0.05, respectively, considering all
SNPs within a 500 kb region surrounding the Lead SNP.
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This yielded a final list of significant SNPs from repli-
cated GWAS plus LD SNPs (Sy).

Identification of statistically significant SNPs in VDR binding
regions for each GWA phenotype

We used a hypergeometric test to assess an over or
under representation of GWAS and LD SNPs under
peaks for each trait/phenotype and to determine if SNPs
associated with a particular phenotype were more fre-
quently under a VDR Chip-seq peak than expected. All
analyses were done in R using GenomicRanges [95]. To
test for evidence of statistically significant enrichment of
SNPs associated with a particular trait/phenotype under
VDR peak we used a hypergeometric test using phyper
function in R and applied bonferroni correction for the
number of phenotypes tested. In addition to Sy and Sp
for each trait we identified the total number of both
GWAS and LD SNPs (S,) and then how many of those
SNPs overlap with VDR peaks (Sp; for all i=1 to 211,
where i reflects each phenotype of the 211 phenotypes
tested). This information was then used to perform the
hypergeometric test using phyper function in R for each
trait. A Bonferroni correction was used to control for
the number of phenotypes tested.

Functional annotation of significant SNPs

To understand the function consequences of the SNPs
showing evidence of enrichment under VDR peaks we
used two different in silico methods with a specific focus
on chromatin status around the SNPs and how the SNPs
affect binding motifs of different transcription factors.
First, we utilized RegulomeDB [20] to identify important
chromatin signatures and transcription factors binding
to the SNPs. RegulomeDB utilized ChIP-seq data for
histone marks and transcription factors across multiple
cell lines from ENCODE [1, 102]. Based on these data
sets RegulomeDB scores each SNPs for their function
importance. SNPs with scores of la-f, 2a, 2b and 2c are
thought to likely affect transcription factor binding. In
addition we used HaploReg v2 to determine if the pres-
ence of each SNP affects the binding motif of a tran-
scription factors based on position weight matrix [71].
HaploReg constructs position weight matrix for both
reference and altered allele for each SNP from multiple
data sources and provides a log-odds (LOD) score. The
change in log-odds (LOD) score as alleles change
(LOD(altered allele) — LOD (reference allele)) was determined
and as was the number of affected motifs. A negative
LOD difference value indicates the predicted relative
affinity is higher for the reference sequence whereas a
positive value means that the predicted relative affinity
is higher for the alternate allele.
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Intersection of VDR and NF-kB binding sites in CEPH cell lines
We focused on the potential of VDR binding site-
associated SNPs to impact NF-kB binding by examining
their co-incident binding. To test the possibility of sig-
nificant shared genomic binding VDR and NF-kB we
established a consensus cistrome for each factor and
then intersected these data sets. Specifically, basal and
10,25(0OH),D;3-stimulated VDR cistromes was generated
by intersecting the ChIP-Seq from GM10855 and
GM10861 cells. TNFa-stimulated NF-kB cistrome was
generated by intersecting the ChIP-Seq from the cell
lines GM12878, GM12891, GM12892, GM15510,
GM18505, GM18526, GM18951, GM19099, GM19193.
Overlaps of the different datasets were examined using
GenomicRanges in R and were deemed positive if at
least 25% of the peak genomic region overlapped.

Additional files

Additional file 1: Table S1. Showing number of VDR peaks and number
of Lead and LD SNPs overlapping with VDR peaks in different cell line
models. Number of peaks for individual VDR ChIP-seq data and the number
of Lead SNPs along with associated LD SNPs which fall under VDR peaks for
each data set is shown here. Table S2. Study design, analytical methods and
results. Summary table describing different stages of the analyses including
the principal methods (computational approaches, databases and webtools)
and key finding from each stage. Table S3. List of 574 SNPs (GWAS + LD
SNPs) under VDR peaks. Table S4. List of 42 SNPs showing significant
enrichment for associated traits. Table S5. RegulomeDB scores for 42
significant trait associated SNPs. Table S6. Summary of HaploReg results for
42 trait associated SNPs. Table S7. HaploReg summary table of enrichment
analysis of enhancers and DNase sensitive regions associated with 42 trait
associated SNPs. (XLSX 94 kb)
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