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Abstract

Background: Active modules are connected regions in biological network which show significant changes in
expression over particular conditions. The identification of such modules is important since it may reveal the
regulatory and signaling mechanisms that associate with a given cellular response.

Results: In this paper, we propose a novel active module identification algorithm based on a memetic algorithm. We
propose a novel encoding/decoding scheme to ensure the connectedness of the identified active modules. Based on
the scheme, we also design and incorporate a local search operator into the memetic algorithm to improve its
performance.

Conclusion: The effectiveness of proposed algorithm is validated on both small and large protein interaction
networks.
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Background
With the increased use of high-throughput experimen-
tal data such as gene expression profiles, protein-protein
interactions and metabolic response [1], we are able to
gain better understanding of the molecular mechanisms
of biological functions. Because molecules interact with
each other to exert biological functions, it is important to
understand not only the activity of individual molecules,
but also their interaction. In the past decade, network
biology approaches which explicitly model the molecule
interactions as graphs or complex networks have been
intensively used. One of the primary tasks is to explore
topological properties of biological networks, such as
community structure [2] and network motifs [3]. Though
the topology of a biological network does not always pre-
cisely reflects the function or even disease-determined
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regions [4], they may have some overlapped components,
which then can be related back to biological functions.

Active module identification is one of the most impor-
tant network biology analysis algorithm, which is able
to reveal the regulatory and signaling mechanisms of a
given cellular response [5]. The algorithm aims to find an
connected regions over certain biological networks that
show significant changes under certain conditions. In the
seminal work of [5], the authors first constructed protein-
protein interaction network where the nodes represent
proteins, and edges represent the physical interactions
between a pair of proteins. Node scores which indicate the
significance of expression changes over certain conditions
were calculated from the gene expression data and then
assigned to the nodes. The active module identification
problem was formulated as a combination optimization
problem, which aims to search a subnetwork that maxi-
mize the aggregated score.

This combinatorial optimization problem turns out
to be NP-hard [5], which is equivalent to finding a
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maximum weight clique in a weighted graph, a famous
NP-complete problem [6]. As effective tools to solve com-
binatorial problems, metaheuristic algorithms have been
widely applied to search satisfied solutions [7, 8]. The
original paper [5] proposed to use simulated anneal-
ing (SA), a generic probabilistic metaheuristic to solve
this problem. Other methods include extended simu-
lated annealing [9], greedy algorithm [10, 11], graph-based
heuristic algorithm [12] and genetic algorithm (GA) [13,
14]. A comprehensive review of this filed can be found
in [15].

Binary encoding is the most common solution represen-
tation for active module identification using metaheuristic
optimization algorithms such as SA or GA. In this encod-
ing, the module in n-nodes network can be represented
by membership vector x ∈ {0, 1}n, where xi = 1 means
i-node belongs to the module. One of the prerequisites
to use this representation is to ensure the connectedness
of the solution, which is not only a biological require-
ment for resulting subgraphs (connected subgraph means
reachable interactions inside the module). Without the
connectedness constraint, the maximal objective may cor-
responds to a set of unrelated top-ranked nodes. Unfortu-
nately most related works mentioned above either did not
consider this non-trivial constraints, or did not tackle this
aspect efficiently.

Another problem of using generic metaheuristic opti-
mization algorithms is that the search operators, i.e.,
perturbation [5], mutation and crossover [14], are not
specifically designed for active module identification,
which might result in mediocre search performance in
terms of speed and accuracy. In our previous works, we
have shown that by incorporating local search opera-
tors into generic metaheuristic optimization algorithms,
we can significantly improve the speed and accuracy for
community detection in large scale biological networks
[16, 17].

In this paper, in order to address the connectedness
problem, we first propose an effective encoding/decoding
scheme. Based on the representation, we propose a local
search operator and then embed it into a memetic frame-
work. We have evaluated the proposed method for both
simulated and real-world data, which shows the superior
performance over other algorithms.

Methods
Active module identification
Commonly the an interaction network is represented as
an undirected graph G = (V , E), nodes in V represent
genes, and edges in E represent the interactions between
two genes. We can assign each gene i a p-value pi to indi-
cate the significance of expression changes over certain
conditions. Then we can obtain a z-score zi = �−1(1−pi)
for each gene, where �−1 is the inverse of normal CDF.

To find a subnetwork which has high nodes scores, the
aggregation z-score of subnetwork A zA is defined as [5]:

zA = 1√
k

∑

i∈A
zi, (1)

where k is the number of genes in A. In order to get
subnetwork which has higher aggregation z-score com-
pared with a random set of genes, it is suggested to use a
corrected subnet score sA [5]:

sA = zA − μk
σk

, (2)

where the mean μk and standard deviation σk are com-
puted based on a Monte Carlo approach, taking several
rounds of randomly sampling k genes from the network.
The simplified problem of finding highest score module
in an undirected network, which consider the subnetwork
score is the sum of each node’s score, is formally defined
as following:

Problem 1 Given a graph G = (V , E) with vertex weight
z = [zv] for each v ∈ V , find a connected subnetworks S =
(VS, ES) of G with maximal weight f (S) = ∑

v∈VS
zv.

In order to solve Problem 1, which is a NP-hard
combinatorial optimization problem, meta-heuristics
algorithms have been applied. For example, simulated
annealing was used in [5]. In each iteration, if toggling
the state of a randomly picked node can increase sA
of expected subnetworks, then one choose to toggle it;
otherwise to toggle it with certain probability. After a
number of iterations, a set of high score subnetworks can
be obtained. In [14], based on binary encoding scheme,
Genetic Algorithm with genetic operators such as muta-
tion and crossover has been proposed to search for active
modules.

New binary encoding/decoding scheme for active module
identification
Despite the biological insightful results obtained from the
algorithms mentioned above, one important detail was
omitted in the papers: how to ensure the connectedness
of the resulting subgraph after applying heuristic opera-
tors such as toggling, mutation or crossover. This detail
is important because without ensuring the connected-
ness of a candidate solution, the identification of active
modules could be trivial, i.e., a set of isolated top-ranked
nodes.

In the source code provided by the original authors (jAc-
tiveModules, a plug-in for Cytoscape [18]), the authors
employed a sophisticated way to check whether toggling
one node of a membership vector is feasible, i.e., whether
the toggling will affect the connectedness of the candi-
date solution, which makes the whole algorithm slow.
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Specifically, given a candidate solution, i.e., a subset of
nodes, an additional HashMap has to be maintained to
stores the pairwise elements {node, comp}, which indicates
each node and its component (connected subnetwork),
respectively, during the whole progress. After toggling,
the algorithm will check this HashMap to see whether
the operator affects the connectedness of resulted subnet-
works. Such operations leads to both running time and
memory overhead.

In this paper, we propose a simple but fast binary
encoding/decoding scheme, which does not require the
HashMap nor explicit operations when add or remove
current nodes. Our binary encoding scheme is the same
as used in [14], i.e., a binary vector of n binary values of
which each represents the membership of the node (xi =
1 means i-node belongs to the module). The key difference
is the decoding scheme. Wile the previous work [14] did
not consider the connectedness constraint. Specifically,
we conduct the connected components finding (CCF)
algorithm on the binary vector presented subset, and then
extract the connected subnetworks. Decoding scheme
based on CCF algorithm as described in Algorithm 1,
where Breadth-first search (BFS) is used to recursively to
find the node’s neighbors.

Algorithm 1: Connected components finding based
decoding algorithm
Input: A vector x ∈ {0, 1}n, where n is number of
nodes in network;
CCF: Connected components finding on x;
for each xi == 1 in x do

if node i is not visited then
Include node i in current component;
Component number increased;
Breadth-first search (BFS) on node i;

end
end
Return: The list of components.

Since there are multiple connected subgraphs in a can-
didate solution, the fitness calculation can be flexible.
In the simplest case, we can use the subgraph with the
highest aggregated node score. However, no matter how
we calculate the fitness function, genetic meta-heuristics
algorithms can be directly applied based on the encod-
ing/decoding scheme. For example, if we use SA, in each
iteration, we decide to add or remove a randomly picked
node by the same criterion: if toggling the state of the
selected node c can increase sA of the subnetwork A with
the highest aggregated node score, then we choose to tog-
gle it; otherwise to toggle it with certain probability p.
Compared with original mechanism of jActiveModules in

Cytoscape, this decoding is computational tractable and
easy to implement.

The connected components finding Algorithm 1 is actu-
ally based on breadth-first search (BFS) on a (sub)graph,
requiring time complexity O(|V ′| + |E′|) where |V ′| and
|E′| are the number of nodes and edges of the current
set respectively. Notice that this time complexity is only
equivalent to one case to toggle a node in jActiveModules
in theory.

Memetic algorithm
Evolutionary algorithm (EA) is a powerful global opti-
mization to solve combinatorial optimization problems.
Inspired by biological evolution, a typical EA uses opera-
tors such as selection, crossover and mutation to improve
the candidate solutions [19]. Parameters for an EA are
number of iterations T, population size P, crossover prob-
ability pc and mutation probability pm.

Memetic algorithm (MA) improved standard EA by
enabling individuals to perform local refinements [20].
Numerous effective local search (LS) methods have been
developed and incorporated into MA to obtain state-
of-the-art results in various applications [21–23]. A
recent review of MA can be found in [24]. Algorithm 2
describes a common framework of MA, where the stan-
dard mutation operation is replaced by a local search
operator. Being similar to conventional GA algorithms
which partially prevent the “local optimum” problem by
mutation and crossover mechanisms, Algorithm 2 uses
an enhanced mutation step. With enough number of
evolutionary generations, this algorithm is supposed to
convergence.

Algorithm 2: General framework of MA
Initialization: randomly initialize the population;
while not satisfied the stopping condition do

Evolutionary operations;
for each individual in population do

Perform local search with probability pLS;
end

end

According our encoding/decoding scheme, each can-
didate solution consists of several connected subgraphs,
we define the highest score of these subgraphs as the
fitness of x, denoted by F(x). For multiple modules iden-
tification, we use a module extraction mechanism, i.e. to
identify one active module each time and then extract
it from the background network, which is left for next
round.
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For the local search part, here we mainly consider a
simple greedy search strategy. We pick all individuals in
the population with probability pLS and conduct M times
of toggle on current individual where M < N . Finally
we replace each chosen individual with the best scored
one, followed by other genetic operators. More opera-
tions as in [22] to conduct local search could be applied
here.

It is necessary to make sure the identified module has
reasonable size when toggling nodes. Both extreme small
and large module can make the interpretation difficult.
But the objective (2) itself cannot prevent large mod-
ules. Neither original work [5] nor GA based method
[14] proposed mechanisms to achieve reasonable sized
modules. Furthermore, to maximize objective (2) may
lead to single gene module or very large component
in practice. As long as one large module (e.g. contain-
ing 1,000 genes) is connected and has high aggregated
score, then this module may be found using general
algorithm 2.

Here we make a simple modification to the mutation
operator in GA and local search operator in MA to con-
strain the module size to be desired: as long as the number
of candidate genes (number of ‘1’s in encoding vector)
exceeds some threshold Nmax, there will be no more
potential nodes added to the subset. On the contrary, if the
module size is going to be smaller than predefined thresh-
old Nmin, there will be no more potential nodes removed
out from the current subset.

The procedure of local search is described as in
Algorithm 3. The whole procedure of MA for active mod-
ule identification is combining general memetic frame-
work 2 and the local search strategy. For evolutionary
operations in the whole procedure, we chose the com-
monly used one-point crossover.

The computational complexity for memetic Algorithm 2
is O(TP) without local refinements. The expected com-
putational complexity of whole algorithm with greedy
search is thus O(TP + TM(|V ′| + |E′|)) where |V ′| and
|E′| are the number of nodes and edges of a candidate
solution subgraph respectively. If we consider almost half
of the whole nodes may get involved in evolution and
normally the number of edges |E′| in subgraph approx-
imately at the same level of the number of nodes |V ′|,
the simplified complexity of the whole algorithm should
be O(TP + TMN). Generally the size of population P is
small compared with the network size N, which makes
the latter dominate the running time. And the num-
ber of local search trails M in each inner iteration also
has an impact on the efficiency. In theory the sophis-
ticated mechanism of jActiveModule can also be used
here, but it would makes the fitness evaluation more dif-
ficult. And the space requirement is higher due to the
HashMap.

Algorithm 3: Greedy search for MA on active module
identification
Procedure of local search ;
for each individual in population do

Select current individual x with probability pLS;
xbest = x;
for i = 1→ M do

Generate individual x′ by toggle a random
position j on xbest though the following
procedure;
if xbestj == 1 and

∑
xbest > Nmin then

x′ = xbest by xbestj = 0;
end
else if xbestj == 0 and

∑
xbest < Nmax then

x′ = xbest by xbestj = 1;
end
Conducting Algorithm 1 on x′ and calculating
the module score F(x′);
if F(x′) > F(xbest) then

xbest = x′;
end

end
end

Results and discussion
Module connectedness validation
First of all, we validate if the modules identified by pro-
posed algorithm are connected. The baseline algorithm is
a simple GA with basic binary encoding scheme without
connectedness guarantee to search highly scored module
in molecular networks. We use a simulated interaction
network with 500 nodes and 1000 edges, to just validate
the connectedness property. Figure 1 showed the resulted
module, and the red nodes are in subset of resulted mod-
ule and gray ones are their neighbors but not included
in the subset. We can see that the original subset is not
connected at nodes like 185, 400 and 163 etc, which
are isolated from large set of red nodes. If we use the
same GA algorithm with the proposed encoding mecha-
nism in section 3, we can get a different result as Fig. 2
shows. With the same input and algorithmic parameters,
the red nodes are now connected in the identified active
module. The standard GA (modified from COSINE [14])
and visualization code are available at https://github.com/
fairmiracle/EAModules.

Yeast PPI network
We first validate the proposed algorithm on a small real
protein-protein network with 329 proteins in Yeast [25].
The p-values on each nodes show the significance of gene
expression changes in response to a single perturbation: a
strain with a complete deletion of the GAL80 gene versus

https://github.com/fairmiracle/EAModules
https://github.com/fairmiracle/EAModules
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Fig. 1 Modules identified by GA on simulated data. The red nodes are
not connected though they are supposed to be

wild type yeast. The network structure data and expres-
sion values are available from Cytoscape sample data. The
constructed network has 329 nodes and 358 edges. And
the goal is to find a top-scoring subnetwork which show
significant response to the perturbation.

We compare the performance of three algorithms using
the encoding method in section 3: simulated annealing
(SA), genetic algorithm (GA) and the proposed memetic
algorithm (MA). In order to compare SA with other two

Fig. 2 Modules identified by modified GA with proposed encoding
scheme on the same simulated data as in Fig. 1. The red nodes are
connected

EAs fairly, we run SA P (also the population size in GA and
MA) times and select the best result, since SA is viewed as
a single population GA. The number of iterations T for all
algorithm is 10000, and temperatures decrease from 1.0 to
0.01 for SA. Other evolutionary parameters are crossover
rate pc = 0.9 for GA and MA, mutation rate pm = 0.9
for GA and local search iterations M = 10 for MA. In
GA and MA we also reserve the best individual in each
iteration for stability. We run each algorithm 50 times
with randomly initialization and then compare the per-
formance w.r.t highest module score and corresponding
module size.

Figure 3 summarizes the results in terms of module
score based on 50 trails. We can see MA can achieve
slightly higher mean score than GA, and both are better
than SA. One-Way Analysis of Variance (ANOVA) is used
to determine differences between results from three algo-
rithms, with p − value < 2.2e−16. And a paired sample
t-test is used to tell the difference between GA and MA,
with p − value < 1.19e−5.

Besides the quality of module, we also compare the rate
of convergence of three algorithms, to see how objec-
tive improves along with iterations. We define the best
objective value in population as the indicator in each iter-
ation. According to Fig. 4, MA reaches the stable objective
earlier than GA. The local search scheme could make sure
the performance of MA is no worse than basic GA, and
the monotonic selection leads to early convergence com-
pared with GA, at the cost of longer running time of local
search. Both GA and MA get higher objective than SA,
which needs much more iterations to reach high score.

GA MA SA

26
28

30
32

34
36

38
40

Fig. 3 Statistical comparison of performance w.r.t module scores from
three algorithms: genetic algorithm, memetic algorithm and
simulated annealing
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Fig. 4 Convergence rate comparison of three algorithms: genetic
algorithm, memetic algorithm and simulated annealing from one
trail. MA is the first to reaches the stable status

Human PPI network
In order to check the biological relevance of identified
modules by proposed algorithm, we apply it on the real
world protein-protein interactions (PPI) network. The
background PPI network for homo sapiens is obtained
from two updated databases: BioGRID [26] Release
3.4.138 and STRING v10.0 [27], specifically 9606.pro-
tein.links.v10.txt. The BioGRID for homo sapiens has
362,775 interactions while STRING stores 8,548,002 pro-
tein pairs, with a combined score ranging from 150 to
999 for each link. The gene expression profile comes from
GEO35103 controlled by the differentiation of Th17 cell,
which is considered to play a key role in pathogenesis of
autoimmune and inflammatory diseases [28]. The expres-
sion profile contains 48,000 probes (genes), and 28,870
were kept after the following process: 1) remove probes
those do not have gene symbols; 2) remove probes with
more than 20% of missing values or NAs; 3) replace the
rest missing data with mean value of the row they belong
to. Further we select 5003 significantly expressed genes
from all of them using limma [29]. The gene filtering algo-
rithm selects some potentially important candidates and
reduce network size. Finally we select PPI pairs according
to match of expression probes.

For BioGRID we simply match the gene names for each
probe of expression profile. But STRING uses the protein
name (start with ENSP), thus we need to match that with
official symbols (like ARF5) with database Ensembl Genes
84 [30], and select the corresponded genes. The source
code for genes selection and construction procedure of
PPI network from multiple data sources is available at
https://github.com/fairmiracle/PPINet.

The network constructed from BioGRID has 2327
nodes and STRING has 1602 nodes, with 1480 nodes

in common. We conduct the algorithm 2 on both
networks, and use a module extraction method to
identify multiple modules from this network, i.e. to
identify one active module each time and then extract
it from the background network, which is left for next
round. The largest size of each module is 100. The full
gene symbols lists of modules are provided in supple-
mentary materials (at https://github.com/fairmiracle/
EAModules/tree/master/examples/Supplementary,
where “GSE35103FromString_MA.txt” means the mod-
ules identified from STRING based PPI network using
MA algorithm, and each module is stored as plain text by
module score, gene ids and official gene symbols). We can
also see that under the same condition, MA could achieve
higher scored modules than GA.

In order to validate the identified modules, we fol-
low the gene set enrichment analysis [31] and use
various updated tools, including basic gene ontology
(GO) database (http://geneontology.org) and Analysis in
STRING, integrative and interactive web-based tools like
GeneMANIA (http://genemania.org) [32]. The basic idea
of annotating a given gene list is to compare it with

Table 1 Enrichment analysis result of the first module

Biological process (GO) given by STRING

Pathway ID Pathway description Count FDR

GO.0007166 Cell surface receptor signaling
pathway

39 1.85E-17

GO.0007165 Signal transduction 52 1.35E-16

GO.0044700 Single organism signaling 51 1.11E-14

GO.0007154 Cell communication 51 2.36E-14

GO.0051716 Cellular response to stimulus 54 5.15E-14

KEGG pathway given by STRING

5166 HTLV-I infection 10 6.45E-06

4630 Jak-STAT signaling pathway 8 1.22E-05

4380 Osteoclast differentiation 7 2.95E-05

5202 Transcriptional misregulation
in cancer

7 0.000154

04151 PI3K-Akt signaling pathway 9 0.000194

Functions given by GeneMANIA

Index Function FDR Coverage

1 T cell differentiation 5.63e-12 13/90

2 lymphocyte differentiation 5.63e-12 15/144

3 leukocyte differentiation 6.95e-12 17/226

4 Positive regulation of leukocyte
activation

1.87e-11 15/166

5 Positive regulation of cell
activation

2.55e-11 15/172

6 Regulation of leukocyte
activation

1.01e-10 16/232

7 T cell activation 1.57e-10 16/241

https://github.com/fairmiracle/PPINet
https://github.com/fairmiracle/EAModules/tree/master/examples/Supplementary
https://github.com/fairmiracle/EAModules/tree/master/examples/Supplementary
http://geneontology.org
http://genemania.org
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known knowledge database. The P-value is calculated by
the following formula (3).

P =
n∑

x=1

(M
x
)(N−M

n−x
)

(N
n
) . (3)

Generally speaking, larger module tends to be enriched
multiple biological functions, which may not be very rel-
evant to each other. The first module identified from
STRING PPI network contains 76 genes and according
to GeneMANIA [32], among all potential links inside the
module, there are 51.63% co-expression links, 33.59% are
physical interactions and 4.16% are pathways. The top
biological processes and pathways related to this mod-
ule are listed in Table 1. We can see several general
responses found by STRING, and the hub nodes in this
module shown as in Fig. 5 also indicate general important
genes related to receptor signaling and signal transduction
(also see http://bit.ly/2a87HTB). While functions given by
GeneMANIA show that these functions are intensively
involved in Th17 cell differentiation. Several items are also
claimed in a recent publication [33], which is consistent
with the experimental settings.

The smaller module tends to play more specific roles in
the process. Figure 6 plotted by GeneMANIA [32] shows
the interactions between these 17 genes, and 87.84% of
them are co-expression links according to previous stud-
ies. The function is more about pathways, like Fc-epsilon
receptor signaling and Fc receptor signaling. Related
genes contained in this module are MAP3K1, MAP3K5
and MAP3K6, mitogen-activated protein kinase kinase,
which play central roles in the regulation of cell sur-
vival and differentiation. The connection between MAP3k
and Th17 differentiation is supported by [34], through
encoding MEKK1 which controls both B and T cell pro-
liferation. And MEKK1 regulates Cdkn1b expression in
Th17 cells. Other processes enriched by the module are
also mentioned in a recent study [35].

Different sources of protein-protein interactions also
make an impact. From the comparison between mod-
ules between BioGRID and STRING networks, we can
see that they share some functions such as Fc-epsilon
receptor signaling pathway, but they are not totally the
same. Interactions in BioGRID are largely rely on high-
throughput datasets and previous studies, which makes
the identified module less focused to some functions.

Fig. 5 The first identified module plotted by STRING, where edges represent both known interactions including curated databases and
experimentally determined and predicted interactions such as gene neighborhood and gene co-occurrence

http://bit.ly/2a87HTB
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Fig. 6 The relatively small module plotted by GeneMANIA, where
most of edges are co-expression links according to previous studies

Irreverent supporting materials make the set of genes
has lower coverage and higher FDR, given by functional
enrichment report by GeneMANIA. In contrast, STRING
has many experimental and predicted interactions [27],
and the combined score of links can further help to pick
more reliable edges of PPI network. Identified modules
from this network tend to have more significant biological
meanings. Take the first module (http://bit.ly/2asI0Nw)
for example, gene ontology tells the hierarchical biological
process of this module by starting with regulation of tyro-
sine phosphorylation of Stat3 protein. The Stat3 has been
shown to be a master regulator of Th17 cell differentiation
[36] and related immune pathways.

Conclusion
Searching for connected subnetworks in biological net-
works is essentially a combinatorial optimization problem,
which can be solved by various metaheuristic methods.
We design a direct strategy on a set of node to get con-
nected subnetworks, thus avoid complicated graph divide
operations. And the binary encoding can be used in
general heuristic optimization algorithms like simulated
annealing and genetic algorithm. And the GA is further
improved by a memetic algorithmic framework embed-
ded with local search operators. Empirical studies on real
networks shows the effectiveness and efficiency of this
strategy.

Future works can be considered in two different aspects.
From the network model, how to derived effective
algorithmic model to deal with directed and weighted net-
work is of interests. The PPI network itself is weighted

and confidence score of interactions may affect results.
And the direction of some edges has biological mean-
ings as well. From the evolutionary algorithm view, the
method used in this paper is rather superficial and various
state-of-the-art techniques have not been employed. Fur-
ther improvements on EA may make it more efficient in
handling large-scale networks.
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