
RESEARCH Open Access

P-Hint-Hunt: a deep parallelized whole
genome DNA methylation detection tool
Shaoliang Peng1*†, Shunyun Yang1†, Ming Gao1*†, Xiangke Liao1, Jie Liu1, Canqun Yang1, Chengkun Wu2

and Wenqiang Yu3

From The Fifteenth Asia Pacific Bioinformatics Conference
Shenzhen, China. 16-18 January 2017

Abstract

Background: The increasing studies have been conducted using whole genome DNA methylation detection as one of
the most important part of epigenetics research to find the significant relationships among DNA methylation and
several typical diseases, such as cancers and diabetes. In many of those studies, mapping the bisulfite treated sequence
to the whole genome has been the main method to study DNA cytosine methylation. However, today’s relative tools
almost suffer from inaccuracies and time-consuming problems.

Results: In our study, we designed a new DNA methylation prediction tool (“Hint-Hunt”) to solve the problem. By
having an optimal complex alignment computation and Smith-Waterman matrix dynamic programming, Hint-Hunt
could analyze and predict the DNA methylation status. But when Hint-Hunt tried to predict DNA methylation status
with large-scale dataset, there are still slow speed and low temporal-spatial efficiency problems. In order to solve the
problems of Smith-Waterman dynamic programming and low temporal-spatial efficiency, we further design a deep
parallelized whole genome DNA methylation detection tool (“P-Hint-Hunt”) on Tianhe-2 (TH-2) supercomputer.

Conclusions: To the best of our knowledge, P-Hint-Hunt is the first parallel DNA methylation detection tool with a high
speed-up to process large-scale dataset, and could run both on CPU and Intel Xeon Phi coprocessors. Moreover, we
deploy and evaluate Hint-Hunt and P-Hint-Hunt on TH-2 supercomputer in different scales. The experimental results
illuminate our tools eliminate the deviation caused by bisulfite treatment in mapping procedure and the multi-level
parallel program yields a 48 times speed-up with 64 threads. P-Hint-Hunt gain a deep acceleration on CPU and Intel
Xeon Phi heterogeneous platform, which gives full play of the advantages of multi-cores (CPU) and many-cores (Phi).

Keywords: DNA methylation detection, Whole genome, Parallelized algorithm, Xeon Phi, Tianhe-2

Background
Epigenetics focus on the problem that why lives with
same DNA sequences have different characters. Epigen-
etics is an important part of the genetics. There are two
kinds of information in the genome: the explicit infor-
mation in DNA sequence and implicit information hid-
ing in the combination of bases. These implicit
information control some characters of lives [1]. Al-
though researchers have already started the study of

epigenetics for decades, they have not reached the pur-
pose of revealing the laws of epigenetics [2, 3]. Especially
for research on DNA methylation, the research about it
has been lasted about 20 years. But what we know about
DNA methylation is pretty preliminary.
Whole genome DNA methylation detection is one of

the most important part of epigenetics research. It is sup-
posed to have a great effect on cancers and tumors, and
even be involved in the senility of human. In addition, it is
believed that in medical aspects, DNA methylation may
have a strong relationship with diabetes and immuno-
logical diseases [4–6]. Especially for cancers, the abnor-
mity of DNA methylation in some specific area of DNA
has a great significance of carcinogenesis. For now, the

* Correspondence: pengshaoliang@nudt.edu.cn; gaoming@nudt.edu.cn
†Equal contributors
1School of Computer Science, National University of Defense Technology,
Changsha, China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Genomics 2017, 18(Suppl 2):134
DOI 10.1186/s12864-017-3497-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3497-9&domain=pdf
mailto:pengshaoliang@nudt.edu.cn
mailto:gaoming@nudt.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

main method to detect whole genome DNA methylation
is mapping the target sequences, after bisulfite treatment,
back to the reference genome, and tell the differences
[7–10]. But in practical research, mapping tools that
are widely used may fail to find the accurate map or
they cannot find the map quickly. The root cause of
finding inexact map is that these tools only use bisulfite
treated sequences, which have already been changed. Also,
with the rapid development of biotechnology, the dataset
of DNA sequences to carry out the methylation analysis
become larger and larger, which is supposed to lead to a
much time-consuming work of finding maps.
For example, BSMAP [11] is a representative tool to

detect the whole genome DNA methylation. But with
the research go deeper and the sequence data go bigger,
there are two main challenges ahead of us: the accuracy
and the speed. BSMAP maps the bisulfite treated se-
quences directly to the whole genome reference. How-
ever, because the sequences are treated by bisulfite,
some of them have been changed, which will bring mis-
takes during the mapping operator. An efficient way to
solve this problem is to use the sequences of one end
with bisulfite treatment and another end without bisul-
fite treatment. This is a relatively newer and harder area
which may lead to better results. Another challenge is
the low-speed problem. Because BSMAP only supports
multi-threads on single computing node, as the data of
sequences grows fast, one sample from a single bio-
logical experiment could generate 1 TB sequence data,
which may take several months for general computing
platform using BSMAP to process them. Hence, there is
a strong demand of whole genome DNA methylation de-
tection tool, which can run with multiple threads on
platform with multiple computing nodes.
Nowadays, there are mainly two parts of DNA methy-

lation detection: biological sequencing by experiment
and computer simulation. After the biological experi-
ment, we can acquire the sequences with assistant loca-
tion information. The samples of paired-ends sequences
information are shown in Fig. 1.
According to the location information in the last three

columns, we could acquire the mapping range to narrow
the suspected area, as well as avoiding the cost of aim-
less mapping.
After locating specific areas of mapping in the refer-

ence sequence, we use the Smith-Waterman algorithm
[12] to map target sequence to the reference sequence in
a best matching mode by a local backtracking strategy.
Then, we could acquire the most similar sequence infor-
mation and location information and give out the DNA
methylation detection result of the human genome by
scanning these information. The whole pipeline of the
program is shown in Fig. 2. The pseudocode of local
backtracking shown in Algorithm 1.

In our work, we use the sequences of one end with
bisulfite treatment and another end without bisulfite
treatment, which is a relatively newer and harder area
may lead to better results, to solve the problem of
inaccuracy. First, we use OpenMP to design a fine-
grained multi-threads approach to massively
parallelize the complex tasks of big data to achieve a
good performance. Then, we propose a new parallel
Smith-Waterman algorithm to map the sequence pre-
cisely in the range of 1000 bp around the preliminary
location. The new algorithm we proposed is removing
whole backtracking step of original Smith-Waterman
method by sacrificing a small amount of space effect-
iveness to in exchange for higher performance gains.
Specifically, we record the best source direction for
each matrix element in the matrix score calculation
step. Based on this information, we can backtrack
directly without the need for redundant branch judg-
ments. This is a more efficient method of determining
the best matching position.
After the data screening and deletion of PCR dupli-

cates, we choose the best mapping result for DNA

The Author(s) BMC Genomics 2017, 18(Suppl 2):134 Page 2 of 7

methylation analysis. In order to promote the perform-
ance, we design a centralized looping IO mode and build
an index of input data to effectively avoid the extra over-
head caused by frequent IO operation. Further, we de-
velop the program to exploit multi-level parallelism
using multi-threads and multi-processes, which could be

adjusted flexibly according to various computing plat-
form. And the Intel Xeon Phi coprocessors are also used
to cooperate with CPUs to achieve a faster computing
speed. At last, we evaluate our method on Tianhe-2
supercomputer. The results show that the correctness of
program is guaranteed both for serial version and paral-
lel version. The speed-up is 47 times with 64 threads,
and the speed-up of multiple nodes is nearly linear.

Methods
After the authentication, we find that Hint-Hunt could
figure out the methylated information accurately based
on the mapping in a specific area, but when facing the
computation of big data like the whole human genome,
there are still problems like too much time consump-
tion, especially when we use the sequence data with
more cover layers to reach a large scale. In order to solve
these problems, we design the parallel version of Hint-
Hunt, the P-Hint-Hunt, to optimize the partition of task,
the establishment of index and the function of IO with
multi-levels parallelism.

The optimization of multi-threads
Because of the massive data, nearly 3 TB, the serial pro-
gram could not meet the requirements of running time.
Therefore, we optimize the serial program to the parallel
version and implement the use of multi-threads based
on OpenMP, reaching a speed up of 47 times using 64
threads.
There are two alternatives to implement multi-

threads: the coarse parallelism of chromosome level
and the fine-grained parallelism of target sequence
level. The coarse parallelism means we could use one
thread to process the data from each chromosome, 25
threads in total. This approach is easier to implement
as there is no need to consider the task division. But
because of the difference of the amount of target se-
quences located on the same chromosome, there will
be huge difference of loads on different threads,
which will lead to severe load imbalance among these
threads. On the contrary, the fine-grained parallelism
version could modify the number of threads dynamic-
ally according to the amount of data, and reach the
load balance to the maximum extent.

Fig. 2 The whole pipeline of P-Hint-Hunt. The pipeline is clear
enough. We need to be aware of that the only dependency of the
data is that target sequences with the same ID must be processed
within the same thread to achieve the best result. Therefore, when a
sufficiently high score is obtained, we still make a corresponding
judgement before we process the next sequence

Fig. 1 Target sequences format. The number before each sequence is an ID which must be consistent on the same chromosome. The third
column represents the positive or negative chains of DNA. The fourth column represents the chromosome this sequence is located in. The last
column represents the coordinates of the sequence in the original reference

The Author(s) BMC Genomics 2017, 18(Suppl 2):134 Page 3 of 7

Before we start, we analyze the data dependency and
program structure. The only dependency of the data to
be processed is that target sequences with the same ID
must be processed within the same thread to pick out
the best result. Except this, there is no any other data
dependence among the target sequences. The analysis of
the program structure divide the program to two main
parts: the I/O part and the process of characters. The
second part takes the most of running time, which is
needed to be parallelized eagerly.
The implementation consists of three main parts. (1)

Loading data and pre-classification. According to the in-
put data, with an order of ID number, we classify all of
the input data to avoid the bad influence caused by data
dependence. We set the same ID number for target se-
quences, and divide the indexes to different threads
equally basing on the amount of target sequences in
each index. This procedure insures the correctness of
the program and keeps the load balance, which also re-
duces the running time. (2) Concentrated loop IO oper-
ation help to control the usage of memory. In the serial
program, the program firstly reads the target sequence
file line by line and then computes and processes. After
these process operations, the program writes the result
back to result arrays and finally writes the results back
to result files when all the processes are over. The multi-
threads structure needs to import the data into memory
first to help task partition and establishment of indexes,
but the frequent IO operations are barriers for pipeline
execution on hardware. So we use concentrated loop IO
operation (import two million lines of sequence data
once upon a time) to avoid the performance decrease
caused by frequent IO operation and help control the
usage of memory at the same time. (3) The safety of
multi-thread running. In the programming of multi-
thread program, there are both shared space and private
space in every thread, so first we have to classify the
shared parameters and the private parameters. In the
program, the array of reference sequence and the array
of overall methylated position are shared by all the
threads. In addition, to make sure the safety of multi-
thread running, we use the thread-safe functions instead
of the general function. Take the function in C++ base
for example, “strtok” is not thread-safe, which means it
may occur errors when running several threads sharing
memory. So we use the function “strtok_r” instead.

The optimization of multi-processes
Using the multi-cores on single node could not meet the
requirement of time consumption when the data scale
big enough. To make full use of the structure of super-
computer, the multi-processes version of program could
take the advantages of multiple computing nodes to ac-
celerate the running time extremely.

First, the program calculates the amount of data
needed to be divided to each process according to the
number of processes. During the division of tasks, we
need to insure that target sequences with exactly the
same ID number must be divided to the same process.
The processes communicate with each other to acquire
the start and end position of their tasks, and then start
to process data, where the load balance have been in-
sured among all processes.

The cooperation of Intel Xeon Phi coprocessor
and Intel CPUs
Nowadays, more and more supercomputers provide
powerful computing capacities base on a heterogeneous
architecture. Intel Xeon Phi coprocessor and GPUs are
added to the traditional computer architecture to seek
for an increase of computing scale, and the former is
more powerful in parallel computing and scientific com-
puting. Take the Tianhe-2 super computer for an ex-
ample, each of its computing nodes have two Xeon E5
2692 processors and three Intel Xeon Phi coprocessors.
So we optimize the parallel program especially for the
architecture of super computers.
The main challenge of programming on coprocessors

is the usage of memory on coprocessors. Because the co-
processors cannot access to the main memory as CPU
does, so the memory remains to be idle on each co-
processor in practical is nearly 6GB. However, the mem-
ory allocating on CPUs is about 28GB. Therefore, we
use CPU to control the data transformation between
main memory and memory on coprocessors. We use
112 threads of 56 cores on the Intel Xeon Phi coproces-
sors to process 100 million lines (this amount is calcu-
lated by the memory available) of target sequences each
time, and then carry out data transformation between
these two kinds of memory.
About the cooperation of Intel Xeon Phi coprocessor

and Intel CPU, we find that the computing capability of
three coprocessors using 56 cores each is nearly the
same as two CPUs with 12 cores each after the tests. So,
we divide the target sequence file into 12 parts and dis-
tribute two parts of them to each coprocessor and three
parts of them to each CPU processor. The dynamic dis-
tribution of tasks makes sure the load balance between
CPUs and coprocessors and makes the full use of all the
computing resources.

The pre-process of reference sequence file
The reference sequences are stored in the file in the for-
mat of 50 bp per line, which is imported line by line.
Therefore, when the input data become large, the time
of IO could be very substantial. In order to solve this
problem, we use a pre-process of reference sequence file
to remove the line break symbols in it and make sure

The Author(s) BMC Genomics 2017, 18(Suppl 2):134 Page 4 of 7

the location of each base remain the same. After this
operation, the program could import the reference se-
quence file in a very short time. It only takes 20–30 s ra-
ther than original several hours.

The optimization of data structure and better usage
of memory
At the very beginning of our program, in order to record
the methylated or non-methylated information, we use
structural arrays to record the start and end mapping
position, score, etc. Take one of several input files for ex-
ample, there are 9,242,825 lines of sequence in the target
sequence file, and every one of the sequences needs the
space of 212 Bytes. That makes the total space needed
for the target sequences to be used as a buffer are
212B × 9242825 = 1.825 GB. In addition, another 3GB
are still necessary to store the human genome reference
sequences because the length of reference is 3G. In
order to store the methylated and non-methylated infor-
mation of each base in the references, we need extra
3G × 8B = 24GB memory space. While, the target se-
quence file in this example is the minimum one, which
means that there could be a need for 70 × 1.825GB +
3GB + 24GB = 154.75 GB memory space for the largest
target sequence file consisting 650 million lines of se-
quences, nearly 70 times bigger than the first example.
The demand for memory is obviously beyond the cap-
ability of common computing station, and will keep in-
creasing as the target sequence file increases.
Aiming at solving these problems, we optimize the

data structure to minimize the memory allocation.
When storing the information of methylated and
non-methylated, the program uses a buffer in each
thread, which is allocated temporarily, rather than a
permanent piece of block in the memory. And each
thread then releases the buffer after a group of se-
quences (sequences with the same ID are treated as
one group) is processed, and transfers the results in
the buffer into the overall array. Using the strategy
above, which we call it “write through”, we could
write back the methylated or non-methylated infor-
mation back to the overall array and control the
usage of memory effectively at the same time. In the
end, the overall memory allocating of our program is
about: 3GB + 24GB + 1GB = 28 GB (the extra 1 GB is
from other static parameters), which is acceptable in
general computing platform and proved to be an ef-
fective way to optimize the memory allocation.

Results and Discussions
Multi-thread parallelized optimization
The basic environment of the computing platform is
shown in Table 1.

The test consists three main parts: the correctness, the
speed-up of parallelism and the scale-up of parallelism.
About the correctness of our program, we checked the

results of the test samples by manual work, the results
showed complete agreement with the expected results,
which means the program could give out the correct re-
sults for the given target sequences.
As to tests of speedup, we used the dataset consists of

10,000 lines, 100,000 lines, 1 million lines, 3 million lines
and 9 million lines. And we used 6 kinds of different
numbers of threads to carry out overall tests. The results
of test for 9 million lines of target sequences are shown
in Table 2.
When processing the same amount of data, the serial

version of program uses 86062 s. From the comparison
between the serial program and the parallel program we
can know that our work can achieve a high speedup.
At last, we used 10 million, 50 million and 110 million

lines of target sequences to test whether the program
will be stable when facing big data to evaluated its scale-
up. And the results of these test show the multi-threads
program could run normally and keep efficient for big
data.

Multi-processes parallelized optimization
As to the tests for multi-processes program, we used
sample 1 and sample 2, whose amount of data are 9 mil-
lion lines (1087 MB) and 48.492 million lines
(59630 MB) respectively. The test results are shown in
Table 3.
From the lists, we could tell that the program using

multi-processes on multiple computing nodes has an ob-
vious speed-up compared to multi-threads only.

Table 1 Computing environment in the test

Hardware Index

CPU architecture x86_64

CPU name Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz

CPU frequency (MHz) 2593.493

CPU on each node 2*16 cores

Memory on each node (GB) 128

Shared disk (TB) 10

Table 2 Results for multiple threads

Number of threads Time (s) Speed-up

2 37272.4 1.809

4 20259.4 3.548

8 10600.1 7.419

16 5375.5 15.112

32 3072.8 28.008

64 1828.4 47.070

The Author(s) BMC Genomics 2017, 18(Suppl 2):134 Page 5 of 7

CPU/MIC collaborated parallel computing method
The test computing environment is similar with what we
used above, except extra three Intel Xeon Phi coproces-
sors with 57 cores each. The frequency of every one of
these cores is 1.1 GHz. And one of the 57 cores is used
as a managing core, so we could use the rest 56 cores.
During the test, we opened two threads on each core,

and 112 threads total on each coprocessor. The sample
1 and sample 2 are still 9 million lines and 48.492 lines,
respectively. The testing results are shown in Table 4.
From the results, we could figure out that the comput-

ing capacity of the whole three coprocessors is about 1.2
times promotion comparing with two CPUs.

Conclusions
Aiming at a classic problem in epigenetics: the predic-
tion of DNA methylation status, we proposed and im-
plemented a computing tool, and parallelized it with
multi-threads and multi-processes. The parallel version
with a high speed-up could run both on CPU and Intel
Xeon Phi coprocessors. In the program, we implement
the prediction of DNA methylation status, threshold fil-
tering, score sharing and result data integration. The
pre-process of reference sequence file and concentrated
loop IO operation keep the program correct and run-
ning in a load balanced and memory efficient way.
In the evaluation part, we evaluate the program

about its correctness, its speed-up and scale-up, and
analyzed the effectiveness of parallelism. The results
of these tests show that the correctness of program is
guaranteed both for serial version and parallel version.
When we use multiple threads, the speed-up is 47
times with 64 threads, and the speed-up of multiple
nodes is nearly linear. Further, we can see that multi-
processes on multiple computing nodes, which can be

applied to larger dataset, has an obvious speed-up
compared to multi-threads only. And the Intel Xeon
Phi coprocessors are also used to cooperate with
CPUs to achieve a faster computing speed. In general,
after parallelism of the program, the running time de-
creases sharply and the computation resources are
fully used.
So far, the program has been paralleled on different

levels, taking full use of CPU and Intel Xeon Phi copro-
cessors on super computer. But as a very important part
of the whole pipeline, the program needs data from the
upstream. So in the future, we are supposed to combine
the whole pipeline of analyzing DNA methylation into
one single parallel program to create a seamless tool to
analyze DNA methylation.

Abbreviations
CPU: Central processing unit; DNA: Deoxyribonucleic acid; GPU: Graphics
processing unit; MIC: Many integrated core

Acknowledgments
We would like to thank Mr. Lin Fang from BGI for providing the source code
of SOAP and Dr. Jun Wang from BGI for providing related data. We would
also like to thank Prof. Hans V. Westerhoff from University of Manchester for
discussions of the human genome re-sequencing analysis problem and thus
improving our own understanding.

Funding
Research reported in this manuscript and the publication costs for this
manuscript were supported by National Natural Science Foundation of China
(NSFC) Grant 61272056, U1435222, 61133005, and Guangdong Provincial
Department of Science and Technology under grant No. 2016B090918122.

Availability of data and materials
Not applicable.

Authors’ contributions
SP designed the method and algorithm. SY wrote the software and do some
experiments. MG conceived the study, wrote the software, and wrote the
paper. JL, CY, and CW give important comments on algorithm design and
writing. WY’s group do wet experiments to verify the correctness of our
work. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

About this supplement
This article has been published as part of BMC Genomics Volume 18
Supplement 2, 2017. Selected articles from the 15th Asia Pacific Bioinformatics
Conference (APBC 2017): genomics. The full contents of the supplement are
available online http://bmcgenomics.biomedcentral.com/articles/supplements/
volume-18-supplement-2.

Author details
1School of Computer Science, National University of Defense Technology,
Changsha, China. 2Faculty of Life Sciences, University of Manchester,
Manchester, UK. 3EpiRNA Lab, Institues of Biomedical Sciences, Fudan
University, Shanghai, China.

Table 4 Results for coprocessors

Sample Number of coprocessor Thread number time (s)

Sample 1 1 112 2602

2 112 1469

Sample 2 1 112 139886

2 112 70397

Table 3 Results on multiple computing nodes

Sample Nodes
number

Threads
number

Time (s) Memory allocated
(GB)

Sample 1 2 16 840.25 28.9

32 390.37 28.9

4 16 468.15 28.9

32 202.12 28.9

Sample 2 4 32 15806.23 28.9

6 32 11140.45 28.9

The Author(s) BMC Genomics 2017, 18(Suppl 2):134 Page 6 of 7

http://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-2
http://bmcgenomics.biomedcentral.com/articles/supplements/volume-18-supplement-2

Published: 14 March 2017

References
1. Hovestadt V, Jones DT, Picelli S, et al. Decoding the regulatory landscape of

medulloblastoma using DNA methylation sequencing. Nature. 2014;
510(7506):537–41.

2. Smith ZD, Chan MM, Humm KC, et al. DNA methylation dynamics of the
human preimplantation embryo. Nature. 2014;511(7511):611–5.

3. Yan L. The DNA, methylation landscape of human early embryos. Nature.
2014;511(7511):606–10.

4. Jeong M, Sun D, Luo M, et al. Large conserved domains of low DNA
methylation maintained by Dnmt3a. Nat Genet. 2014;46(1):17–23.

5. Hackett JA, Surani MA. DNA methylation dynamics during the mammalian
life cycle. Philos Trans R Soc Lond. 2013;368(1609):20110328.

6. Duthie SJ. Folate and cancer: how DNA damage, repair and methylation
impact on colon carcinogenesis. J Inherit Metab Dis. 2011;34(1):101–9.

7. Hovestadt V, Remke M, Kool M, et al. Robust molecular subgrouping and
copy-number profiling of medulloblastoma from small amounts of archival
tumour material using high-density DNA methylation arrays. Acta
Neuropathol. 2013;125(6):913–6.

8. Lister R, Mukamel EA, Nery JR, et al. Global epigenomic reconfiguration
during mammalian brain development. Science. 2013;341(6146):1237905.

9. Smith ZD, Chan MM, Mikkelsen TS, et al. A unique regulatory phase of DNA
methylation in the early mammalian embryo. Nature. 2011;484(7394):339–44.

10. Coppedè F. Epigenetic biomarkers of colorectal cancer: focus on DNA
methylation. Cancer Lett. 2014;342(2):238–47.

11. Xi Y, Wei L. BSMAP: whole genome bisulfite sequence MAPping program.
BMC Bioinf. 2009;10(1):232.

12. Smith T, Waterman MS. Identification of common molecular subsequences.
J Mol Biol. 1980;147(1):195–7.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

The Author(s) BMC Genomics 2017, 18(Suppl 2):134 Page 7 of 7

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The optimization of multi-threads
	The optimization of multi-processes
	The cooperation of Intel Xeon Phi coprocessor and Intel CPUs
	The pre-process of reference sequence file
	The optimization of data structure and better usage of memory

	Results and Discussions
	Multi-thread parallelized optimization
	Multi-processes parallelized optimization
	CPU/MIC collaborated parallel computing method

	Conclusions
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	About this supplement
	Author details
	References

