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Abstract

Background: QTL-seq, in combination with bulked segregant analysis and next-generation sequencing (NGS), is
used to identify loci in small plant genomes, but is technically challenging to perform in species with large
genomes, such as barley. A combination of exome sequencing and QTL-seq (exome QTL-seq) was used to map the
mono-factorial Mendelian locus black lemma and pericarp (Blp) and QTLs for resistance to net blotch disease, a
common disease of barley caused by the fungus Pyrenophora teres, which segregated in a population of 100
doubled haploid barley lines.

Methods: The provisional exome sequences were prepared by ordering the loci of expressed genes based on the
genome information and concatenating genes with intervals of 200-bp spacer "N" for each chromosome. The QTL-
seq pipeline was used to analyze short reads from the exome-captured library.

Results: In this study, short NGS reads of bulked total DNA samples from segregants with extreme trait values were
subjected to exome capture, and the resulting exome sequences were aligned to the reference genome. SNP allele
frequencies were compared to identify the locations of genes/QTLs responsible for the trait value differences
between lines. For both objective traits examined, exome QTL-seq identified the monogenic Mendelian locus and

associated QTLs. These findings were validated using conventional mapping approaches.

Conclusions: Exome QTL-seq broadens the utility of NGS-based gene/QTL mapping in organisms with large

genomes.
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Background
Bulked segregant analysis (BSA) has been combined with
whole-genome sequencing (WGS) to rapidly identify
causative nucleotide changes in a given mutant (MutMap
[1]) and quantitative trait loci (QTLs) (QTL-seq [2]) in
rice. Although these methods are suitable for studies of
organisms with relatively small genomes (e.g., genome
sizes of <1 Gbp), they have limited utility in crops with
larger genomes due to the high cost of WGS and the
difficulty of assembling large amounts of sequencing data.
Barley (Hordeum vulgare L.) is a diploid species with a
genome size of 5.1 Gbp. A draft genome sequence of
barley cv. Morex based on BAC fingerprinting, BAC-end
sequencing, whole-genome shotgun sequencing, and
RNA-seq data has been published [3]. The sequences
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obtained using these techniques were anchored to high-
resolution genetic maps to infer the physical positions of
the loci. To obtain gene model information, full-length
¢DNAs (FLcDNAs) derived from cv. Haruna Nijo [4, 5]
were also mapped to the genome.

Exome capture is a standard technique used to
sequence individuals of species with large genomes.
Exome capture has been widely used in studies of
humans, since the human exome, which represents only
1-2% of the total genome (3 Gbp), includes ca. 85% of
the genetic variation responsible for hereditary human
diseases [6]. By combining gene models and FLcDNAs
information, Mascher et al. [7] developed an exome cap-
ture system to enrich for genic fragments from the
barley genome. The resulting exome, estimated to be
61.6 Mbp, can readily be sequenced. The authors cap-
tured exomes from haplotypes of 20 wild and domesti-
cated barley lines and one common wheat (Triticum
aestivum) cultivar and mapped their reads onto the
barley gene models. This analysis revealed a high level of
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sequence polymorphisms in the genic regions of the barley
haplotypes examined. By combining captured exomes and
mapping-by-sequencing, Mascher et al. [8] narrowed down
a barley mutant gene to a single BAC contig scaffold.

Haruna Nijo is a Japanese malting barley cultivar that
has been used for BAC library development [9] and
whole-genome shotgun sequencing [10]. The wild barley
(H. vulgare ssp. spontaneum) accession H602, which is
distantly related to Haruna Nijo, was used to generate
recombinant chromosome substitution lines (RCSLs) for
genetic mapping [11] and a high-resolution transcript
map [12]. The following key traits segregated in this
mapping population: black and white lemma and peri-
carp color, which was determined by the putative gene
Blp (black lemma and pericarp [13]); resistance and
susceptibility to net blotch disease caused by the fungus
Pyrenophora teres f. teres, [14]; and a seed dormancy
QTL, which was designated Qsd1 [15].

The black lemma and pericarp phenotype caused by
Blp is a trait often found in landraces of Central Asia,
Ethiopia, and the Himalayan area. The classic genetic
study of this trait [16] revealed that it is inherited in a
mono-factorial Mendelian fashion. The causative gene is
located on the long arm of chromosome 5H, as revealed
by genetic studies involving a cross between Haruna
Nijo and H602 [17] and another population of Oregon
Wolfe Barleys [18].

Net blotch is one of the main foliar diseases of barley
worldwide [19]. Genetic studies suggest that multiple
resistance factors control the plant’s reaction to the
causal fungus, P. teres f. teres [20, 21]. Sato and Takeda
[14] reported that H602 has the highest level of resist-
ance among the barley germplasms examined, but most
malting barleys, including Haruna Nijo, are susceptible
to P. teres. The resistance QTLs were found to be
located on chromosomes 3H and 6H, as revealed by a
cross between the susceptible (sensitive) line ‘Hector’
and the resistant (insensitive) line ‘NDB 112’ [22].

In the current study, we performed next-generation
sequencing (NGS)-based locus mapping of barley using
an exome capture technique. Specifically, we modified
the QTL-seq technique [2] for use in barley by employ-
ing a reference genome in which barley exomes are
joined in the order of their linkage positions in the
genome. To demonstrate the utility of this method, we
mapped qualitative and quantitative traits with known
locus positions in barley, e.g., Blp and susceptibility to P.
teres, which segregate in the well-established doubled
haploid mapping population of Haruna Nijo x H602.

Methods

Scoring of kernel color

A mapping population of 100 doubled haploid (DH)
lines derived from a cross between Haruna Nijo and
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H602 carrying blp and Blp, respectively, (Additional
file 1: Figure S1) [12] was used. All lines were planted
in the experimental field of the Institute of Plant Science
and Resources, Okayama University in Kurashiki, Japan
and scored for kernel color at maturity. Among individ-
uals in this population, 52 lines had a black lemma and
pericarp (Blp) phenotype and 48 lines had a straw-
white lemma and pericarp (blp) phenotype (Additional
file 1: Figure S1).

Scoring of net blotch resistance and QTL mapping

A single spore of Pyrenophora teres f. teres was isolated
from an infected leaf of malting barley collected in the
field at Chikugo, Fukuoka, Japan and prepared as an in-
oculum according to the culture method of Sato and
Takeda [14]. Two-leaf stage seedlings were inoculated
with P. teres in a growth chamber as described by Sato
and Takeda [14], and the second leaves were scored on a
scale of 1 (highly resistant) to 10 (highly susceptible)
[23]. Two plants were tested per line, and the entire
experiment was replicated twice. Based on the genotyp-
ing data of 1,116 SNPs identified in an oligonucleotide
pooled assay of DH lines [11], linkage between SNP
markers and QTLs responsible for reactions to P. teres
was detected via the composite interval mapping pro-
cedure of QTL Cartographer v. 2.5 [24]. Significance of
LOD (logarithm of odds) scores were calculated using a
1000 permutation test.

Construction and sequencing of a bulked exome capture

library

Genomic DNA was isolated from the fresh leaves of
each DH line using a DNeasy Plant Mini Kit (QIAGEN,
Hilden, Germany). The DNA concentration was mea-
sured with a Qubit® 2.0 fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA). DNA from each DH
line was adjusted to a concentration of 20 ng/pl and
mixed in an equal ratio to produce two bulked DNA
pools per trait. For mapping of the Blp locus, 52 black
lines and 48 white lines were pooled, and for net blotch
resistance, 10 highly resistant and 10 susceptible lines
were pooled.

For fragmentation of genome DNA, 1 pg of bulked
DNA was sheared to approximately 200-bp fragments
with an M220 Focused-ultrasonicator™ (Covaris, Woburn,
MA, USA) in a 50 pl volume in a microTUBE AFA Fiber
Screw-Cap vessel. A whole genome (WG) library bar-
coded by index sequences was constructed from the frag-
mented bulked DNA with a KAPA Library Preparation
Kit (Kapa Biosystems, Wilmington, MA, USA) following
the manufacturer’s protocol. Four libraries, including
black and white bulks for Blp and resistant and susceptible
bulks for net blotch resistance, were constructed. After
evaluating the quality and size of the W@ libraries in a
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Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)
with an Agilent DNA 1000 Kit (Agilent Technologies),
1 pg of the W@ library generated from two bulked sam-
ples (i.e., black and white for Blp; resistant and susceptible
for net blotch resistance) was mixed. Fragments in the
two mixed W@ libraries harboring exon sequences were
captured using the SeqCap EZ Library SR (Roche Diag-
nostics, Basel, Switzerland) designed for the barley gen-
ome [7], following the manufacturer’s protocol. The
captured fragments (exome-captured library; EC library)
were amplified and evaluated for quality and size in a
Bioanalyzer with an Agilent DNA 1000 Kit. To obtain
paired-end reads (150 bpx2), the EC libraries were
sequenced by MiSeq (Illumina, San Diego, CA, USA) with
a MiSeq v2 Reagent Kit 300 Cycles (Illumina), following
the manufacturer’s protocol. The short genomic reads
obtained in this study were deposited at DDBJ-BioProject
under accession number PRJDB4643.

Sequence data analysis and generation of the SNP index
QTL-seq requires a step in which the reference se-
quence of one of the parents used for the cross is
reconstructed. In the current study, provisional exome
sequences (PESs, Additional file 2: Table S1) were
first regenerated from published gene models [3] de-
rived from RNA-seq data from cv. Morex and
FLcDNAs from cv. Haruna Nijo. The PESs were pre-
pared by ordering the loci of expressed genes (MLOC:
50.67 Mbp, 35,134 loci) based on genome information
[3] and concatenating genes with intervals of 200-bp
‘N’ (where N is a spacer) for each chromosome. A set
of 3.9-Gbp RNA-seq reads of Haruna Nijo ([10],
Additional file 2: Table S2) were downloaded, and
after low-quality sequences were trimmed using Trim-
momatic [25], the remaining reads were mapped onto
the PESs to construct the pseudo reference sequence
(PRS). Nucleotides of the Morex PESs were replaced
with those of the Haruna Nijo haplotype to generate
the Haruna Nijo PRS.

The QTL-seq pipeline [2] was used to analyze
short reads from the exome-captured library. The
number of reads in each bulk was adjusted to the
smaller number and used for the further analysis.
After mapping the short reads to the PRS, the SNP
index and ASNP index values were detected, and the
average values were calculated by sliding window
analysis. The “window size” was configured from 100
kbp to 1 Mbp, and “slide size” was set to 10 kbp.
The SNP-calling filter “Coval” [26] was set to 6.
Next, SNP positions with a SNP index of <0.3 were
excluded, and a threshold of more than seven mis-
matches and a depth of fewer than four were elimi-
nated, as these SNPs may be due to sequencing and/
or alignment errors.
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Results

Construction of the pseudo reference sequence

As a result of adding a reference sequence step to the
QTL-seq pipeline, ca. 3.2 million Haruna Nijo RNA-
seq reads were mapped onto the provisional exome
sequences (PESs), and a total of 25,451 SNPs was
detected between the RNA-seq reads and the PESs
(Additional file 2: Table S3), in which the nucleotides
from Morex were replaced with those from Haruna
Nijo. The reconstructed pseudo reference sequence
(PRS) of Haruna Nijo was used for further analysis.

Mapping the Blp locus

Among the 100 DH lines, 52 lines had the black lemma
and pericarp (Blp) phenotype and 48 had the straw-
white lemma and pericarp (blp) phenotype. The segrega-
tion fitted a mono-factorial Mendelian ratio of 1:1 (x* =
0.16, p =0.69, df = 1). Two sequence libraries were con-
structed using pooled DNA from the black and white
lines, respectively. After two rounds of sequencing runs
of mixed libraries from black and white bulks via Illu-
mina MiSeq, ca. 31 million reads (amounting to 4.6
Gbp) and ca. 32 million reads (4.7 Gbp) were obtained
for the black and white libraries, respectively (Additional
file 2: Table S4). After applying the QTL-seq pipeline,
11,571,701 paired reads (ca. 2.314 Gbp) from the black
library and 12,217,344 paired reads (ca. 2.443 Gbp) from
the white library were mapped to the PRS (Additional
file 2: Table S4). After quality filtration at a level of
Coval = 6, we obtained 40,701 SNPs with ca. 3.6 million
reads in the black bulk and 35,218 SNPs with ca. 3.4
million reads in the white bulk (Table 1). These SNPs
were distributed throughout the genome (Table 1,
Additional file 1: Figure S2).

The ASNP index was obtained for each SNP between
black (Additional file 1: Figure S3a) and white (Additional
file 1: Figure S3b) bulks. These values were calculated by
sliding window analysis and plotted onto the PRS, in
which the genes were ordered based on their positions in
the barley genome [3]. Figure 1 shows a plot of the ASNP
index obtained after setting the sliding window size to 500
kbp, window increment size to 10 kbp, and Coval to 6.
The ASNP index peaked above the 1% level of statis-
tical significance on the long arm of chromosome 1H.
There were no other significant peaks in the genome.
After changing the sliding window size to 100 kbp or
1 Mbp, the same SNP index peak was still observed
(Additional file 1: Figure S4).

QTL analysis of net blotch resistance

Based on the reaction scores of the doubled haploid
lines (Fig. 2a) and the genotyping data of 1,116 SNP
markers [11], we identified QTLs associated with the P.
teres resistance trait. Figure 2b shows the positions of



Hisano et al. BMC Genomics (2017) 18:125

Table 1 Number of aligned reads and detected SNPs for Bip revealed by exome QTL-seq
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Library® H 2H 3H 4H 5H 6H 7H Total
No. of aligned reads Black 452,145 612,949 550473 360,920 600,028 457,033 573,584 3,607,132
White 436,249 568,167 514,119 335,529 556,315 427,664 535,036 3,373,079
No. of detected SNPs Black 6,745 6,791 5,806 3,540 6,064 5,848 5907 40,701
White 4,253 6,351 5,180 3,423 5,605 4,871 5535 35218

Black and White indicate the color of both the lemma and the pericarp in each phenotypic bulk

QTLs and Fig. 2c shows their additive values. Two QTLs
were detected on chromosome 3H (42.9-63.1 ¢cM, LOD =
14.2, *=0.27; 96.6-116.6 cM, LOD = 6.6, r* = 0.10) and
another QTL was detected on chromosome 6H
(62.4-63.9 cM, LOD =4.2, r*=0.06). All of the peaks
could be explained by the presence of H602 alleles
for resistance to P. teres (Fig. 2c).

Mapping net blotch resistance

We investigated the P. feres reaction scores of 100 dou-
bled haploid lines. The segregation of these lines based
on net blotch resistance is multimodal and does not
follow the normal distribution, suggesting that this trait
undergoes oligogenic inheritance. We confirmed this
possibility by QTL analysis (Fig. 2b and c). We selected
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Fig. 1 ASNP index plots of each chromosome generated by QTL-seq analysis for use in Blp mapping. Each chromosome contains loci of

expressed genes (1H: 4,300; 2H: 5,582; 3H: 5,556; 4H: 3,647; 5H: 5,859; 6H: 4,307; and 7H: 5,883) concatenating with intervals of 200-bp ‘N’ as a
spacer. The ASNP index was obtained by subtracting the white bulk SNP index from the black bulk SNP index. The thick red line represents the
sliding window average of the ASNP index (window size, 500 kbp; slide size, 10 kbp). The red arrow indicates the position of Blp as detected by
Hori et al. [17]. Statistical confidence intervals under the null hypothesis of no QTL are indicated by yellow (p < 0.01) and green (p < 0.05) lines




Hisano et al. BMC Genomics (2017) 18:125

Page 5 of 9

a H602

16
14
12

10

No. of DH lines
[o2]

Haruna Nijo

&

6
4
2
0
b
15.(.,._LODO
12.01
90+

6.0 1 ‘f\
3.0 30

115225335445 5556657 758859 9510

Infection score (mean of two replications)

0.0 ___AAWJTQ —\/\_vaq n J

A
/\-\'\L"’\,«Aéé w*ﬂ/\n/\mw J Lzu JN/\LL,% ”
2 15

h a(H1)

1H 2H 3H

to the long arm of chromosome 7H along the horizontal axis

Fig. 2 QTL analysis of net blotch resistance in a doubled haploid population derived from a cross between Haruna Nijo and H602. a Frequency
distribution of average scores of two replications of the reaction to P. teres in doubled haploid lines. The average scores of Haruna Nijo and H602
are indicated by white and black arrows, respectively. Black and white bars indicate the number of lines used to produce the resistant and
susceptible bulks, respectively, for QTL-seq analysis. b LOD scores for net blotch resistance and ¢ additive effects. The markers are ordered
following the genetic positions and the directions of chromosomes, which are oriented from the short arm of chromosome 1H on the left side

5H 6H 7H

10 net blotch resistant and 10 susceptible lines to pro-
duce two bulk DNA samples for exome sequence library
construction (see also Additional file 1: Figure S5 for the
resistance reactions of the parents). After one round of
sequencing of pooled resistant and susceptible bulk

libraries via Illumina MiSeq, DNA sequences of ca. 22
million reads (3.2 Gbp) and ca. 21 million reads (3.1 Gbp)
were obtained from the resistant (R) and susceptible (S)
bulk libraries, respectively (Additional file 2: Table S5).
After applying the QTL-seq pipeline, 8,510,990 paired
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reads (ca. 1.702 Gbp) and 8,138,104 paired reads (ca. 1.628
Gbp) from the R and S bulk libraries, respectively, were
mapped to the PRS (Additional file 2: Table S5). After
quality filtration at Coval = 6, we obtained 40,110 SNPs
with ca. 2.3 million reads in the R bulk and 32,837
SNPs with ca. 2.4 million reads in the S bulk (Table 2),
which were distributed throughout the genome (Table 2,
Additional file 1: Figure S6); however, there were twice
as many SNPs on both chromosomes 3H and 6H in the
R bulk than in the S bulk.

We calculated the ASNP index scores between the
R (Additional file 1: Figure S7a) and S (Additional file
1: Figure S7b) bulks and plotted these scores in the
same manner as for Blp mapping. Figure 3 shows the
ASNP index scores calculated with a sliding window
size of 750 kbp, slide size of 10 kbp, and Coval of 6.
The ASNP index peaked above the 1% level of statis-
tical significance only on chromosomes 3H and 6H.
We modified the window size to 500 kbp and 1 Mbp,
which produced ASNP indices that were lower than
those calculated using a window size of 750 kbp
(Additional file 1: Figure S8).

Discussion

Linkage mapping is used to detect markers that are
inherited in a bi-parental segregating population and to
arrange the markers on the map based on the frequency
of crossing-over. Bulked segregant analysis (BSA) is a
linkage mapping technique used to identify DNA
markers linked to a particular locus. In this method, two
bulked DNA samples are developed from a phenotypic-
ally segregating population, whose members are
screened for DNA marker polymorphisms. Michelmore
et al. [27] showed that markers can be reliably identified
within a 25-cM window on either side of the targeted
locus. MutMap [1] and QTL-seq [2] are essentially the
same as BSA, but in these techniques, markers are gen-
erated by high-throughput sequencing of pooled DNA,
and a large number of SNPs are mapped onto the
genome. In QTL-seq, the mapping resolution depends
on the number of individuals in the bulk [2], and the
redundancy of sequence reads, including efficient SNPs,
depends on the number of individuals examined. If there
are sufficient numbers of individuals in the bulks, it is
possible to identify the SNPs associated with the trait.
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To acquire a higher rate of redundancy of reads, it is
useful to analyze a plant with a relatively small genome.
Moreover, analyzing a plant with a large genome re-
quires the use of high-speed computers with advanced
processing capabilities. Thus, it is currently difficult to
perform QTL-seq on plants with large genomes.

Exome capture is a standard technique for sequencing
individuals of species with large genomes, especially in
human and mouse. Only one exome capture system is
available for barley [7]. We cannot evaluate the genome
coverage of these exome sequences, because the
complete genome sequence is not yet available for
barley. However, the number of sequence reads in the
barley gene models identified in the current study was
sufficient to reconstruct the PRS in the QTL-seq
(Additional file 1: Figure S2) and to estimate the SNP
index (Figs. 1 and 3). These loci were concatenated to
200 Ns in the virtually developed chromosome sequence,
which does not represent the true distance in the
genome. Thus, the SNP index around the target locus
may reflect a slightly modified linkage relationship,
although each SNP index is not influenced by the con-
catenation of the locus to Nis.

Blp is a simple Mendelian trait that was used as a
phenotypic marker on a classical linkage map [13]. In
this study, we chose this trait as a model to estimate
the efficiency of our mapping strategy. We used all
Blp (52) and blp (48) individuals in a pool of 100
doubled haploid lines to maximize the mapping reso-
lution. The expected redundancies of reads in the
library were 28.0 in Blp and 30.0 in blp, which are
fewer than the number of individuals per library
(Additional file 1: Figure S2). Takagi et al. [2] sug-
gested that the number of individuals used for QTL
mapping in rice (Oryza sativa) by QTL-seq can be as
low as 15% of those used for conventional QTL map-
ping by obtaining a higher read depth. Mascher et al.
[7] used exome capture in barley to map an induced
mutation in an F, mapping population from a cross
between cv. Barke and a mutant in the cv. Saale
background. The authors used 18 mutant and 30
wild-type individuals to map the trait. Although we
used more individuals in the current study, the map-
ping resolution can be further improved by increasing
the sequence redundancy.

Table 2 Number of aligned reads and detected SNPs for net blotch resistance revealed by exome QTL-seq

Library? H 2H 3H 4H 5H 6H 7H Total
No. of aligned reads R 289,281 385,073 340,122 225,445 378332 285,861 360,933 2,265,047
S 304,488 398,271 366,993 234,005 391,138 304,305 377452 2,376,652
No. of detected SNPs R 5,024 6,125 8,167 2,752 5,694 7171 5177 40,110
S 4,048 6,574 4,212 2,805 6,328 3,506 5,364 32,837

R and S indicate bulks of lines showing resistance and susceptibility to P. teres, respectively
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The net blotch resistance trait was used in this study resistance has been identified as a quantitatively inher-
to demonstrate the mapping of multiple loci controlling ited trait, although classical linkage studies, including
a single trait via sequencing analysis of bulks. Net blotch  trisomic series analysis [28], have revealed resistance
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factors on chromosomes [19]. Liu et al. [22] identified
net blotch resistance QTLs on chromosomes 3H and 6H
based on a cross between the sensitive/susceptible culti-
var ‘Hector’ and the insensitive/resistant line ‘NDB 112,
which correspond to the QTLs identified in the cross
between Haruna Nijo and H602 in the current study
(Fig. 2b and c¢). The QTLs on both chromosomes are
located near centromeres, where crossing over is sup-
pressed. Our interval mapping suggested that multiple
QTLs are located on chromosome 3H. We cannot deter-
mine if these QTLs are distinct or the same; however,
crossing overs between the QTL positions on chromo-
some 3H may help to establish whether multiple QTLs
are present or absent. However, since multiple QTLs
segregated in the population, only a limited number of
individuals (10 for each) showing extreme phenotypes
could be applied in this analysis. The results indicate the
importance of having a higher number of individuals in
the bulk, which would increase the mapping resolution
by including more crossing over events when performing
mapping analysis of multiple loci.

The mapping resolution of Blp and of the net
blotch resistance QTLs obtained in the current study
was not high enough to enable a comparison with re-
sults in rice [1, 2]. The mapping window sizes of Blp
and net blotch resistance were 500 kbp and 750 kbp,
respectively, which were much larger than those used
for rice [2], and may blunt the peaks in the resulting
maps. Furthermore, the lack of complete barley gen-
ome information complicated the mapping. The phys-
ical positions of BAC contigs were determined based
on the genetic mapping of markers in a population of
several hundred individuals [3]. Since multiple loci
are located on a BAC contig with a single physical
position, we could not estimate the order of loci on
the same contig. Therefore, more complete genome
information for barley must be obtained before high-
resolution mapping of this plant can be conducted by
exome QTL-seq.

Conclusions

We generated a large number of SNP markers in
barley by exome QTL-seq. Since these SNPs were
localized to known loci on the barley genome, these
markers can readily be used for map-based cloning
of various loci. Thus, exome QTL-seq in barley pro-
vides opportunities not only for the direct mapping
of a trait onto the genome, but also for generating
markers that can be used to narrow down the pos-
ition of a particular locus in the genome. For this
purpose, the mapping resolution of exome QTL-seq
in barley should be increased by using a larger
number of individuals in the bulk and a higher
redundancy of reads.
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Additional file 1: Figure S1. Kernel color in the haploid mapping
population. Figure S2. Depth of the mapped reads on the PRS in the
exome-captured QTL-seq analysis for Blp mapping. Figure S3. Plots
showing the SNP index of each chromosome generated by exome-
captured QTL-seq analysis for Blp mapping in barley. Figure S4. Plots of
the ASNP index of chromosome TH generated by exome-captured QTL-seq
analysis for Blp mapping. Figure S5. Infected leaf phenotypes. Figure S6.
Depth of the mapped reads on PRS in the exome-captured QTL-seq analysis
for net blotch resistance. Figure S7. Plots of the SNP index of each
chromosome generated by exome-captured QTL-seq analysis for mapping
of net blotch resistance. Figure S8. Plots of the ASNP index of chromosome
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