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Abstract

Background: Studies of de novo mutations offer great promise to improve our understanding of human disease.
After a causal gene has been identified, it is natural to hypothesize that disease relevant mutations accumulate
within a sub-sequence of the gene – for example, an exon, a protein domain, or at CpG sites. These assessments
are typically qualitative, because we lack methodology to assess the statistical significance of sub-gene mutational
burden ultimately to infer disease-relevant biology.

Methods: To address this issue, we present a generalized algorithm to grade the significance of de novo mutational
burden within a gene ascertained from affected probands, based on our model for mutation rate informed by local
sequence context.

Results: We applied our approach to 268 newly identified de novo germline mutations by re-sequencing the
coding exons and flanking intronic regions of RB1 in 642 sporadic, bilateral probands affected with retinoblastoma
(RB). We confirm enrichment of loss-of-function mutations, but demonstrate that previously noted ‘hotspots’ of
nonsense mutations in RB1 are compatible with the elevated mutation rates expected at CpG sites, refuting a RB
specific pathogenic mechanism. Our approach demonstrates an enrichment of splice-site donor mutations of exon
6 and 12 but depletion at exon 5, indicative of previously unappreciated heterogeneity in penetrance within this
class of substitution. We demonstrate the enrichment of missense mutations to the pocket domain of RB1, which
contains the known Arg661Trp low-penetrance mutation.

Conclusion: Our approach is generalizable to any phenotype, and affirms the importance of statistical
interpretation of de novo mutations found in human genomes.
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Background
Studies of de novo mutation offer new potential to eluci-
date the etiology of both Mendelian and complex human
diseases [1], made increasingly possible by efficient, large-
scale re-sequencing of the coding portion of the human
genome. This class of mutations can lead to the identifica-
tion of disease-causal genes [2–5] and etiological pathways
[6, 7], help to refine the underlying genetic mechanism
and architecture [8], and ultimately can aid in clinical
management of disease for mutational carriers.
After a causal gene has been identified, it is natural to

hypothesize that disease relevant mutations accumulate
within a sub-sequence of the gene – for example, an exon,

a protein domain [9], or at CpG sites [10]. Previous stud-
ies of de novo mutational burden for complex disease have
largely focused on gene or pathway discovery, and have
benefited from statistical models that capture base-pair
variability in the mutation rate [6, 11, 12]. However,
because hundreds of genes are implicated for an individual
complex disease, and owing to sizes of these studies which
typically number in the hundreds to a few thousands
subjects [8], the number of de novo events per gene is
small and thus limits the power to infer pathogenicity of
sub-sequences within the gene. In contrast, for Mendelian
diseases that are not extremely rare and where the genetic
architecture is less complex (i.e., one or a few genes are
disease causal), de novo mutational burden concentrates
to individual genes [13], facilitating the possibility of genic
sub-sequence characterization. However, previous efforts
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have largely been enumerative rather than quantitative, as
improved models of mutation for the human genome [14]
and a large-scale collection of genetic variation segregat-
ing in the coding genomes of human populations have
only been recently described [15].
Progress in investigating hypotheses of mutational bur-

den within sub-sequences has been hampered by the
lack of accurate models that capture mutation rate
variability in human genomes at base-pair resolution.
Previous studies have utilized approaches based on
enrichment of de novo mutations in disease ascertained
samples to infer pathogenicity [16–18]. However,
because sub-genic sequences can introduce germline
mutations more frequently due to a higher intrinsic rate
of mutation, it is critical to model variation in mutation
rate to accurately detect enrichment at sub-sequences
[19]. Recently, we described a statistical model for
nucleotide substitution using local sequence context,
which explains a substantial fraction of variability in mu-
tation rates observed in human populations [14]. In what
follows below, we describe an approach that facilitates
direct hypothesis testing for an enrichment of de novo
mutations within the sub-sequence of a gene, beyond
that expected from our mutational model at base-pair
resolution. Our report here differs from important, re-
cent work demonstrating the functional intolerance to
new mutations found in the protein domains of genes
[9], with application targeted toward variant
prioritization for locus discovery in human disease. In
addition, our approach differs from existing tools like
TADA or Poisson models [12, 20], which are designed to
assess the total mutational burden in a gene. In contrast,
our approach directly tests for the enrichment of de
novo mutations in disease ascertained samples over part
of gene suspected to harbor pathogenicity (e.g., protein
domains, exons, specific amino acids, etc.) against a null
hypothesis reflecting the background variable rate of
mutation across a gene. Our objective is to assess if the
distribution of mutations already observed is itself
unusual, heterogeneous in space across a gene or within
a mutational class. As a proof of concept, we apply our
testing framework on a data set consisting of de novo
mutations discovered in 642 newly re-sequenced
patients affected with sporadic, bilateral Retinoblastoma
(RB). RB is an extensively studied cancer of the develop-
ing retina, and the distinctive clinical features of bilateral
tumors and a younger age at diagnosis is associated with
the presence of germline mutations in the tumor
suppressor retinoblastoma 1 (RB1) gene [21].
In RB, it is not fully understood if de novo mutations

occur uniformly over RB1, or instead localize to specific
codons, sequence contexts, or protein domains. Based
on Knudson’s model [22], we expect a higher frequency
of de novo mutations that result in putative loss-of

function (LoF) in RB1 in patients ascertained for RB,
which has been previously shown [16]. Numerous stud-
ies have reported a preponderance of nonsense muta-
tions at CpG sites in RB1 [10, 16, 23, 24]. These
observations could suggest a role of CpG sites in gener-
ating nonsense mutations via the deamination of hyper-
methylated CpGs as a potential mechanism [17, 25, 26],
though this postulation remains to be statistically evalu-
ated. In addition, numerous splice-site mutations have
also been observed in RB1 [23, 24, 27], many of which
have been shown to result in exon skipping [27]. How-
ever, it remains to be quantified if mutations in all essen-
tial splice sites are equivalently pathogenic. Finally,
recurrent point mutations have been observed at specific
codons, which includes Arg661Trp [28–30]. This codon
falls within the pocket domain in RB1 [31], an important
domain that facilitates binding of the protein product
with downstream targets to regulate cell cycle. However,
to our knowledge, enrichment of mutations at this or
other codons in RB1 has not been statistically quanti-
fied. In what follows, we demonstrate (i) that the previ-
ously reported excess of nonsense mutations in RB1 at
CpGs is compatible with the elevated rate of mutation at
those sites, refuting a specific pathogenic mechanism in
RB, (ii) an enrichment of essential splice-site donor mu-
tations at exon 6 and 12, but depletion at exon 5, indica-
tive of previously unappreciated heterogeneity in relative
penetrance across this type of putative LoF mutation,
and (iii) a statistically significant excess of mutations
found at Arg661Trp in bilateral RB, as a hotspot for
missense mutations with lower penetrance. Our
approach is generalizable across disease endpoints,
providing a statistical framework to characterize rare
diseases with today’s data, but also expanded, complex
disease studies collected in the future.

Results
An algorithm to quantify the enrichment of de novo
mutations
Our central objective is to determine if the frequency,
type, and location of de novo mutations for a given gene
are consistent with the number of events predicted from
our local, nucleotide sequence context model for muta-
tion rate variability. For example, we expect more non-
sense mutations in RB patients than our background
model predicts, because (i) we ascertained individuals
with RB, (ii) nonsense mutations are likely LoF, and (iii)
LoF at RB1 causes RB. To achieve this objective, we re-
quire an accurate model that captures variability in the
frequency of de novo mutational events across a gene
and an engine to distribute mutations in that gene
according to this model. With these in place, we can
empirically assess significance of enrichment of de novo
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mutations in exons or sub-sequences of RB1 relative to
our model prediction.
In our previous work [14] we demonstrated that an ex-

panded sequence context model which considers three
flanking nucleotides on either side of a base (i.e.,

heptanucleotide), explains variation in germline muta-
tion rate better than competing models of sequence con-
text, and up to 93% of the variability in substitution
probabilities. Using the sequence context based substitu-
tion probabilities, we developed an algorithm to

Fig. 1 Approach to quantify if patterns of de novo within a mutational class are unusual. Our approach involves three steps. First, we identify the
genomic target (base pair territory) in which mutations will be characterized, and the total number of mutations found in that territory. We then
distribute this total number of mutations over the target territory using a background model of mutation rate. Second, we find the expected
number of mutations in different categories (Exon, mutational type like Nonsense or specific Amino Acid) using the previous distribution samples.
Third and finally, we compare this to the observed number of mutation to detect statistical enrichment in a category beyond expectation. In this
toy example depicted here, we focus on the genomic territory that can generate nonsense mutation (shown in red), and imagine that we have
identified 10 de novo mutations that are nonsense. First, we identify eligible base pairs and that can result in a nonsense change. Next, we
calculate the probability of mutation at each eligible base pair as the sum of substitution probabilities of that sequence context changing to a
stop codon (shown in red). Second, we then distribute the mutations over multiple simulations from a multinomial distribution, and find the
distribution of the expected number of mutations at each of these eligible base pairs. We are particularly interested in cases where the observed
number of mutations at a subclass (exon or an amino acid) is greater than what we see in simulations, as this is compatible with disease-relevant
pathogenicity for this class of mutation, or position where the mutation(s) is located. Third and finally, for a particular subclass we combine the
expected mutations at different eligible base pairs and compare the overall expected distribution with observed, and conclude enrichment
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distribute mutations across the gene in order to generate
an expected count of mutations (with variance) at all po-
sitions in RB1 (Fig. 1, Methods). With these distributions
in hand, we can estimate the empirical significance con-
ditioned on the observed number of any type of substi-
tution in any sub-sequence(s) within the gene. As an
imperfect control, we use singletons from ExAC (allele
frequency of ~1/66,000, ~0.00152%) in which to com-
pare our de novo events, with the assumption that these
events are the youngest and have not experienced the
full force of purifying selection; i.e., are the closest proxy
to de novo events segregating in (non-Finnish) European
populations. In what follows, we apply our approach to
study (i) the overall frequency of nonsense, essential
splice-site, and missense mutations in RB1 and ExAC,
and (ii) their spatial occurrence by exon or by sub-
sequence (CpG sites, domains, or codons).

Re-sequencing of sporadic bilateral RB patients identifies
268 de novo single base point mutations
To quantify the role of de novo mutations in the patho-
physiology in RB, we re-sequenced RB1 in 642 cases pre-
senting sporadic (i.e., without family history), bilateral
RB and their parents. Our targeted resequencing
included all exons of RB1 as well as 50 base pairs of
intronic sequences on either side of exons (Methods).
For statistical modeling purposes, we focused on single
base point mutations and excluded individuals who carry
a frame-shift or in-frame insertion-deletion mutations.
After variant calling followed by quality control, we
identified 276 de novo germline, single base point muta-
tions (Methods). Owing to an alternative start codon in
exon 1 [10, 32], our subsequent analyses focus on the
remaining exons, resulting in 177 amino-acid altering
mutations, 86 in essential splice-sites, and 5 mutations
found in introns outside of essential splice-sites (total of
268 de novo events, Additional file 1: Table S1,
Methods). Consistent with the causal role of RB1, the
discovery of 268 de novo mutations in 642 RB probands
is highly unusual (Expected number of variants = 0.1, P < <
10−10, Methods). Furthermore, we observed more nonsense
and essential splice-site mutations than missense or in-
tronic mutations, expected given the pathogenic nature of

loss-of-function (LoF) mutations in RB1 (Table 1). For a
population-level comparison, we contrasted our mutational
profile to the data obtained from the Exome Aggregation
Consortium (ExAC) [15], consisting 60,706 individuals re-
sequenced for the exome. We note that ExAC excluded
childhood diseases from their aggregation, which may have
excluded RB patients. As a result, we do not expect this
sample to represent a completely random population sam-
pling of mutations in RB1. From ExAC, we focused on
singletons observed in non-Finnish populations of
European ancestry (n = 149 variants in >33,000 subjects,
Additional file 1: Table S2, Methods). Consistent with sam-
ples from ExAC as population-level controls with potential
ascertainment against RB disease, we observed fewer loss-of
function and more missense and intronic variants com-
pared to our de novo mutations identified in RB probands
(Table 1).

Abundance of nonsense mutation at CpG sites is
explained by elevated mutation rate
We first investigated if nonsense mutations were distrib-
uted proportionally to the predicted rate of mutation, or
alternatively localize to specific sequences, like CpGs. As
a positive control, we first distributed the 268 identified
mutations ascertained in RB probands and determined
how many nonsense mutations we predicted from our
sequence context mutational model. We found an
enrichment of nonsense mutations beyond that expected
from our model (P < < 10−6, Fig. 2a, Methods). This
observation is consistent with extensive literature show-
ing that LoF mutations at RB1 cause RB. As a negative
control, we distributed variants identified from the ExAC
database, and observed fewer nonsense mutations than
expected based on our model (P = 0.0103, Fig. 2a,
Methods). This is also expected, as we anticipate few (if
any) nonsense mutations in RB1 observed in the general
population or in ExAC that may have excluded RB
patients.
We next examined if the subset of 150 nonsense

mutations we observed were unusually distributed across
exons in RB1 (Methods). We found that, across virtually
all exons, nonsense mutations occurred as frequently as
our model predicts, broadly consistent with the concept
that nonsense mutations found across RB1 are similarly
pathogenic (Fig. 2b). The single exception was exon 27,
which segregated fewer mutations than our model
predicted (P < < 10−6, Fig. 2b). This observation is com-
patible with the hypothesis that nonsense mutations in
exon 27 are not fully penetrant, perhaps due to incom-
plete nonsense mediated decay [33] or that this exon
may not be integral to the etiology of RB. Previous stud-
ies have observed fewer mutations at later exons in the
RB1 gene [16], though they were unable to quantify the
reduction and assess statistical significance as we are

Table 1 Counts of de novo mutations in RB1 ascertained from
RB patients, and singleton variants identified in ExAC from
(non-Finnish) Europeans for various subtypes

Variant Type RB de novo mutations ExAC singletons

Overall 268 149

Nonsense 150 1

Missense 27 56

Essential Splice 86 1

Intronic 5 91
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able to here. While we observed fewer mutations at
exons 25 and 26, these numbers are still compatible with
our background mutational model, given the number of
mutations that were discovered in re-sequencing.
Next, we examined if the subset of 150 nonsense mu-

tations we observed were unusually distributed in amino
acid type or codon contexts across RB1 (Methods). We
found that the distribution of de novo events by amino acid
and codon context was not especially different from what
our mutational model predicted (Table 2). Specifically, our
model predicted a large number of C-to-T transitions result-
ing in Arginine to Stop mutations at the CGA codons (93

observed, 99% CI: 73–104, P= 0.24), presumably due to the
higher mutational frequency at the CpG context [19, 34].
This analysis indicates that the observed profile of nonsense
mutations can be explained by the background rate of
mutation without a need to invoke a RB-specific mutation-
promoting or pathogenic mechanism at CpG sites.
To replicate these observations, we repeated our

analysis on an independent set of 100 nonsense de novo
germline mutations in RB1 identified in bilateral RB
patients (Additional file 1: Table S3, Methods). These
results recapitulated the observed deficiency of nonsense
events in exon 27, and our model also matched the
number of nonsense mutations at CpG sites or at CGA
codons relative to other nonsense sites (Additional file 1:
Table S4, S5).

Excess splice-site donor mutations in introns 6 and 12,
but depleted in intron 5 of RB1
We next investigated if essential splice-site and intronic
mutations were distributed proportionally to the rate of
substitution predicted by our context model. As a posi-
tive control, we distributed the 268 mutations ascer-
tained in RB probands and determined how many
essential splice-site and intronic mutations we expected
from our sequence context mutational model. We found
more de novo essential splice sites mutations in RB
patients than predicted (P < < 10−6, Fig. 3a, Methods).
This observation is consistent with the idea that essential
splice-site mutations that are LoF at RB1 cause RB. As a
negative control, we distributed variants identified from
the ExAC database and observed fewer essential splice
variants there (P = 0.014, Fig. 3a, Methods). This is not

a

b

Fig. 2 Overall and exon specific pathogenicity in nonsense mutations.
a Comparison of the overall observed number of mutations to the
simulated frequency of nonsense mutations in both RB and ExAC
datasets. b Comparison of the observed number of mutations to the
simulated frequency of nonsense mutations in RB, across exons 2 to
27. The asterisk (*) denotes that the observed number falls outside the
99% confidence interval (i.e., P < 0.01). CI: Confidence Interval

Table 2 Comparison of the observed number of nonsense de
novo mutations to the simulated frequency predicted by our
sequence context model

Amino Acid 99% CI of simulation Observed variants Empirical P

Lysine [0, 11] 3 0.336

Serine [2, 15] 6 0.404

Leucine [1, 13] 5 0.454

Glutamine [5, 23] 15 0.385

Tryptophan [1, 13] 3 0.126

Arginine [73, 104] 95 0.188

Glutamic [4, 20] 14 0.243

Glycine [0, 6] 3 0.211

Cysteine [0, 7] 1 0.399

Tyrosine [2, 16] 5 0.143

Arginine Codon 99% CI of simulation Observed variants Empirical P

CGA [73, 104] 93 0.237

AGA [0, 4] 2 0.209

Data shown for all amino acids which can change to a stop codon as well as
Arginine codon partitioned by CpG context. CI confidence Interval
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unexpected: analogous to nonsense mutations described
above, we anticipate few essential splice-site mutations
in the general population and/or ascertainment against
RB patients in ExAC participants. In intronic sequences
that are found outside of essential splice sites, we ob-
served substantially fewer events in RB patients that our
model predicted (P < < 10−6, Fig. 3a). In contrast, we
found more intronic events in ExAC that our model

would predict (P < < 10−6, Fig. 3a). Taken collectively,
these two observations indicate that intronic and essen-
tial splice-site sequences do not have a homogeneous
rate of mutational ascertainment, and given that intronic
mutations are ascertained less frequently, indicate lower
overall pathogenicity for intronic mutations outside of
essential splice-sites (Fig. 3a), as expected given that
essential splice sites are generally intolerant to mutation.
We then examined if the 86 essential splice-site muta-

tions we ascertained in RB probands were unusually
distributed across introns in RB1 (Methods). First, we
found that essential splice-site acceptor mutations were
not unusually distributed (Additional file 2: Figure S1),
so we focused on the remaining 63 essential splice-site
donor mutations. Next, we observed no mutations in the
donor site of intron 5, which was outside our model pre-
diction (P < < 10−6, Fig. 3b). However, this observation is
readily explainable: if we assume that essential splice-site
donor mutations here result in exon skipping as seen for
other splice-site mutations [27], it turns out that skip-
ping exon 5 retains the coding reading frame albeit with
a 13 amino acid deletion (Additional file 3: Figure S2).
Therefore, this type of mutation may not result in full
LoF of the RB1 protein product, and thus, may be
weakly penetrant, if at all. Next, we found that essential
donor splice-site mutations in intron 6 and 12 segre-
gated more mutations that our model predicted (P < <
10−6, Fig. 3b). Previous studies have observed that exon
6 and 12 mutations are recurrently mutated in RB1 [23,
24], though they were unable to quantify the enrichment
and assess statistical significance as we are able to here.
It is not immediately apparent why these specific

splice-site mutations are enriched in RB ascertained pa-
tients compared to other splice donor mutations. Essen-
tial donor splice-site mutations at intron 6 and 12 result
in exon skipping [27], out-of frame shift mutation, and
putative LoF (Additional file 3: Figure S2). However, es-
sential donor splice-site mutations at other introns (ex-
cept intron 5) also result in frame-shift mutations in
RB1 if exons are skipped. To further validate the obser-
vation of specific enrichment at these exons, we utilized
the Leiden Open Variation (LOVD) Database [35]
(Methods), a curated catalog of mutations found in RB1.
Because variants are reported from multiple studies,
where the gene territory re-sequenced and total number
of individuals ascertained is not completely documented,
we are limited in our ability to statistically quantify vari-
ant enrichment in LOVD as we can for our data. We
found recurrent mutations with multiple reported vari-
ants (or fewer for exon 5) even in the LOVD [35] data-
base of all reported variants in RB1 gene of patients with
RB (Table 3). Moreover, the donor sequences of inton 6
and 12 also are similar to other canonical splice se-
quences found at other (not enriched) exons. Taken

a

b

Fig. 3 Overall and exon specific enrichment in essential splice-site
mutations. a Comparison of the overall observed number of mutations
to the simulated frequency of essential splice and intronic mutations in
both RB and ExAC datasets. b Comparison of the observed number of
mutations to the simulated frequency of essential splice donor mutations
in RB, across exons 2 to 27. The asterisk (*) denotes that the observed
number falls outside the 99% confidence interval (i.e., P< 0.01). CI:
Confidence Interval
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collectively, these data suggest some additional patho-
genic burden of these mutations relative to other essen-
tial splice-sites in RB1.

Localized enrichment of missense mutations to
Arg661Trp in RB1
We investigated if missense mutations were distributed
proportionally to the rate of substitution predicted by
our context model. We distributed the observed 268
mutations across the gene, and found significantly fewer
missense mutations than expected (P < < 10−6, Fig. 4a,
Methods). This observation is consistent with the model
that missense mutations as a class generally are less
penetrant for RB, contrasting against the substantially
higher penetrance of LoF nonsense or essential splice
mutations. In contrast, ExAC participants were not un-
usual in the distribution of missense variants observed
relative to our model prediction (P = 0.041, Fig. 4a).
Taken collectively, these data suggest that, as a class,
missense mutation in RB1 are less frequently pathogenic
than nonsense variants and result in fewer mutations
ascertained in RB probands.
The idea that missense mutations generally are less

penetrant for RB1 still leaves open the possibility of het-
erogeneity in pathogenicity among sub-sequences of
RB1. For example, Arg661Trp is a frequently observed
mutation found in families that segregate lower pene-
trance [28–30]. Computational prediction tools like
Polyphen2 [36] or evolutionary conservation based
metrics [37] are frequently used to rank missense
variants categories of deleteriousness as a proxy for
pathogenicity. We applied Polyphen2 to classify all
missense mutations we identified, and found most of
them to be damaging (Additional file 1: Table S6).
To further improve the resolution of these predictions,

we applied our approach to identify a smaller, statisti-
cally credible subset of missense mutations implicated in
RB pathogenicity. To achieve this, we distributed all 27
missense mutations we ascertained in RB probands
across RB1 to determine if these rates were proportional
to our predicted mutational model (Methods). We

observed a significant enrichment of missense mutations
in exon 20, mapping to the known pocket domain in
RB1 (Fig. 4b, 8 mutations out of 27, P < < 10−6).
Although the pocket domain in RB1 gene encompasses
other exons [29, 31] (i.e., Pocket Domain Box A: Exons
13–17, Pocket Domain Box B: Exons 18–22), we did not
observe a specific enrichment of missense mutations
there (all P > 0.01, Fig. 4b). We next distributed the mis-
sense mutations within the pocket domain territory in
RB1 (n = 18 missense mutations in 307 codons across
the entire pocket domain). We observed an excess of
missense mutation burden within exon 20 in Pocket
Domain Box B near codon 661 than predicted by our
model (P < < 10−6, Fig. 5).

Table 3 Comparison of the observed number of essential
donor splice-site de novo mutations at exons 6, 12, and 5 to the
simulated frequency predicted by our sequence context model

Location 99% CI of
simulation

Observed
variants

Empirical
P

LOVD
count

Exon 6 (G→ C) [0, 2] 3 3 × 10−4 40

Exon 6 (G→ A) [0, 4] 9 <10−6

Exon 12 [0, 10] 13 4 × 10−4 67

Exon 5 [1, 12] 0 3 × 10−3 2

“LOVD count” denotes the point variants observed at this site in the LOVD
dataset. In Exon 6, we list separately the simulated frequency for each
mutational class type (G to C and G to A). CI confidence Interval

a

b

Fig. 4 Exon specific and localized enrichment of missense mutations
in RB1. a Comparison of the overall observed number of mutations to
the simulated frequency of missense mutations in both RB and ExAC
datasets. b Comparison of the observed number of mutations to the
simulated frequency of missense mutations in RB, across exons 2 to 27
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We next sought to localize the signal of the missense
mutational burden within exon 20. We distributed all
missense mutations we observed within exon 20 (n = 8
in total), and observed an enrichment of missense muta-
tions from CGG to TGG coding for a change from
Arginine to Tryptophan (Additional file 1: Table S7).
Specifically, we found the previously observed recurrent
mutation Arg661Trp (n = 5 times in our sample) oc-
curred more frequently that our model predicted (P < <
10−6). We note the limited resolution of Polyphen2, as it
also predicts other sites nearby as damaging (Additional
file 1: Table S6).
To place this observation in context of other mis-

sense mutations documented in RB1, we evaluated
the frequency of n = 130 missense mutations in exon
2 to 27, curated by the LOVD repository. There, the
most frequently cataloged missense mutation was
Arg661Trp (n = 33 of 127), with the next most fre-
quently listed as C712R (n = 8 of 127), G137D (n = 6
of 127), and T307I (n = 5 of 13). However, when
reflected against ExAC, Arg661Trp was observed
only once (<0.001%) and C712R was not observed at
all, consistent with putative pathogenicity of both
variants. In contrast, G137D and T307I were far

more frequent in ExAC (0.04% and 0.3%,
respectively), suggestive of very low RB penetrance
for these events. While the LOVD ascertainment is
certainly complex and precludes us from formally
evaluating statistical significance, these data are con-
sistent with the importance of Arg661Trp as patho-
genic and a frequently mutated position.

Quantification of relative rates of different classes of
mutations found in RB1
Finally, we sought to quantify – relative to nonsense
mutations – the rates of various sub-types of de novo
mutations we observed in RB1. Assuming the pene-
trance of nonsense mutation is nearly full, the idea here
is that if a subtype of de novo mutation were as pene-
trant as nonsense mutations, we would expect to have
ascertained that subtype as frequently as nonsense muta-
tions, proportional to the mutability of the subtype. We
found that the rate of ascertainment of essential splice-
site mutations was statistically lower than nonsense mu-
tations (P < < 10−10, Fig. 6, Methods), consistent with the
lower penetrance of essential splice mutations due to
some less pathogenic changes observed at the essential
splice positions (e.g., intron 5). Similarly, the rate of

Fig. 5 Comparison of the observed number of mutation to the simulated frequency of missense mutations over codons in the pocket domain of
RB1. Here, a sliding window of 10 amino acids on either side of the codon was considered. Dotted line denotes the gap in the pocket domain
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intronic and missense mutations relative to nonsense
was substantially smaller (P < < 10−10, Fig. 6). Finally,
while the rates of missense mutations found in both
Pocket Domain Box A and B were less frequent relative
to nonsense mutations, we noted that mutations local-
ized to Box B were more frequent compared to missense
mutations overall or in Box A (both P < < 10−10, Fig. 6).
Together, these data suggest a mixture of penetrant mis-
sense mutations found across RB1, elevated in pene-
trance for Box A mutations, and further elevated in Box
B, the Box that also contains codon 661.

Discussion and conclusions
A major challenge in de novo mutational studies of rare
and complex disease is to not only identify new patho-
genic mutations, but also to statistically quantitate the
enrichment of specific types of pathogenic mutations
within a gene, in order to improve the understanding of
gene-specific disease etiology. To address this question,
we developed a generalized approach, based on local
nucleotide sequence context, to model variability in
mutational probabilities at base pair resolution. Our mo-
tivation was based on the need to statistically evaluate
specific hypothesis about the relative abundance – and
inference about pathogenicity – of de novo mutations
identified in probands selected for bilateral RB without a
previous family history of disease. Our approach pro-
vides a strategy to statistically interpret the enrichment
of specific types and location where mutations occur in

genes, important as the clinical community obtains large
numbers of mutations from re-sequencing and may be
tempted to speculate on apparent excesses in mutational
frequency without comparing to what might be expected
by chance. While the mutational model utilized here is
the best performing from those that are currently avail-
able [12], we expect that these models will continue to
improve over time. Our proposed approach is flexible
and can accommodate future, improved models. The
interpretation of our findings were also clarified by con-
trasting our results against singleton variants identified
in the largest aggregation of publicly available sequenced
exomes from ExAC. One caveat here is that we assumed
that observed singleton mutations were close (but im-
perfect) proxies to the de novo mutation rate. That study
did observe fewer singletons than expected, suggesting
the signature of recurrent mutation. Thus, while our
estimates here may report fewer that the total number
expected, we note that the size of RB1, the magnitude of
the recurrent mutational imprint, and simulations
suggest only a small impact on our interpretation of
ExAC variation.
Our collection is both of qualitative and clinical im-

portance. First, this study of sporadic RB cases identified
under a research protocol represents the single largest
dataset of de novo mutations in the RB1 gene reported
to date. Thus, it removes many uncertainties associated
with other data sets where there are many sources of
non-homogeneity including sample ascertainment and

Fig. 6 Comparison of the relative rates of different types of de novo mutations, normalized to the rate of nonsense mutations. Plotted is the
mean of the ratio of observed number of mutations over expected based on the computational model. Mutational categories that have a
different rate from the nonsense category (P < 0.01) are denoted by an asterisk (*). CI: Confidence Interval
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methods used for mutation detection. Moreover, the
significance of identifying de novo mutations for affected
probands includes not only clinical management deci-
sions, but also risk of a second cancer in the future as
well as having additional, affected offspring. Thus, inves-
tigating the pathogenicity of de novo mutations by this
study is both mechanistically and clinically relevant. In
terms of clinical importance, our results imply that (i)
splice site mutations at exon five are likely not patho-
genic, (ii) that exon 6 and 12 splice junction mutations
are unusually pathogenic, and (iii) missense mutations
around the pocket domain are more pathologically sig-
nificant. The latter two cases may motivate further clin-
ical monitoring or phenotypic follow-up studies to
quantify future cancer risk for those specific mutations.
The analysis we present on these data helps to bring

clarity to several outstanding questions in the field. First,
we show that the frequency of nonsense mutations at
CpG sites is compatible with our background model for
the known, elevated rate of mutation at these sites. A
parsimonious interpretation of this result is simply that
nonsense mutations at CpG sites in RB1 are, in fact, not
preferentially RB pathogenic. Instead, the abundance of
Arginine to Stop mutations can simply be explained by
(i) ascertainment of RB affected probands, (ii) that LoF
at RB1 causes RB, and (iii) the mutability of this
sequence context [14, 34]. Second, we identified hetero-
geneity in the frequency of essential donor splice-site
mutations across RB1. In particular, we found a deple-
tion of essential donor splice site in intron 5, explainable
by the fact that exon 5 skipping retains the coding frame
(at the cost of a 13 amino acid deletion) and thus may
only be weakly penetrant. We also found more essential
donor splice-sites of introns 6 and 12 than predicted by
our model, which result in frame-shift and putative LoF.
We note that essential donor splice-sites in other introns
also result in frame-shift and putative LoF. Thus, a
mechanistic explanation as to why exon 6 and 12
skipping and consequent frame-shift LoF would be
specifically ascertained in our probands remains elusive.
Nonetheless, statistical quantification of this specific
enrichment, to our knowledge, has not been previously
reported.
Finally, we quantified the excess of missense mutations

in Exon 20, localized specifically to Arg661Trp. While
we noted the recurrence of five mutations to this specific
codon, as well as and enrichment in another LOVD
dataset, we were not able to distinguish the relative fre-
quency of this mutation from the rate of nonsense owing
to the small number of events we ascertained. Previous
reports in the literature gives some indication that this
mutation is indeed low penetrance [28–30], and our re-
sults are consistent with these reports. With sufficient
data and a specific, probabilistic model, it is conceivable

to utilize our approach to derive posterior distributions
for penetrance for this and other classes of mutations we
observed. Such may be the focus of future work.
We focused here exclusively on the analysis of RB,

owing to the systematic extent that this disease has been
previously studied, the preponderance of existing data
sets, and minimal genetic heterogeneity for the condi-
tion. Despite this, our efforts helped to clarify existing
hypotheses in the field around mutational mechanisms
for the gene and point to new areas to study for this
already well-studied disease. That said, our framework
could be readily applied for interpreting the large collec-
tion of de novo events in additional monogenic or oligo-
genic (i.e., Mendelian) diseases. Or alternative, in the
near future for complex disorders where genes have
been identified and re-sequenced in a large number of
patient populations and numerous de novo events have
been catalogued. While each disease endpoint will have
particular biological mechanisms to elucidate, the model
and approach we present should provide a statistical
framework to identify sequence-based features that point
to unknown mechanisms underlying human disease.

Data access
Patient samples
Patients included in this study were recruited as part of
a research protocol between 1998 and 2011 from
pediatric oncology clinics within North America. The de
novo mutations presented here were identified from 642
children in the Genetic Diagnostic Laboratory at the
University of Pennsylvania. These samples represent
bilateral RB cases without family history, and where both
parental DNA sample was available. Parental DNA sam-
ples were tested for the mutations identified in the
respective affected child to rule out familial cases, and to
unambiguously establish the presence of de novo
mutational events. Of the 75 sporadic bilateral cases
identified previously [38], only 23 samples overlap (i.e.,
had parental samples also submitted/available).

DNA isolation and sequencing
The isolation of DNA, PCR amplification of RB1 se-
quences, and Sanger sequencing of amplified PCR prod-
ucts was performed as previously described [38]. Primer
sequences used for amplification are available on request.

RB1 genic sequence region
We considered the genic sequence of RB1 with acces-
sion number L11910 in the GENBANK database. Only
exons 2 to 27 in RB1 were analyzed; exon 1 was
excluded to match the design of a previous study, owing
to cryptic start site in the gene [32], though exon 1
mutations did not appear unusually distributed (data not
shown). We also analyzed 50 base pairs on both 5′ and
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3′ ends of the exon. Six base pairs on the 3′ end of the
exon were defined as donor essential splice sites, while 2
base pairs on the 5′ end were defined as acceptor essen-
tial splice sites. The remaining nucleotides, from
position 7 to 50 on the 3′ end of the exon, and from 3
to 50 on the 5′ end of the exon were defined as intronic
sites. As a result, we analyzed a total of 5,460 nucleotide
bases in the gene, out of which 2,787 were from protein
coding region, 2,457 intronic and remaining 216 belong-
ing to essential splice sites. We provide the entire anno-
tated genomic territory (Additional file 1: Table S8).

RB mutational data
A total of 571 mutations were identified, which included
289 point mutations. Furthermore, we considered
missense, nonsense, essential splice (six base pairs on
the 3′ end of the exon were defined as donor essential
splice sites, while 2 base pairs on the 5′ end were
defined as acceptor essential splice sites), and intronic
mutations that falling in the RB1 sequence region de-
fined per the above, that passed quality control. We note
that the apparent difference between the total number of
individuals sequenced (n = 642 probands) and the num-
ber of mutations found in RB1 (n = 571) is not dramatic-
ally different than previous reports [16, 34], perhaps
suggesting additional pathogenic non-coding variation
missed by our survey focused primarily on coding
sequences. As a result, 268 mutations falling in our
region of interest were analyzed.

ExAC variants
We only considered the singleton variants (missense,
nonsense, essential splice and intronic) in the non-
Finnish European populations from the ExAC dataset.
We initially downloaded all variants in “ENSG00000
139687” gene id from ExAC, including only mutations
that were observed once (singletons). As a result, we
analyzed 149 singleton variants falling in our region of
interest as described above.

RB mutational data from collaborators
We independently received nonsense mutational data from
a recent publication of germline de novo mutations in RB
[10]. We analyzed 100 variants from this dataset that were
present in our region of interest as described above.

LOVD variants
We queried the variants present in the 2015 release of
the Leiden Open Variation Database (http://rb1-lsdb.d-
lohmann.de/home.php?select_db=RB1) for in the RB1
gene. We only reported the results from the point muta-
tions present in the database.

Methods
Analysis of the total number of mutations discovered
Unlike the noncoding region, previous studies [39] have
reported a higher de novo mutation rate of ~1.5 × 10−8

mutations per base pair per generation in the coding re-
gion. Since we consider a total genomic territory of
5,460 nucleotide base pairs in RB1 gene and sequenced
642 individuals (or 1,284 haploid chromosomes), we ex-
pect a total of 0.1 de novo mutations in our sample. This
is calculated by multiplying the de novo mutation rate
(1.5 × 10−8) with the total genomic territory (5460 base
pairs) and total number of haploid chromosomes
sequenced (642 × 2). Since, we observed 268 non-silent
de novo mutations and we expect 0.1 de novo mutations,
we report extreme statistical significance after simula-
tions from a Poisson distribution with fixed parameter
as the expected mean of 0.1.

Mutation enrichment analysis conditional on a set of
observed mutations
The majority of analyses presented in the paper focused
on generating the expected number (and variance in)
mutation number, conditioned on a specific type of
event or sub-sequence with RB1 where a set of events
had occurred. In the case of mutations identified in RB
probands, this involved distributing all (or a subset of )
n = 268 de novo mutations we discovered by re-
sequencing RB1. For the comparison to ExAC, this
involves distributing all (or a subset of ) n = 149 singleton
variants we identified in non-Finnish Europeans, as an
admittedly imperfect proxy for de novo events. Our
procedure involved three steps:

Step One: Select genomic territory and observed
mutations that fall in region of interest. For results
where n = 268 mutations were distributed, we
considered all of the available genomic territory that
was re-sequenced and filtered from our discovery effort
(i.e., a total of 5,460 bases, as described above). Here, if
the base pair position did not result in a desired type of
mutation, that base is excluded. The number (and type)
of mutations that are subsequently distributed was
based on those actually discovered within the specified
territory. Finally, we assumed de novo mutations located
in any/all positions in our territory was always able to
be discovered, if present.
Step Two: Distribute mutations on sequence according
to context model. The probability of mutation at each
base pair of the genomic territory selected in Step One
is provided by our 7-mer sequence context based
substitution probabilities, which were estimated from
the non-coding genome in our prior work [14]. Briefly,
a nucleotide base can change into one of three other
bases (e.g., nucleotide C can change to A, G, or T) with
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different substitution probabilities based on the type of
change. Depending on the codon and position context,
this nucleotide change can result in one of many types
of coding changes (e.g., nonsense, splice-site, etc.). The
type of mutations selected in Step One determines
which of these three nucleotide base changes at the
position is considered. For example, if only nonsense
mutations were selected in Step One, we would
consider only the base pair positions and subset of
possible nucleotide changes in each base pair that result
in a nonsense mutation. Once all probabilities across
base pairs have been identified, we then normalize by
the sum of all probabilities so that the total at all
eligible bases where a change could occur in the gene is
1. For a given simulation and the total number of
mutations selected in Step One, each is distributed
across the gene from a multinomial distribution with
probabilities as estimated before.
Step Three: Determine Empirical Significance. For each
comparison, we performed 1,000,000 simulations to
determine the empirical distribution of mutation count
found at the type or sub-sequences of mutations
specified in Step Two. Empirical p-values for significant
enrichment (deficiency) were determined by counting
the number of times that the simulations had a value
greater (less) than or equal to the observed number of
mutations in that class.

Rates of different classes of mutation, relative to
nonsense mutations
We first calculate the ratio of observed to expected muta-
tions in a category after distributing all 268 de novo muta-
tions at all eligible bases and possible changes (any change
except those resulting in a synonymous mutation) using
our algorithm described before. Next, we normalized this
ratio by dividing it with the mean for nonsense category.
This results in setting the mean of observed to expected
variants for nonsense category as 1. We then plot the mean
and standard error of this ratio for each category of muta-
tions. The different distributions of this observed to ex-
pected rate are compared using a standard 2 sample t-test.

Additional files

Additional file 1: Table S1. All de novo germline variants in RB1 gene
of patients with RB. “gDNA position” is the nucleotide position in the
GENBANK accession number L11910 of the gene. Table S2. All ExAC
variants in RB1 gene that were considered in our analysis. “gDNA
position” is the nucleotide position in the GENBANK accession number
L11910 of the gene. Table S3. All Nonsense variants in RB1 gene from
Onadim and Houdayer groups. “gDNA position” is the nucleotide
position in the GENBANK accession number L11910 of the gene.
Table S4. Comparison of observed mutations and the simulated
frequency of nonsense changes per exon, to find differential
pathogenicity within nonsense mutations. Analysis was performed on
data from Onadim and Houdayer groups. Table S5. Comparison of

observed mutations and the simulated frequency of nonsense changes
to find differential pathogenicity within nonsense mutations. Data shown
for all amino acids and two arginine codons (99% CI) which can change
to a stop codon. Analysis was performed on data from Onadim and
Houdayer groups. Table S6. Polyphen predictions on the de novo
germline missense mutations or some potential variants near codon 661
in RB1 gene. “Polyphen2_format” is the variant format accepted by the
Polyphen2 tool. “Polyphen_prediction” is the result of Polyphen2 on the
missense variant. Table S7. Comparison between observed mutations
and the simulated frequency of missense changes at amino acids and
codons in exon 20, to find localized pathogenicity within missense
mutations. Only the significant results are reported here.
Table S8. Genomic territory of RB1 gene analyzed in our study. “Position
Start” is the start position of the entry as per GENBANK database.
“Position End” is the end positon of the entry as per GENBANK database.
“Annotation” is the description of the entry. Possible keywords are exon
or donor/acceptor region in essential splice or nonessential intronic
region. “Exon” corresponds to exon number of the entry. (XLSX 30 kb)

Additional file 2: Figure S1. Comparison of observed mutations and
the simulated frequency of essential splice acceptor mutations in RB
(99% CI) to find exon specific differential pathogenicity within essential
splice mutations. Exons where the observed mutations are higher or
lower than the 99% confidence interval of simulations are denoted by an
asterisk (*). (PDF 143 kb)

Additional file 3: Figure S2. Donor splice mutations in Exons 5, 6 and
12, and their effect on codon structure. The codon structures are shown
prior and after the donor splice mutation. The donor splice mutation
results in exon skipping or deletion, but can also cause a frameshift
mutation in certain cases. (PDF 84 kb)
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