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Abstract

Background: Family-based designs, from twin studies to isolated populations with their complex genealogical data,
are a valuable resource for genetic studies of heritable molecular biomarkers. Existing software for family-based
studies have mainly focused on facilitating association between response phenotypes and genetic markers, and no
user-friendly tools are at present available to straightforwardly extend association studies in related samples to large
datasets of generic quantitative data, as those generated by current -omics technologies.

Results: We developed PopPAnTe, a user-friendly Java program, which evaluates the association of quantitative data
in related samples. Additionally, PopPAnTe implements data pre and post processing, region based testing, and
empirical assessment of associations.

Conclusions: PopPAnTe is an integrated and flexible framework for pairwise association testing in related samples
with a large number of predictors and response variables. It works either with family data of any size and complexity,
or, when the genealogical information is unknown, it uses genetic similarity information between individuals as those
inferred from genome-wide genetic data. It can therefore be particularly useful in facilitating usage of biobank data
collections from population isolates when extensive genealogical information is missing.
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Background
Family-based designs, from complex genealogical struc-
ture to twin studies, are a valuable resource for genetic
studies. The primary aim of currently-available software
accounting for population substructure and/or related-
ness in the statistical model (e.g., EMMA [1], Merlin [2],
GenABEL [3], QTDT [4]) is to evaluate the association
between genetic SNP markers and response phenotypes
and, to date, very few tools are available to test the asso-
ciation of large quantitative datasets generated by high-
throughput -omics technologies (e.g., epigenomic versus
metabolomic data, or transcriptomic versus metagenomic
data) in familial samples. For instance, althoughmodelling
of genealogical data can be performed by the coxme [5]
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and kinship2 [6] R packages, R is not a particularly effi-
cient environment to carry out hundred of thousands or
millions tests.
We have implemented a user-friendly Java program,

PopPAnTe, to perform exact association tests between
large quantitative datasets in family-based studies. Rela-
tionships between individuals can be described either by
known pedigrees of any size and complexity or by genetic
similarity matrices (GSMs) inferred from genome-wide
genetic data [7]. Pedigree-based and pedigree-free relat-
edness can show some discordance, especially when some
degree of hidden relatedness or population substructure is
observed in the data and extensive genealogical informa-
tion is missing or incomplete. For instance, genealogical
information going back more than three or four gen-
erations may be difficult to be retrieved for individuals
recruited in large-scale biobank started in genetic isolates
such as those from the Middle East.
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Implementation
PopPAnTe assesses the relationship between quantitative
dependent variables (responses) and quantitative indepen-
dent variables (predictors) within a variance components
framework in order to model the resemblance among
relatives.
The association of a single predictor with a single

response variable is described as

ri = μ + βpi +
∑

j
ψijCij + gi + ei (1)

where ri represents the response value for the i-th individ-
ual, μ the response mean, β the estimate of the predictor
value pi, ψj the estimate of the j-th covariate C, and gi and
ei the polygenic and environmental effect, respectively.
The total response variance is partitioned into poly-

genic and environmental variances (the latter including
also measurement errors), and the variance-covariance
matrix is calculated as

ω = 2�σ 2
a + Iσ 2

e

where � is the relatedness matrix between each pair of
individuals, I is the identity matrix, and σ 2

a and σ 2
e are the

additive genetic and environmental variance, respectively.
Within the same framework, PopPAnTe allows the

evaluation of the narrow heritability of any quantitative
response variable included in the analysis.
The significance of the association is calculated using

a formal likelihood-ratio test comparing the likelihood of
the alternative model described in Eq. (1) to the likeli-
hood of a null model where the effect of the predictor is
constrained to zero.
PopPAnTe implements an exact linear mixed model

equivalent to that implemented in the QTDT software [4].
To speed-up the evaluation, PopPAnTe clusters vari-

ables having the same pattern of missingness (i.e., the
same missing values in a subset of individuals), then eval-
uates the likelihood of the null model once, and reuses the
value to assess every variable included in the same clus-
ter. PopPAnTe also allows the evaluation of empirical p-
values by randomly permuting the predictor values among
subjects and re-assessing the association under the null
hypothesis. When genealogical information is provided
as input, predictor values are randomly permuted within
families in order to preserve the phenotypic correlation
between family members. To speed up performance, Pop-
PAnTe implements an adaptive permutation approach [8],
stopping the generation of randomly permuted samples
earlier when there is little or no evidence of significance.

Pedigree versus population analysis
When genealogical information is available, PopPAnTe
evaluates the relatedness matrix from the known pedigree

relationships using a recursive procedure and assum-
ing pedigree founders as unrelated [9]. This results
in a variance-covariance matrix that is usually both
symmetric and semi-positive definite. Therefore, the
maximum likelihood estimates of the variance com-
ponents can be assessed through efficient Cholesky
decomposition.
When the genealogical information is not available,

a GSM can be estimated from genome-wide genetic
data with any of several well-established tools, such as
PLINK [10], GCTA [11], or LDAK [12], and given as input
to PopPAnTe. The property of positive-definiteness does
not always hold for GSMs. A bending procedure [13] is
used by default to transform the matrix when it is not
positive semi-definite –but the user has the option to
use a LU decomposition instead. Additionally, PopPAnTe
implements the QR decomposition to solve the rare cases
where the variance-covariance matrix is not invertible
and neither the Cholesky nor the LU decompositions can
be used.
To speed-up the evaluation of the variance components,

PopPAnTe allows the user to set an arbitrary threshold
below which individuals can be considered as unrelated.
Otherwise, the user has the option of using the value
of expected kinship between second or third cousins
[14, 15].

Region-based testing
When predictors can be ordered in space, as in the case
of epigenetic markers, PopPAnTe allows the computation
of region-based association tests by gathering informa-
tion from flanking predictors included in a sliding window
of user-defined size, whose values are replaced by their
first principal component. By definition the first princi-
pal component accounts for as much of the variability
in the data as possible, and can thus be used to sum-
marise the joint distribution of all variables included in a
given region for gene- or region-based association studies
(e.g., [16, 17]).

Data pre- and post-processing
Quantile normalisation [18] can be automatically applied
to improve normality of both response variables and pre-
dictors. Moreover, PopPAnTe implements two approaches
to correct the association test for unwanted biological and
technical variability (e.g., batch effects). When the source
of the confounders is known, it can be directly included in
the association model. To deal with unknown sources of
biological and technical co-variation, PopPAnTe can inte-
grate into the associationmodel the principal components
that are required to explain a user-specified percentage
of variation.
PopPAnTe implements the Benjamini-Hochberg proce-

dure (BH step-up procedure) to control the false discovery
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rate [19], and, to aid in results interpretation and fur-
ther analyses, it generates basic Quantile-Quantile and
Manhattan plots – the latter only when genomic data
that can be ordered in space (e.g., CpG loci) are used
as predictors.
Finally, when the genealogical information is available,

to determine whether an association has been generated
by a uniform contribution of all the families within the
sample, or by a strong contribution of a small number
of families, PopPAnTe reports, for each test, the percent-
age of families showing a positive contribution and the
Gini coefficient [20] assessed on family contribution to the
χ2 statistics.

Results and discussion
We carried out a simulation study to estimate PopPAnTe’s
computational requirements. We also presented two real-
world case studies (an outbred and an inbred sample),
showing the results obtained through both pedigree-
based kinship matrix and GSM (evaluated using different
software).

Simulation study
We simulated quantitative response and predictor vari-
ables in three-generation families (maternal and paternal
grandparents, parents, and two offspring).
In the first simulated scenario, we aimed to test the

relationship between running time and number of sub-
jects included in the analysis. Therefore, we simulated 11
independent datasets including an increasing number of
three-generation families (from 10 to 1000, thus compris-
ing 80 to 8000 individuals) and one response and one
predictor variable for all simulated subjects.
In the second simulated scenario, we aimed to test the

relationship between running time and number of vari-
ables included in the analysis. Consequently, we fixed the
number of families included in each dataset (125 fami-
lies, corresponding to 1000 individuals) and generated 7
independent datasets with one response and an increasing
number of predictors ranging from one to 10,000.
Both scenarios were simulated 100 times and the

median time necessary for the testing step recorded. Sim-
ulations were performed on aMac BookPro 2.3GHz, Intel
Core i7, 16GB RAM; Java version 1.7. Default parameters
were used for the Java Virtual Machine (1GB of memory,
1 thread).
Tables 1 and 2 show the median running time for each

simulated scenario. We observed a linear relationship
between running time and both samples size and number
of tests. As expected, when multiple tests were performed
(second scenario), the per-test running time decreased,
due to the fact that PopPAnTe clusters variables having the
same pattern of missingness and evaluates the likelihood
of the null model only once.

Table 1 Results of the first simulated scenario

Family number Population size Time (ms)

10 80 58

20 160 78

30 240 100

40 320 132

50 400 141

100 800 200

125 1000 240

250 2000 366

500 4000 692

750 6000 988

1000 8000 1287

One response and one predictor variable were simulated for each subject. Each
dataset was simulated 100 times and the median time necessary for the testing step
reported

Case study 1: Epigenome-wide association study in a
Qatari family study
We carried out an epigenome-wide association study of
body mass index (BMI) using extended families from
Qatar. The Qatari population is an isolated inbred popu-
lation characterised by a large number of consanguineous
families [21]. A detailed description of the subjects and
methylation data included in this study has been pre-
viously reported in Zaghlool et al. [22]. Briefly, we
used genome-wide methylation and SNP data generated
fromwhole blood on the InfiniumHumanMethylation450
Bead-Chip (Illumina Inc, San Diego, CA) and the Illu-
mina HumanOmni2.5-8M BeadChip, respectively. DNA
methylation Beta-values were measured for 123 individ-
uals, 88 with both genotype and BMI data in 13 multi-
generational families. We used GCTA to calculate a GSM
between pairs of individuals using all autosomal SNP
markers with minor allele frequency > 0.01. We com-
pared heritability estimates of the methylation values at

Table 2 Results of the second simulated scenario

Number of predictors Time (s)

1 0.24

10 0.94

100 7.74

500 37.67

1000 47.00

2500 119.00

5000 238.50

10000 479.00

The number of families included in each dataset was fixed (125 families,
corresponding to 1000 individuals). Each dataset was simulated 100 times and the
median time necessary for the testing step reported
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CpG loci and their association with BMI in the Qatari
family study using either the family information or the
inferred GSM. Age, sex, and cell-type proportions as esti-
mated using the Houseman method [23] were included
in the model as fixed effects. We observed a very high
concordance correlation coefficient [24] of the effect size
estimates for the association between CpG methylation
states and BMI (rβ = 0.99; Fig. 1, left), as well as of
the CpG-specific component of genetic and environmen-
tal variances (rσ 2

a = 0.99 and rσ 2
e = 0.90, respectively;

Fig. 1, right).

Case study 2: transcriptome-wide association study in UK
twins
In the second case study, we carried out a transcriptome-
wide association study with BMI in a cohort of healthy
female Caucasians twins. The TwinsUK adult twin
registry includes about 12,000 subjects, predominately
females [25]. Genotyping of the TwinsUK dataset was per-
formed with a combination of Illumina HumanHap300,
HumanHap610Q, 1M-Duo and 1.2MDuo 1M chips and
imputation was performed using the IMPUTE software
package (v2), as previously described [26]. Expression pro-
filing in subcutaneous adipose tissue was measured using
Illumina Human HT-12 V3 BeadChips for 825 female
individuals [27], 778 of whom had both genotype data
and BMI information. We used LDAK to calculate a GSM

based on allelic correlation across autosomes. Before cal-
culation, we excluded SNPs with minor allele frequency
< 0.01. We compared effect size estimates of the gene
expression profiles versus BMI, using either the family
information or the inferred GSM. Age was included in the
model as a fixed effect. We observed a very high concor-
dance correlation coefficient of the effect size estimates
for the association between gene expression levels and
BMI (rβ = 0.99; Fig. 2, left), as well as of the gene-
specific genetic component of genetic and environmental
variances (rσ 2

a = 0.99 and rσ 2
e = 0.99, respectively;

Fig. 2, right).

Conclusions
PopPAnTe is a user-friendly platform-independent Java
program that enables pairwise association testing of large
numbers of predictor and response variables in related
samples. PopPAnTe uses either known pedigree struc-
tures or GSMs inferred from genome-wide genetic data,
allowing the user to select the best approach accord-
ing to the available data. When genome-wide genetic
data are available, it may be advisable to use the GSM
instead of the expected kinship matrix calculated using
the genealogical information [28, 29]. PopPAnTe can thus
also facilitate the usage of biobank collections from pop-
ulation isolates when extensive genealogical information
is missing.

Fig. 1 Epigenome-wide association study in a Qatari family study. Comparison of the results obtained in the Epigenome-wide association studies
when the relatedness between subjects was evaluated using the family structures and when it was inferred from genome-wide SNPs by means of
GCTA [11]. Left panel effect size estimates for the association between CpG methylation status and BMI. Right panel estimated genetic (σ 2

a , in blue)
and environmental (σ 2

e , in red) variances
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Fig. 2 Trascriptome-wide Association Study in UK Twins. Comparison of the results obtained in the transcriptome-wide association when the
relatedness between subjects was evaluated using the family structures and when it was inferred from genome-wide SNPs by means of LDAK [12].
Left panel effect size estimates for the association between gene expression levels and BMI. Right panel estimated genetic (σ 2

a , in blue) and
environmental (σ 2

e , in red) variances

Availability and requirements
Project name: PopPAnTe
Project home page: http://www.twinsuk.ac.uk/project/
poppante/
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java 1.7 or higher
License: GNU GPL 3 or higher
Any restrictions to use by non-academics: None

Abbreviations
BMI: Body mass index; GSM: Genetic similarity matrix
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