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The nucleotide composition of microbial
genomes indicates differential patterns of
selection on core and accessory genomes
Jon Bohlin1* , Vegard Eldholm1, John H. O. Pettersson1, Ola Brynildsrud1 and Lars Snipen2

Abstract

Background: The core genome consists of genes shared by the vast majority of a species and is therefore assumed
to have been subjected to substantially stronger purifying selection than the more mobile elements of the genome,
also known as the accessory genome. Here we examine intragenic base composition differences in core genomes and
corresponding accessory genomes in 36 species, represented by the genomes of 731 bacterial strains, to assess the
impact of selective forces on base composition in microbes. We also explore, in turn, how these results compare with
findings for whole genome intragenic regions.

Results: We found that GC content in coding regions is significantly higher in core genomes than accessory genomes
and whole genomes. Likewise, GC content variation within coding regions was significantly lower in core genomes
than in accessory genomes and whole genomes. Relative entropy in coding regions, measured as the difference
between observed and expected trinucleotide frequencies estimated from mononucleotide frequencies, was
significantly higher in the core genomes than in accessory and whole genomes. Relative entropy was positively
associated with coding region GC content within the accessory genomes, but not within the corresponding
coding regions of core or whole genomes.

Conclusion: The higher intragenic GC content and relative entropy, as well as the lower GC content variation,
observed in the core genomes is most likely associated with selective constraints. It is unclear whether the positive
association between GC content and relative entropy in the more mobile accessory genomes constitutes signatures of
selection or selective neutral processes.

Background
Genomic nucleotide content varies greatly in bacteria,
with GC content (number of same strand guanine +
cytosine sites divided by DNA sequence length) ranging
from less than 13% to more than 75% between individual
species [1]. Variation in nucleotide composition can be
substantial also within individual genomes [2]. Although
the specific causes for these GC variations, both within
and between species, are not known, it is predicted that
a multitude of factors related to both evolutionary his-
tory and the environment are responsible [3].

Factors that show some association with genomic base
composition in microbes include genome size [4–6],
oxygen and nitrogen abundance [7, 8] as well as uptake
of foreign DNA from conjugation, transformation and
transduction [9–15]. Optimal growth temperature may
influence genomic DNA composition and although this
is a field of debate [16–19], there is some evidence for a
role of growth temperature in shaping the GC content
of individual genes [20] and ribosomal RNA [21]. Muta-
tions are generally biased towards AT-richness mainly
due to the process of deamination of cytosine [22, 23]. A
strong positive correlation between fitness and GC content
was found in Escherichia coli over-expressing synthetic ver-
sions of a GFP gene with varying GC content, suggesting
that increased GC content in bacteria may be associated
with increased selective pressures [24]. GC-richness may
be driven by selection for more stable DNA as stacking
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(and breaking) of guanine and cytosine typically requires
more energy than stacking of adenine and thymine [25].
GC-rich genomes may also have been subjected to selec-
tion for more energetically favorable amino acid usage, as
GC-rich codons code for less energy-requiring amino
acids than AT-rich codons [26]. Moreover, many bacteria
“silence” foreign AT rich DNA sequences, often found in
phages [27, 28]. On the other hand, relaxation of selective
pressures has been suggested to drive symbiotic microbial
genomes towards AT-richness due to AT mutation bias
and loss of DNA repair genes [29]. Non-coding parts of
microbial genomes have been found to be more AT-rich
than the coding parts and this could be due to relaxed
selective pressures in non-coding regions as compared
to coding regions [30].
Changes in genomic nucleotide composition could also

be a consequence of selectively neutral processes. In-
deed, a presumably selectively neutral process known
as GC-biased gene conversion (gBGC) could be wide-
spread in bacterial genomes [31]. Another putatively se-
lectively neutral process, termed “amelioration”, seems
to even out differences in base composition between in-
tegrated DNA from foreign sources, which is often AT-
rich [6], and host chromosomes [32, 33]. While there
are several examples that support all the above claims,
there are also findings that question their general validity.
Examples include obligate intracellular microbes with GC
rich genomes having undergone severe genome deg-
radation [34] as well as a lack of findings supporting
the notion that increased GC content stabilizes DNA
(although increased AT content seem to be destabilizing
[35]). How the presumably selectively neutral processes of
amelioration and gBGC are operating on bacterial ge-
nomes is also not completely understood [36, 37]. Hence,
it is evident that the fundamental selective processes
shaping base composition in microbial genomes are
multi-factorial and complex.
The study of pan-genomes [38] is, amongst other

things, concerned with classifying genes as conserved or
accessory. Typically, the conserved genes are assumed to
be linked to important functions related to cell mainten-
ance, such as metabolism, DNA housekeeping and repair
and therefore termed core genes. Accessory genes, on
the other hand, may increase fitness due to a particular
environmental niche or short-term exposure such as anti-
biotic challenge [39]. It is presumed that core genomes are
subjected to stronger purifying selection than the accessory
genome, since they have been retained in all strains of a
species [5, 38, 40–44]. Hence, analyzing the intragenic
nucleotide composition in microbial core and accessory
genomes could reveal how selective pressures, as well
as putative selectively neutral processes such as gBGC
and amelioration, affect base composition. By examining
the intragenic base composition of core and accessory

genomes comprising 731 prokaryotic strains from 36
different species, 28 genera and 10 phyla, for which
closed genomes of > 10 strains were available, we ex-
plored whether differences could be detected between
the mentioned genomic regions. These results were in
turn compared with corresponding genome-wide ana-
lyses. We restrict this analysis to coding regions, i.e.
non-coding regions were excluded, since it is less clear
if non-coding regions would be subject to similar se-
lective pressures as coding regions.

Results
GC content in core, accessory and whole genomes
To examine differences in nucleotide composition between
the coding regions of the core genome, accessory genome
and the whole genome (i.e. all genes, including accessory
and core genomes) of the 36 species, (Table 1) we fitted a
linear mixed-effects model with GC content as the re-
sponse variable and sequence type (i.e. core, accessory and
whole genome) as the explanatory variable (See Additional
file 1 for more information regarding the statistical
models). The taxonomic ranks of phylum, genus, and
species were added as random effects. However, adding
phylum as taxonomic level (See Fig. 1) did not result in
improved models (p = 0.14, maximum likelihood ratio
test) and no association was found between phylum
and %GC (p = 0.625, ANOVA) using a phylogenetic re-
gression model adjusting for Brownian motion correl-
ation structure between the branches (See Methods for
more details). Including both genus and species as hier-
archical random effects resulted in significantly im-
proved models as compared to species only (p = 0.008,
maximum likelihood ratio test) therefore all mixed-ef-
fects models will henceforth include the two levels genus
and species as random effects, but not phylum. The regres-
sion model with %GC as the response and intragenic re-
gion (i.e. core, accessory or whole genome) as the
explanatory variable indicated that GC content was signifi-
cantly higher (See Figs. 2 and 3 as well as Additional file 2),
on average, in the core part of the genome (p < 0.001) than
the whole (p < 0.001), and accessory genomes (p < 0.001).
The GC content in the accessory part of the genomes was
significantly lower than in whole genomes (p < 0.001).

Base composition and bias
To further explore whether the base composition of core
and corresponding accessory genomes were subjected to
different selective pressures we used the concept of rela-
tive entropy [9]. This measure indicates whether genomic
oligonucleotide patterns, such as codons, are observed
more or less often than expected from genomic mononu-
cleotide frequencies (i.e. AT/GC content). High relative
entropy indicates a great distance between observed- and
expected oligonucleotide frequencies, suggesting that
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the oligonucleotide frequencies are biased, most likely
due to selection or putative selective neutral forces
[31, 32]. Loosely speaking, low relative entropy points
to more randomly distributed oligonucleotide frequen-
cies, something that would be expected in a DNA se-
quence that has undergone genetic drift [9]. Examining
differences in relative entropy between intragenic core,
accessory and whole genomes, using an identical

mixed-effects regression model to the one based on
GC content discussed above, but with relative entropy
as the response rather than GC content, we found signifi-
cantly higher relative entropy in the core part of the gen-
ome as compared to the whole- (p < 0.001) and accessory
genomes (p < 0.001). Genome-wide relative entropy was
significantly higher than in the accessory part of the ge-
nomes (p < 0.001) (Fig. 4 and Additional file 3).

Table 1 Core genome characteristics

Species Strains # Size in mb (full) Size in mb (accessory) %GC (code) %GC (accessory) %GC (core)

A_baumannii 16 3,9 1,04 40,19 39,67 40,59

A_macleodii 13 4,5 1,03 45,66 44,8 46,05

B_amyloliquefaciens 16 4,01 0,45 47,28 42,39 47,98

B_animalis 12 1,94 0,23 61,36 58,53 61,88

B_cereus 13 5,27 0,81 36,25 34,39 36,77

B_longum 10 2,46 0,61 60,84 59,57 61,61

B_subtilis 12 4,1 0,46 44,71 42,36 45,07

B_thruringiensis 12 5,51 0,88 36,23 34,91 36,59

Brucella_spp 20 3,3 0,16 58,36 56,9 58,45

C_botulinum 10 3,95 0,43 29,48 28,6 29,66

C_diphtheria 13 2,47 0,31 54,15 53,42 54,3

C_jejuni 16 1,67 0,27 31,05 30,22 31,25

C_pseudotuberculosis 15 2,32 0,11 52,93 52,16 52,97

C_psitacci 10 1,16 0,04 39,76 39,47 39,74

C_trachomatis 78 1,04 0,01 41,78 42,34 41,77

E_coli 62 5,01 1,51 51,79 50,35 52,58

F_tularensis 12 1,9 0,14 33,08 31,53 33,21

H_influenza 10 1,9 0,3 38,97 39,4 38,92

H_pylori 53 1,62 0,29 39,64 36,93 40,31

L_lactis 11 2,45 0,53 36,86 35,32 37,14

L_monocytogenes 30 2,93 0,3 38,66 38,84 39,01

L_pneumophila 12 3,33 0,7 39,12 38,03 39,48

M_gallisepticum 12 0,97 0,05 32,65 31,64 32,69

M_tuberculosis 23 4,4 0,36 65,86 68,13 65,49

N_meningitidis 14 2,22 0,26 53,09 47 54,2

P_acnes 10 2,51 0,17 60,30 59,06 60,4

P_aeruginosa 18 6,43 0,89 66,96 66,03 67,26

R_prowazekii 10 1,11 0,01 30,58 27,57 30,61

S_aureus 49 2,82 0,28 33,78 32,08 33,99

S_enterica 42 4,78 0,64 53,34 50,2 53,92

S_islandicus 10 2,65 0,37 35,76 36,43 35,74

S_pneumoniae 27 2,11 0,26 40,73 36,07 41,5

S_pyogenes 19 1,85 0,23 39,38 37,95 39,63

S_suis 18 2,09 0,4 42,11 39,42 42,97

T_pallidum 11 1,14 0,01 52,60 56,63 52,55

Y_pestis 12 4,58 0,28 48,92 49 48,9
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GC content variation differences between genetic regions
Changing the response variable of the mixed-effects re-
gression model described above to within-genome GC
content variation, referred to as GCVAR [2], we found
that the core genome exhibited significantly lower
GCVAR than the corresponding accessory (p < 0.001) and
whole genomes (p < 0.001). Genome-wide GCVAR was, in
turn, significantly lower than accessory genome GCVAR
(p < 0.001). This indicates that, on average, GC content
varies significantly less within the core parts of the coding
genome than in the rest (Fig. 5 and Additional file 4).
Lower GCVAR has also previously been associated
with increased selective constraints [37] as a lower
variation in GC content may be an indication of puri-
fying selection acting on base composition. Genome-
wide GCVAR was significantly lower than for accessory
genomes (p < 0.001) [29].

Oligonucleotide- and GC content bias in core, accessory
and whole coding genomes
It has been shown that genome homogeneity in prokary-
otes, as measured using oligonucleotide frequencies, is
associated with genomic %GC [45]. In other words, the
more GC rich the genome the more similar the oligo-
nucleotide usage appears to be. As has been previously
observed [9], we find a relatively weak correlation, using
mixed-effects linear regression models with taxonomy as
the random effect, between GC content and relative en-
tropy on the accessory part of the genomes (p = 0.005),
but not on the corresponding core (p = 0.19) or whole
genome regions (p = 0.45). A positive correlation be-
tween relative entropy and GC content in the accessory
part of the genomes (See Additional file 5) may support
gBGC and/or amelioration as the accessory genome is
presumably more mobile than the core genome implying

Fig. 1 %GC and phyla. The 16S based phylogenetic tree demonstrates how % GC varies at the phylum, genus and species levels for all microbes
included in the study
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that the accessory genes have, on average, been sub-
jected to considerably more frequent recombination
events [12]. In this regard, it is interesting to note that
an association between GC content and codon bias is
predicted to result from gBGC [31].

Exceptions to the observed trends
The majority of species discussed here did adhere to the
tendency that GC content and relative entropy was higher,
and GCVAR lower, in the core genomes, compared to the
corresponding accessory genomes and whole genomes.
There were however some species were such differences
were negligible or even reversed in one or all the measures
considered. These species were typically pathogens as-
sociated with an intracellular lifestyle like Rickettsia pro-
wazekii, Mycobacterium tuberculosis, Chlamydia spp.,
Treponema pallidum, Mycoplasma gallisepticum and
Francisella tularensis [29]. In addition to the intracellular
pathogens the free-living pathogens Haemophilus influen-
zae, Clostridium botulinum as well as the extremophile
archaeon Sulfolobus islandicus exhibited some deviance

from the common trend of higher core genome GC con-
tent and relative entropy in addition to lower GCVAR.
These strains possessed large core genomes with a median
fraction of 97% of the genome being classified as core ver-
sus 83% of the other species (p < 0.001, Wilcoxon rank
sum test). Core genome GC content was higher in 608
out of 731 strains, core genome relative entropy was
higher in 721 strains and GCVAR was lower in the core
genomes of 677 strains, all compared with the respective
measures applied on the corresponding genome-wide re-
gions (See Additional file 6 for more information).

Discussion
Influence of selective pressures on base composition
As mutations in bacteria are AT-biased [22] it has not
been obvious how GC rich microbes can exist. The reten-
tion of more energetically expensive and nitrogen-heavy
guanine and cytosine nucleotides across core genomes
suggests that selective pressures are at work, but identify-
ing and classifying these processes is challenging. Our
findings seem to indicate that core genome GC content is

Fig. 2 Genomic GC content. The box plot indicates how GC content (vertical axis) is distributed in the core, accessory and whole genome regions
(horizontal axis) of all strains analyzed in the present study, colored according to species as indicated by the legend to the right
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conserved by purifying selection, as microbial core ge-
nomes must over time have been subjected to stronger
purifying selection than the rest of the genome and cer-
tainly the more mobile genes of the accessory genomes
[41, 44]. Contrarily, in recently emerged clonal strains,
traces of purifying selection are in fact more dominant in
the accessory part of the genomes due to the transfer of
mobile genes from other organisms that have already
purged them of fitness-decreasing de novo mutations [12].
Thus, in such clonal strains, purifying selection has not
had the opportunity to remove recently emerged de novo
mutations from the core genome, quite the opposite of
what is observed between phylogenetically more diverse
strains [12]. The strains included in the present study are
predominantly inter-clonal and therefore it is presumed
that purifying selection dominates the core genomes and
that the accessory genomes are marked by recombination
events and having been subjected to vastly different se-
lective pressures than the corresponding core genomes
[12, 36]. Our results seem to indicate that this is

expressed as greater variance in %GC, lower relative en-
tropy, and higher GCVAR in the accessory genomes of
each species’ strains, as compared to the corresponding
core genomes and genome-wide, where the variation be-
tween strains is remarkably similar, as can be observed in
Figs. 2, 3, 4 and 5 (and Additional files 2, 3, 4 and 5).
Since mutations in bacteria are AT-biased, the purging

of deleterious mutations in the core genome may act to
conserve GC content as compared to the rest of the gen-
ome [42]. Moreover, as the accessory genome may be
subjected to weaker selective forces than the core genome,
one might assume that fitness decreasing mutations are
better tolerated in the non-core parts of the genome [42].
Two recent studies [8, 26] may also provide important
pieces to the puzzle of how microbial genomes can main-
tain GC-richness. Chen et al. demonstrated that AT rich
codons are translated into more energy requiring amino
acids than GC rich codons. Thus, there appears to be a se-
lective trade-off between energy requiring amino acids
and nucleotides, respectively, so that genomic GC richness

Fig. 3 Differences between core genome and accessory genome %GC. The figure shows log2-transformed GC content differences (vertical axis)
between core and accessory genomes for all species considered in the present study (legends to the right), with respect to their corresponding
genome-wide GC content (vertical axis)
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is maintained or, in some circumstances, even increased.
Seward and Kelly provided further evidence that increased
environmental nitrogen abundance can affect base com-
position in the direction of higher GC content [8, 46].

The influence of selectively neutral processes on base
composition
Apart from selection, selectively neutral processes may
also be involved in shaping genomic GC content. One
such process, namely gBGC, has been observed in mam-
mals [47] and appears to be widespread in eukaryotes
[48]. A recent study now provides evidence of gBGC in
bacteria and archaea [31]. Another, putative selective neu-
tral process, referred to as amelioration, was described by
Lawrence and Ochman in 1997 [32]. This process could
be at work in many prokaryotes having taken up DNA
from phylogenetically distant sources. The concept of
amelioration, in short, asserts that foreign DNA integrated
into a host chromosome, having a substantially different
base composition, will eventually attain a progressively
more similar base composition to that of the host

chromosome. The exact details regarding this process are
not completely understood, but the process of amelior-
ation has been noted in several instances [3, 9, 49–53].
Foreign DNA sequences, like phages and plasmids, are

often more AT rich than the host chromosome [6, 27].
If the base composition of integrated foreign DNA is be-
coming progressively more similar to that of the host
chromosome, as is hypothesized by the process of ameli-
oration, this would in many instances imply that the for-
eign DNA is becoming gradually more GC rich. Since
gBGC is assumed to increase GC content in recombined
DNA it could, in principle, mean that the process of gBGC
is related to amelioration (or vice versa). As the effects at-
tributed to these processes are presumed to be weak, they
might also be confounded by selection [1, 32, 36, 37]. In-
deed, the positive correlation we observed between %GC
and relative entropy in the accessory genomes appears to
advocate selective neutral processes, such as gBGC or
amelioration. However, we would expect the impact of
such processes to decrease in influence with progressively
more GC-rich genomes, but this is not supported by our

Fig. 4 Relative entropy. The box-plot demonstrates how relative entropy (horizontal axis) is distributed genome-wide and among accessory and
core genomes (horizontal axis). All strains are colored according to the species they belong to, as designated by the legend to the right
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findings, which are largely linear, indicating no change
(See Additional file 5).

Environment and phylogeny
In summary, our statistical models suggest that genomic
base composition in prokaryotes is strongly affected by a
phylogenetic “inertia” at the species level, less so at the
genus level and significantly not at the phylum level and
above (Fig. 1). Population size may mediate selective
pressures through this phylogenetic “inertia” in the sense
of genome streamlining [54] due to high population
density, through Muller’s ratchet [55] if the population
density is low, or through other capacities set by the en-
vironment [36]. Selection for energetically expensive nu-
cleotides and/or amino acids is, on the other hand,
predominantly driven by the environment, affecting both
positive and negative selection. Phylogeny and environ-
ment will thus both contribute to the effect that recom-
bination has on microbial populations, which in turn will
have a spiraling impact on genomic base composition.
Following this line of reasoning, the increased %GC we

find in the majority of prokaryotic core genomes seems to
be maintained by phylogenetic inertia while the more var-
ied and AT rich base composition in the corresponding
accessory and non-core parts of the genome may be more
influenced by the environment and the base composition
of other hosts. Indeed, the species with core genome %GC
and relative entropy similar to or lower, and GCVAR
higher, than the non-core genome were mostly intracellu-
lar suggesting that recombination and genetic exchange
with other microbes is less frequent than that of the other
species [29], something that was also apparent by the sig-
nificantly larger core genomes in these species. Deleteri-
ous de novo mutations and horizontally acquired defective
genes are purged through purifying selection over time,
the degree to which may be, amongst other factors, deter-
mined by effective population size, which is small for
intracellular microbes [29, 56]. As both uptake of phages
and mutations are AT-biased, removal or purging of such
genetic regions will thus, in most instances, retain gen-
omic %GC. So will homologous recombination, and it is
these processes we believe dominate the differences in

Fig. 5 GCVAR. The figure shows a box-plot of how GCVAR (vertical axis) varies genome-wide and in the core and accessory genomes (horizontal axis)
considered in the present study. All strains are colored according to the species specified by the legend to the right
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base composition we observe between core and corre-
sponding accessory genomes. Our results cannot con-
clude whether neutral selective processes, such as
gBGC and/or amelioration, or selection are more pro-
nounced in the accessory genomes. While the strength
of both positive and negative selection will vary be-
tween species and environments, the effects of selective
neutral processes should remain, more or less, constant
between environments but vary between species [36].
Hence, the relative strengths of selective and neutral
processes on prokaryotic species depend on both phylo-
genetic and environmental factors and will hopefully be
illuminated further in the time to come.

Conclusions
We find that the coding regions in core genomes are sig-
nificantly more GC-rich, has less GC content variation
and higher relative entropy (i.e. more biased oligo-
nucleotide distributions) than the coding regions in the
rest of the corresponding genomes. Exceptions to these
findings were mostly detected in intracellular bacteria.
Due to the fact that core genes are present in almost all
strains, and therefore subjected to higher levels of puri-
fying selection than the rest of the corresponding ge-
nomes, our results indicates that there is an association
between base composition and selective pressures. More
specifically, purifying selection seems to be associated
with increased GC content.

Methods
For our results to be as reliable as possible, with regard
to statistical testing, only species having 10 or more
strains with fully sequenced and closed genomes were
included into the study. This resulted in a total 731
closed genomes, and corresponding coding sequences
(both gene- and protein sequences), comprising 36 spe-
cies from 28 genera and 10 phylogenetic groups all of
which were downloaded from NCBI January 7 2016
[57]. Information regarding all species and strains used
in the present study can be found in Additional file 6
and Table 1.
The pan-genome analysis targeted each species separ-

ately, except for Brucella, where the analysis was per-
formed for the entire genus. Coding genes were
translated into proteins, and compared all-against-all
using BLAST v.2.4.0 [58] and the “micropan” R-package
[59]. A vignette is available in the “micropan” package
for exact details on how to perform the analysis. Se-
quences were clustered into gene families using a
complete linkage clustering with a threshold BLAST-
distance of 0.75 [59]. A BLAST-distance between two
coding genes A and B is

d A;Bð Þ ¼ 1−
1
2

b A;Bð Þ
b A;Að Þ þ

b B;Að Þ
b B;Bð Þ

� �

Where b(A; B) is the BLAST-score for the alignment
of gene A and B, with A as query, i.e. b(A;A) is the self-
alignment producing maximum score (exact identity).
‘Complete linkage gene family’ means that a gene be-
longs to a gene family if its BLAST-distance to all other
members in the family is below 0.75.
For each pan-genome we excluded all singleton genes

(genes found in 1 strain only) since these are expected
to contain a significant proportion of mis-annotations
from the gene prediction. Core genes were defined as
those present in at least 95% of the strains within the
pan-genome. The accessory genome then contains all
other gene families, i.e. those present in at least two
strains but less than 95% of the strains.
The 16S phylogeny was created based on alignments

of 16S genes extracted from one strain from each species
using MAFFT v7.123b [60]. The 16S gene alignments
are available in Additional file 7. RAxML v8.2.4 [61] was
subsequently employed to create a phylogenetic tree that
was bootstrapped 500 times. To examine the phylogenetic
differences in genome-wide %GC at the phylum level, a
generalized least squares model (GLS) was fitted with
%GC as the response- and phylum as the explanatory vari-
able. The 16S based phylogenetic tree was added to the
GLS model to adjust for phylogenetic structure which was
found to be most appropriately modeled as a Brownian
motion using Pagel’s λ [62] (p < 0.001, maximum likeli-
hood ratio test). This analysis was performed using the
R-packages “APE” and “nlme” [63, 64].
Relative entropy was based on the Kullback–Leibler di-

vergence, calculated as the distance between the observed
overlapping frequencies of trinucleotides fXYZ over ex-
pected frequencies of trinucleotides computed using the
mononucleotide frequencies fXfYfZ of each corresponding
trinucleotide [9]. Intra-genomic GC content variation,
GCVAR [2], was calculated as the log-average difference of
GC content using 100 bp sliding windows subtracted from
the GC content of the sequence type (i.e. intragenic core
and accessory genomes as well as genome-wide):

GCVAR ¼ log
1
N

XN
i¼1

Dij j
 !

; Di ¼ GCi−GC

All stated mixed-effects regression analyses were car-
ried out using the package “lme4” in R [65]:

yijk ¼ β0 þ β1xijk þ Zuijk þ �ijk

The response variable yijk represents either GC con-
tent, GCVAR or relative entropy, while β0 is the esti-
mated intercept parameter. The explanatory variable xijk
represents either sequence type (i.e. whole genome, core
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and accessory genomes), or GC content, while β1 is the
associated parameter that is computed by the regression
model. The computed random effects, accounting for
variance differences within phyla (i), genus (j) and spe-
cies (k) uijk are found in the covariance matrix Z. The er-
rors εijk are assumed to be normally distributed with
mean zero and variance equal to one. Parameter esti-
mates from the mixed effects models were computed
using the method described by Satterthwaite and imple-
mented in the R-package “lmerTest” [66]. The same
package was also used for the likelihood ratio test–based
comparisons of the mixed-effects regression models.
Multiple comparisons of the explanatory variables were
performed using the Tukey Honest significance difference
test from the “multcomp” package [67]. All statistical re-
gression models were assessed by plotting the fitted model
to the data as well as using qq- and distributional plots.
The comparison of core genome fractions was performed
using the Wilcoxon rank sum test. All figures were made
using the package “ggplot2” with R [68].
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