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Abstract

Background: Aging human skin undergoes significant morphological and functional changes such as wrinkle
formation, reduced wound healing capacity, and altered epidermal barrier function. Besides known age-related
alterations like DNA-methylation changes, metabolic adaptations have been recently linked to impaired skin
function in elder humans. Understanding of these metabolic adaptations in aged skin is of special interest to devise
topical treatments that potentially reverse or alleviate age-dependent skin deterioration and the occurrence of skin
disorders.

Results: We investigated the global metabolic adaptions in human skin during aging with a combined
transcriptomic and metabolomic approach applied to epidermal tissue samples of young and old human
volunteers. Our analysis confirmed known age-dependent metabolic alterations, e.g. reduction of coenzyme Q10
levels, and also revealed novel age effects that are seemingly important for skin maintenance. Integration of donor-
matched transcriptome and metabolome data highlighted transcriptionally-driven alterations of metabolism during
aging such as altered activity in upper glycolysis and glycerolipid biosynthesis or decreased protein and polyamine
biosynthesis. Together, we identified several age-dependent metabolic alterations that might affect cellular
signaling, epidermal barrier function, and skin structure and morphology.

Conclusions: Our study provides a global resource on the metabolic adaptations and its transcriptional regulation
during aging of human skin. Thus, it represents a first step towards an understanding of the impact of metabolism

on impaired skin function in aged humans and therefore will potentially lead to improved treatments of age

related skin disorders.
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Background

Tissue aging is caused by intrinsic and extrinsic factors
that induce complex molecular changes and, in turn, a
deterioration of cellular structures and function. These
changes are major causes of age-related diseases like
cancer or cardiovascular disorders [1, 2]. The main mo-
lecular adaptations occurring during aging are loss of
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genomic stability due to reduced DNA repair capacities
[3], loss of proliferative potential caused by increased
senescence [1, 4], and age-related alterations in the
DNA-methylation patterns that affect cellular plasticity
[5, 6]. Metabolic adaptations are also considered to play
a major role in aging [7-10]. For instance, the metabolic
function of mitochondria is progressively impaired dur-
ing aging in different tissues [8, 11]. This can result in
increased generation of reactive oxygen species that fos-
ter genomic instability [8, 12]. Moreover, several studies
reported that caloric restrictions and diet adaptations,
such as supplementation of food with branched chain
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amino acids [13, 14], can significantly increase lifespan
[15]. This suggests that metabolic activity as well as nu-
trient sensing pathways are highly relevant for cellular
aging processes (reviewed in [10]). Accordingly, interfer-
ence with the insulin/IGF1 and the mammalian target of
rapamycin (mTOR) pathways increased lifespan in dif-
ferent model organisms [7, 16—18].

While the underlying molecular mechanisms that
cause cellular aging and influence lifespan of model or-
ganisms are well described, the mechanistic details of
age-related alterations in human tissues in vivo are
barely explored. This is due to the low availability of
healthy human tissue samples from internal organs of
donors of different age [19]. Skin is an exception because
it’s simply accessible and thus constitutes a good model
to study aging in humans [20]. Skin aging is caused by
both intrinsic factors including age-dependent changes
in hormonal levels and extrinsic factors, such as smok-
ing and UV exposure. Both intrinsic and extrinsic factors
induce significant morphological changes such as wrin-
kles, reduced elasticity, increased pigmentation and thin-
ning of the epidermis [2, 20-24]. Moreover, metabolic
studies suggested that aged epidermal keratinocytes shift
their energy generation from aerobic respiration in mito-
chondria to anaerobic glycolysis. This was attributed to
a reduction of coenzyme Q10 levels in the respiratory
chain [25-27]. Notably, metabolites such as coenzyme
Q10 or vitamins are widely used in anti-aging treatment
in skin care products [25, 28-31]. These examples high-
light the relevance of metabolic changes in human skin
aging, both as drivers of functional deterioration as well
as a target for anti-aging treatments.

Besides the reduction in respiratory chain activity, how-
ever, very little is known about metabolic alterations in aged
skin. Due to the fact that metabolism is crucial to support
further skin functions, e.g. the epidermal water loss barrier
or epidermal differentiation, we analyzed the global meta-
bolic adaptations occurring in human epidermal skin dur-
ing aging. We applied an integrative metabolomics and
transcriptomics approach on healthy epidermal tissue from
young and old human donors. The analysis revealed age-
dependent metabolic adaptations of metabolites already re-
ported to be involved in skin aging and metabolites with
potential impact on skin function, such as osmolytes. More-
over, the integration of transcriptome and metabolome data
revealed a transcriptionally regulated reduction in protein
as well as polyamine biosynthesis and adaptation in upper
glycolysis and glycerolipid biosynthesis in aged skin.

Results

Differences in the epidermal skin metabolome of young
and old human volunteers

To chart metabolic adaptations in human skin during
aging in vivo, we performed non-targeted metabolomics
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analysis of epidermal skin tissue samples obtained from
the inner side of the forearm of 28 young (20 to 25
years) and 54 old (55 to 66 years) female human donors.
Polar metabolite extracts were analyzed by flow injection
time-of-flight mass spectrometry as described before
(Additional file 1, Additional file 2) [32]. In total we de-
tected 4585 ions of which 829 could be putatively
assigned to 2530 metabolites listed in the Human Me-
tabolome Database v3.0 (HMDB) [33] on the basis of ac-
curate mass, isotopologue abundance, and cross-
correlation [32]. To account for differences in the
amount of epidermal tissue, we normalized the inten-
sities using quantile normalization [34]. To find age re-
lated differences in metabolism, we performed two
different analyses: On the one hand we correlated me-
tabolite intensities with donor age (Fig. 1a) and on the
other hand we performed a univariate analysis to com-
pare metabolite levels in skin of young and old donors
(Additional file 3 A). In both analyses, less than 10% of
the metabolites indicated significant age-dependent al-
terations. In the correlation analysis, 34 metabolites
negatively correlated and 46 positively correlated with
age (Fig. 1la). Comparably, the univariate analysis indi-
cated that the levels of 10 metabolites decreased in old
compared to young donors while 46 metabolites in-
creased (Additional file 3 A).

Next, we focused on metabolites with potential rele-
vance for skin function that decreased with advancing
age. Consistent with previous studies, coenzyme Q10
levels were lower in epidermis of elderly donors (Fig. 1b).
This reduction in coenzyme Q10 is thought to play a
major role in impaired mitochondrial function during
aging [26, 27]. Moreover, we found metabolites with
age-dependent level reduction that are known to feed-
back to important cellular signaling processes. For in-
stance, retinoic acid was found lower in aging skin and
is involved in the regulation of keratinocyte proliferation
and differentiation during epidermal homeostasis
(Fig. 1b) [35]. Additionally, we found an age-dependent
decrease of the hormone dehydroepiandrosterone
(DHEA) sulfate (Fig. 1b). It is known that the blood
levels of DHEA and its conjugate DHEA sulfate decrease
with age [36]. Our study suggests that this age-
dependent reduction of the systemic DHEA availability
translates to the in vivo concentration in human epider-
mis. Furthermore, we observed an age-dependent
change in the concentration of organic osmolytes, which
convey protection against environmental stresses, for in-
stance ultraviolet radiation, in human skin [37-39]. We
measured a reduction of the organic osmolyte proline
betaine and increased levels of taurine, which are in-
volved osmoprotection of human skin cells (Fig. 1b)
[39-42]. With an average 1.8-fold increase, taurine was
the largest change in the metabolome (Additional file 3
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Fig. 1 Metabolome differences between young and old human skin. a Correlation analysis of metabolites and donor age. Correlations with
[rho| > 0.25 and g < 0.01 are considered significant. b-c Example of metabolites that either decrease (in b) or increase (in ¢) significantly during
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A). Besides taurine, other metabolites with potential showed that glucose uptake is elevated in vitro in cul-
relevance for skin function were found to be increased tured keratinocytes from old compared to those from
such as for example the aging biomarker candidates young donors [25]. It is thought that the major part of
cresol and cresol sulfate [43] and the vitamin E metab-  the additionally taken up glucose is converted to lac-
olite a-CEHC (Fig. 1c). Vitamin E metabolites carry tate potentially to compensate energy deficits due to
important anti-oxidative functions in skin and protect defects in mitochondrial respiration. Thus, the in-
against oxidative damage caused by UV irradiation creased glucose levels in aged skin might indicate that
[44]. Besides these alterations glucose levels were also  the increased glucose uptake is also relevant in human
increased in aged skin (Fig. 1c). Previous studies epidermis in vivo.
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To elucidate if aging induced milder but accumulated
metabolic adaptations in specific metabolic pathways, we
performed a pathway enrichment analysis on the basis of
significantly changing metabolite ions (Additional file 3
B). We found an enrichment for amino sugar metabol-
ism, ammonia recycling, glutathione metabolism, mito-
chondrial electron transport chain, urea cycle and
different amino acid metabolism pathways including ar-
ginine and proline metabolism, glycine and serine me-
tabolism, methionine metabolism and transcription/
translation (Fig. 1d). In agreement, the metabolite levels
of most amino acids increased with age (Figs. 1a and 2).
The general accumulation of amino acids might be the
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mere consequence of decreased protein biosynthesis as-
sociated to the reduced proliferation in aged skin. Alter-
natively, amino acids are natural moisturizing factors
and their increase might reflect an adaptive response to
prevent skin dryness in the epidermis of elder humans
[45].

Age-dependent adaptations of gene expression in
epidermal skin

We performed a complementary transcriptome analysis
using Agilent Whole Human Genome Oligo Microarrays
8x60K V2 on epidermal tissue samples from 24 young
and 24 old donors, of which 23 donors of each group

FDR-corrected p-values obtained from unpaired, heteroscedastic t-test
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dependent genes of our study with genes predicted to be

involved in aging in humans in multiple tissues [46] and

with genes classified to show age-dependent changes in
gene expression in skin [19, 47]. The identified genes

were also included in the metabolomics analysis (Add-
itional file 1). In total, 1053 transcripts indicated signifi-

cant decreased and 932 transcripts significant increased
levels (Fig. 3a). We compared the identified age-
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with age-dependent expression of our study had no sig-
nificant overlap with any of the age-dependent gene
groups from the other studies (p > 0.05, hypergeometric-
test, Additional file 4). However, also a comparison
amongst the reported genes with age-dependent expres-
sion of the different studies demonstrated no significant
overlap (Additional file 4). This indicated that age-
dependent gene expression strongly depends on the ori-
ginating tissue. Furthermore, age-dependent gene ex-
pression in skin likely depends on the anatomic location
of the sample and on the composition of the skin tissue,
e.g. epidermis, dermis, or subcutaneous tissue [48].

To investigate the potential role of altered expression
of genes encoding for metabolic enzymes in mediating
metabolic adaptations during aging, we focused on the
1140 transcripts that could be mapped to genes involved
in human metabolism according to the KEGG database
(Fig. 3b) [49]. Notably, similar to the metabolic alter-
ations, the transcript level changes of metabolic enzymes
are only mild and with one exception do not exceed a
two-fold increase or decrease in expression (Fig. 3b). In
total, 66 metabolic enzyme encoding genes demon-
strated a reduced expression and 90 an elevated expres-
sion (Benjamini-Hochberg adjusted p <0.01, |log,(fold
change)| > 0.25, Fig. 3b). Among the genes with the
strongest reduction in expression we found hexokinase 2
(HK2) and glutaminase (GLS), which were both reported
to be essential for energy generation to support prolifer-
ation in different cancer types [50, 51]. Therefore, the
age-dependent decrease of those enzymes could be re-
lated to reduced proliferation of epidermal cells during
aging [52]. In addition, glutaminase converts glutamine
into glutamate, which is involved in the homeostasis of
the epidermal barrier [53] (Fig. 3c). Moreover, we identi-
fied enzymes with larger changes in expression that are
involved in keratinocyte differentiation. For example, the
glycerol-3-phosphate acyltransferase 3 (AGPAT9) showed
almost 50% reduction in gene expression during aging
(Fig. 3¢). This enzyme is involved in the synthesis of gly-
cerolipids that are essential for the formation of the epi-
dermal barrier [54, 55]. If this age-dependent decrease of
the enzyme is functional and results in reduced glyceroli-
pid biosynthesis, it might be involved in impaired epider-
mal barrier formation in the stratum corneum of aged
skin [28]. The expression of inositol-1(or 4)-monopho-
sphatase 2 (IMPA2) that is involved in inositol phosphate
metabolism and hydroxysteroid (11-beta) dehydrogenase
2 (HSD11B2), which is involved in cortisol homeostasis,
were elevated in the skin of old donors (Fig. 3c). Previous
studies showed that both metabolic systems adapt during
differentiation and were involved in regulation of epider-
mal homeostasis [56—59].

To elucidate the metabolic pathways that are effected
by accumulated adaptations in gene expression, we

Page 6 of 16

performed a pathway enrichment analysis on transcrip-
tome data using the KEGG pathway definition [49]. Sev-
eral metabolic pathways involved in keratinocyte
differentiation showed a significant enrichment (Fig. 3d),
for instance inositol phosphate metabolism with gener-
ally elevated gene expression (Additional file 5 B) and
retinol metabolism with a mix of increased and
decreased gene expression (Additional file 5 E). We add-
itionally identified increased expression of enzymes in
different pathways including glycosaminoglycan biosyn-
thesis, steroid hormone biosynthesis or pantothenate
and CoA metabolism (Fig. 3d). In contrast, pathways in-
volved in central carbon metabolism, in amino acid me-
tabolism (e.g. arginine and proline metabolism), tRNA
biosynthesis or amino- and nucleotidesugar metabolism
were enriched for enzymes with decreasing gene expres-
sion during aging (Fig. 3d, Additional file 5 ACD). In
summary, we identified age-dependent changes in gene
expression in different metabolic pathways that have
been associated with epidermal homeostasis and there-
fore might be important to sustain epidermal function.

Integrated analysis of transcriptome and metabolome data
Since the age-dependent adaptations of metabolite and
transcript levels are only mild, we set out to identify
metabolic enzymes that featured an age-dependent and
functional change in activity driven by altered gene ex-
pression. We hypothesized that functional changes in
expression of enzyme encoding genes should induce al-
terations of the levels of proximal metabolites. We ap-
plied a previously developed locality scoring approach
[60] on the matched transcriptome and metabolome
data of 23 young and 23 old donors (Additional file 1).
The algorithm assumes that a functional change in en-
zyme levels should induce (anti)correlating adaptations
in the substrates and products of the catalyzed reaction.
It scores each enzyme by a weighted sum of the correl-
ation of the enzyme’s gene expression and the intensities
of surrounding metabolites.

We found 61 enzymes with significant locality scores
suggesting that altered gene expression had a functional
impact on metabolic activity (Additional file 6). To infer
which of these functional hits mediate age-dependent
metabolic alterations, we focused on the 21 predicted
enzymes with age-dependent gene expression (Table 1).
Amongst the top hits were the aldehyde dehydrogenase
4 family, member A1 (ALDH4A1, Additional file 7) and
the branched chain keto acid dehydrogenase (BCKDHA,
Additional file 8). Moreover, interleukin 4 induced 1
(IL4I1), which is a lysosomal amino-acid oxidase that de-
creased in aged skin, had a significant locality score
(Additional file 9). The lower expression of this amino
acid oxidase potentially explains at least partially the in-
creased levels of amino acids, like phenylalanine or
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Table 1 Results of locality analysis of genes with changing transcript levels over time

Gene Symbol  Gene Name Locality Correlation Gene/Age Diff. Analysis Old/young
Score  p r p log2 (FO) adj.p
ALDH4A1 aldehyde dehydrogenase 4 family, member A1 0.25 1E-04 -033 0.026 -0.26 0.006
oDC1 ornithine decarboxylase 1 026  2E-04 -0.26 0.076 -0.30 0.085
GALNT6 polypeptide N-acetylgalactosaminyltransferase 6 022  4E-04 038 0.01 0.30 0.112
TARS2 threonyl-tRNA synthetase 2, mitochondrial (putative) 0.31 7E-04 0.55 7E-05 045 7E-05
BCKDHA branched chain keto acid dehydrogenase E1, alpha 021 0.002 034 0.022 0.18 0.026
polypeptide
ALDOA aldolase A, fructose-bisphosphate 0.24 0.003 0.57 3E-05 0.24 0.002
TARS threonyl-tRNA synthetase 029  0.003 -0.54 1E-04 —-0.75 6E-06
YARS2 tyrosyl-tRNA synthetase 2, mitochondrial 028  0.006 -0.39 0.007 -0.27 0.011
CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1 019  0.008 —-040 0.005 —-0.20 0.012
ALAD aminolevulinate dehydratase 024  0.008 0.19 0.204 022 0.061
IL41 interleukin 4 induced 1 0.21 0014 -0.16 0.297 -0.58 0.052
FBP1 fructose-1,6-bisphosphatase 1 0.27 0016 034 0.022 0.22 0.094
GATM glycine amidinotransferase (L-arginine:glycine 026 0017 037 0.012 0.29 0.019
amidinotransferase)
YARS tyrosyl-tRNA synthetase 027 002 -048 8E-04 -0.54 6E-04
GART phosphoribosylglycinamide formyltransferase, 028 0021 -035 0.019 -039 0.006
phosphoribosylglycinamide synthetase,
phosphoribosylaminoimidazole synthetase
PRDX6 peroxiredoxin 6 0.24 0.021 0.36 0.015 0.14 0.056
AGA aspartylglucosaminidase 018 0032 0.25 0.101 0.15 0.077
TST thiosulfate sulfurtransferase (rhodanese) 024 0034 0.31 0.039 031 0.041
ACP5 acid phosphatase 5, tartrate resistant 0.26 0.038 031 0.036 0.36 0.007
IARS isoleucyl-tRNA synthetase 028 0039 -040 0.006 -044 0.002
NDUFV2 NADH dehydrogenase (ubiquinone) flavoprotein 2, 24kDa 022 0.041 0.26 0.077 0.13 0.062

All genes with p < 0.05 for the locality analysis and p < 0.1 for the gene-age correlation or the differential analysis are listed. The full results are summarized in

Additional file 6

tyrosine, and the reduced levels of their oxidation prod-
ucts, like 2-hydroxypheylacetate or homogentisate, in
aged epidermis (Additional file 9).

Next we concentrated on three cases that might be
relevant for age-dependent skin defects: i) amino acid
tRNA synthetases, ii) polyamine biosynthesis, and iii)
switch between glycolysis and glycerolipid metabolism.
Several amino acid tRNA synthetases indicated a sig-
nificant locality score and age-dependent gene expres-
sion (Table 1). Both the increase of amino acid
metabolite levels and change in tRNA synthetase ex-
pression with age emerged already in the individual
analysis of metabolome and transcriptome (Fig. 2,
Additional file 5 C). We identified five amino acid -
tRNA synthetase pairs with significantly decreased
gene expression of the tRNA synthetases and elevated
levels of the corresponding amino acids in aged skin
(Fig. 4). This suggests that protein biosynthesis is -
like in other organisms and tissues [61] - reduced in
old skin, which could be linked to a lower prolifera-
tion in the epidermis [52].

The ornithine decarboxylase 1 (ODC1) indicated a
decreased gene expression in aged skin and was
amongst the top hits of the locality scoring (Table 1,
Fig. 5). ODCI1 catalyzes the conversion of ornithine to
putrescine, the committing step in the biosynthesis of
polyamines. Polyamines are essential to support cell
growth and proliferation in normal and cancerous
cells [62]. In skin it has been shown that ODC1 gets
activated upon UV exposure [63] and is crucially in-
volved in the development of both squamous and
basal cell carcinomas [64—66]. Polyamines were re-
ported to decrease during aging in different organism
and supplementation of them to an organism’s diet
increased live span [67]. Moreover, in rat skin it was
shown that ornithine decarboxylase activity decreases
with age [68]. Our study suggests that ornithine de-
carboxylase activity declines also in epidermal skin
tissue of humans during aging. However, whether the
probable reduction in polyamine biosynthesis is in-
volved in the reduced proliferation in the epidermis
still remains open [52].
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Finally, we elaborate on a last case of age-dependent
metabolic adaptions at the interface of upper glycolysis
and glycerolipid metabolism. The locality analysis identi-
fied the fructose bisphosphatase 1 (FBP1) and aldolase A
(ALDOA) as age-dependent enzymes with correlating
metabolite changes (Table 1). Moreover, in the tran-
scriptomics analysis AGPAT9, HK2 and glycerol kinase
(GK) were amongst the enzymes with the highest magni-
tude changes (Fig. 3bc). A detailed investigation within
the context of the metabolic network indicated that the
decreased expression of HK2 might explain the in-
creased glucose (hexose) metabolite pool and the de-
creased levels of pentose phosphates metabolites
including sedoheptulose phosphate and the pentose
phosphates in aged skin (Fig. 6). Additionally, the

slightly elevated transcript levels of FBP1 as well as
ALDOA and the reduced levels of phosphofructokinase
(PFKP) could suggest that glycolytic flux is reduced and
gluconeogenesis activated (Fig. 6). However, this is con-
tradicted by previous studies reporting that old keratino-
cytes increase glycolytic flux [25] and also by the slightly
increased expression of glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH, Fig. 6). Another potential explan-
ation could be the link of glycolysis to glycerolipid
metabolism. The expression of AGPAT9 and GK, both
involved in glycerolipid biosynthesis, was significantly
lowered during aging suggesting that glycerolipid biosyn-
thesis is reduced in old skin (Fig. 6). Recent studies sug-
gested that increased glycerolipid biosynthesis during
keratinocyte differentiation mediated by elevated
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AGPAT9 expression is essential for epidermal barrier
formation [54, 55]. The reduction in glycerolipid biosyn-
thesis could lead to a reduced necessity of carbons from
upper glycolysis in the epidermis of old human donors
which would also explain the transcriptional and meta-
bolic adaptations we observed.

Discussion

Human skin undergoes significant morphological and
functional changes during aging, including wrinkle
formation, thinning of the epidermis and altered epi-
dermal barrier function [20, 23, 24, 28]. Besides these
high-level adaptations, different studies demonstrated
that metabolic activity is altered in aged skin as well
[25, 26]. In this study we aimed at expanding the
knowledge on age-dependent metabolic adaptions in
human skin using a combined transcriptomic and
metabolomics approach applied on epidermal skin tis-
sue samples of young and old human donors. It
should be noted, that we used exclusively skin sam-
ples from female volunteers. Although there is no evi-
dence that gender-related genes are affected, we
cannot completely rule out this possibility.

Both the metabolomics and transcriptomics analysis
revealed that less than 10% of the detectable metabolites
and transcripts adapted significantly during aging. Im-
portantly, in comparison to many other studies the mag-
nitudes of the age-dependent metabolite and transcript
changes were only minor. From our perspective, this is
not surprising, because in contrast to other biological
perturbations such as cancerous transformations - that
are associated with massive cellular alterations - epider-
mal cells need to maintain in general the functionality of
human skin whether they are young or old. Neverthe-
less, the minor metabolite as well as expression changes
that we have identified in this study could contribute to

the morphological and molecular alterations that are as-
sociated with skin aging.

Due to the mild adaptions, the identification of func-
tionally altered metabolic activity in aged skin interpret-
ation of significant metabolite and transcript changes of
small magnitude is especially challenging. Therefore, we
employed the previously presented locality scoring ap-
proach [60] to identify age-dependent transcriptional al-
terations of enzymes that functionally effect proximal
metabolic activity and thus metabolite levels. This inte-
grated analysis revealed age-dependent, concerted me-
tabolite and transcript changes that are potentially
relevant for skin and in particular epidermal function.
Additionally, in the individual analysis of the two data-
sets we identified other adaptations of metabolites and
transcripts of high magnitude that are most likely rele-
vant for altered skin function in aged skin. Together, we
categorize those alterations into adaptations that poten-
tially effect cellular signaling, epidermal barrier, and skin
structure (Fig. 7).

Feedback of metabolic alterations in aged skin to cellular
signaling

The first category of metabolic adaptations includes
altered hydrocortisone homeostasis and decrease of
retinoic acid metabolite levels during aging. Both are
involved in the regulation of proliferation and differ-
entiation in epidermal keratinocytes, which is import-
ant for continuous epidermal maintenance (Fig. 7)
[35, 57, 58]. Interestingly, recent studies demonstrated
that topical treatment with retinoids increased epider-
mal thickening and also reduced the effects of photo-
aging [69, 70]. Therefore, the reduction in retinoid
levels is potentially involved in the decrease of kera-
tinocyte proliferation and reduction of epidermal
thickness during aging [52, 71].
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Age-dependent metabolic adaptations and epidermal
barrier function

The second group contains age-dependent metabolic ad-
aptations that might affect epidermal barrier function.
These comprise adaptations of the levels of amino acids
functioning as natural moisturizing factors [45], of «-
CEHC functioning as antioxidant [44, 72] and of proline
betaine as well as taurine serving as organic osmolytes
[37-39]. Considering epidermal skin function, the latter
are of special interest. Skin cells are frequently exposed

to environmental stresses, such as UV irradiation or cli-
matic changes, that cause highly varying osmotic pres-
sures [45]. For instance UV radiation induces oxidative
stress [73] that causes cell hydration changes and thus
hyperosmotic stress [39, 45]. Under these stress condi-
tions, skin cells actively take up organic osmolytes, such
as taurine or betaine, to regulate intracellular water
levels and counteract cell hydration changes [37-39, 45].
Therefore organic osmolytes are suggested to play a
major role in maintaining skin hydration [45].
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Additionally, organic osmolytes act as antioxidants that
prevent oxidative damage induced by environmental
stressors [45]. Furthermore, taurine exhibits anti-
apoptotic activity, prevents cell membrane disruption
upon UV exposure [45, 74], and stimulates the synthesis
of lipids for the epidermal barrier [45, 75]. Interestingly,
proline betaine was reduced in aged skin while taurine
levels were upregulated. Thus, we hypothesize that the
regulation of organic osmolytes appears to be more
complex and a balanced interplay of these molecules has
to be present to induce positive effects. In aged skin we
observed an altered balance comparing proline betaine
and taurine levels suggesting that increased taurine
levels alone are not sufficient to prevent body dehydra-
tion through transepidermal water loss and to protect
against environmental stresses like UV irradiation in the
thinned aged skin.

Moreover, using our integrative approach we identified
age-dependent adaptations at the interface of upper gly-
colysis and glycerolipid metabolism with potential im-
pact on epidermal barrier function (Fig. 7). On a first
sight the metabolite and transcript differences between
young and old skin suggest that glycolytic flux is reduced
and gluconeogenetic flux increased during aging. How-
ever, this contradicts with a previous study in young and
old keratinocytes in vitro, which reported that old kerati-
nocytes have increased glucose uptake and lactate secre-
tion indicative of increased glycolysis [25]. Since
important enzymes for the rerouting of glycolytic flux

into glycerolipid metabolism showed a decreased expres-
sion during aging, another potential explanation could
be that less carbon is needed to fuel glycerolipid metab-
olism in the epidermis of old donors. This reduction in
glycerolipid metabolism could have severe consequence
for the lipid layer of the epidermal barrier in the stratum
corneum and might lead to impaired barrier function in
aged skin [54, 76-78].

Influence of altered metabolism on skin structure in old
humans

During aging skin undergoes different structural adapta-
tions including thinning of the epidermis due to reduced
proliferation of epidermal keratinocytes [52]. We identi-
fied different age-dependent metabolic adaptations that
might be involved in this phenotype. For example, in the
integrated transcriptome and metabolome analysis, we
observed a reduction in tRNA synthetase levels linked to
an increase in the levels of their corresponding amino
acids (Fig. 7). This adaptation might be due to a reduced
protein synthesis in the epidermis of old donors. Mul-
tiple studies reported that protein turnover rate, i.e. pro-
tein synthesis and protein degradation, is diminished
during aging in various organisms and that an artificial
reduction of protein synthesis prolongs lifespan
(Reviewed in [61]). We argue that protein biosynthesis
decreases during aging in human epidermis as well. This
might be cause or consequence of a reduction in prolif-
eration of epidermal keratinocytes [52]. Additionally, the



Kuehne et al. BMC Genomics (2017) 18:169

integrated analysis revealed a second age-dependent
adaptation in polyamine biosynthesis mediated by
ODC1 that also could influence proliferation in the epi-
dermis (Fig. 7) [67, 68]. Polyamines are necessary for cell
growth and proliferation [62] and therefore we suggest
that the reduction in ODCI1 transcript levels during
aging causes a reduced polyamine biosynthesis which
could also cause the reduced proliferation in the aged
skin [52]. Besides epidermal thinning, aged skin is also
less elastic and forms wrinkles. In the metabolomics
analysis we identified decreased DHEA sulfate levels in
epidermal samples from old donors, which potentially
has an influence on these structural properties of the
skin. DHEA sulfate is a human hormone with reported
age-dependent reduction of its levels in the blood [36].
Our study suggests that this age-dependent decrease in
DHEA availability is translated to the in vivo concentra-
tion in the epidermis. DHEA and DHEA sulfate regulate
collagen synthesis and matrix metalloproteinase (MMP)
production in the dermis [79-81], which are both caus-
ing mechanical defects in aged skin including wrinkling
and loss of elasticity [22, 81, 82]. Though we did meas-
ure the DHEA sulfate levels only in the epidermis, we
propose that DHEA sulfate levels decrease in the whole
skin tissue during aging in vivo. Probably, they are medi-
ating alterations in the collagen network in the dermis
that account for the changed mechanical properties of
aged skin. Indeed, different studies demonstrated that
topical treatment with DHEA induced collagen synthesis
as well as decreased MMP levels in aged skin and oral
treatment improved skin status of old humans [36, 81].

Conclusion

The integrated metabolome and transcriptome analyses
on human epidermal tissue samples provide an overview
of the global metabolic adaptations in epidermal skin
during aging and their potential impact on skin function.
Considering that different metabolites, including coen-
zyme Q10 [83], a-CEHC [72] or DHEA sulfate [36, 81],
are able to reverse age related changes in human skin
and are therefore included in anti-aging skin care prod-
ucts, this knowledge will be valuable to improve skin
care and treatments of age-related skin disorders like
xerosis [84].

Methods

Collection of skin tissue samples

Suction blistering is a technic that can be used to separ-
ate epidermis from dermis by purely mechanical forces
avoiding chemical or thermal damage [85]. Epidermis
samples (suction blister roofs) were obtained as de-
scribed previously from the inner forearms of 28 young
(20 to 25 years) and 54 old (aged between 55 and 66
years) healthy female volunteers [86]. Epidermis samples
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were taken and immediately stored at -80°C. For meta-
bolomics analysis epidermis samples were lysed in 350
puL isopropanol utilizing a Precellys 24 homogenizer
(Peqlab). For transcriptomics analysis the epidermis
samples were homogenized using a ball mill (MM301,
Retsch and TissueLyser Adapter Set, Qiagen).

Non-targeted metabolomics analysis

For mass spectrometric analysis intracellular samples
were analyzed in undiluted or in a 1-10 dilution in
ddH,O, and extracellular samples were analyzed with a
1-20 dilution in ddH,O by flow injection analysis on an
Agilent Q-TOF 6550 QTOF instrument (Agilent) in
negative mode 4 GHz, high resolution in a m/z range of
50-1000 [32]. A 60:40 mixture of isopropanol:water sup-
plemented with NHF at pH 9.0, as well as 10 nM hex-
akis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine and 80
nM taurocholic acid for online mass calibration. Ions
were annotated to metabolites based on exact mass con-
sidering [M-H+] and [M + F-] and 0.001 Da mass accur-
acy using the HMDB v3.0 database [33]. To account for
mass differences of the skin samples, metabolite inten-
sities were normalized using quantile normalization [34].
All data analysis was done using Matlab 2014b (The
Mathworks).

For correlation analysis of metabolite levels with age,
we calculated the Pearson’s correlation between ion in-
tensities and donor’s age [87]. The p-values were cor-
rected for false discovery rate using Storey’s method (q-
values) [88]. Ions with |rho|>0.25 and q<0.01 were
considered significant.

Significantly changing ions between the old and young
conditions were identified with a univariate analysis
using a two-sample t-test. Multiple testing correction
was performed by correcting p-values for false discovery
rate as described before (q-values) [88]. Ions with |log,(-
fold-change)| > 0.1 and q < 0.05 were considered signifi-
cant. To identify significantly changing metabolic
pathways we performed an enrichment analysis on the
univariate analysis results using HMDB metabolic path-
way definitions [33]. Significantly changing ions
(|logo(EC)| > 0.1, q < 0.05) were sorted lowest to highest
g-values. The p-values for the enrichment were calcu-
lated using a hypergeometric test defined as

Pptw (PtWHits| TOtalAllDetectedv PtWAllDetected; TOtalHL’ts)

Pt WAllDetected TOtﬂlAllDetected -Pt WAllDetected
Ptwpy Totalpiss—PtWhiss

Tota lAllDetected
Total iz

where Totaly;, is the total number of ions in the hit
subset, Totaljperecteq i the total number of detected
ions (background), Ptwpy,; is the intersect of all ions in
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the hit subset and ions involved in a given pathway and
Ptw aipetectea i the intersect of all ions and ions involved
in a given pathway. The hit subset for each pathway and
each comparison between two conditions was defined
recursively by first considering only the most significant
ion, and then increasing the hit subset with the next best
significant ion at each iteration until all significant ions
were in the hit subset. Enrichment analysis was per-
formed on each of those hit subsets and the best p-value
was used as p-value for the enrichment of a given com-
parison and a given pathway. We corrected the p-values
as described before for multiple testing by Storey's
method [88].

Transcriptomic analysis

Microarray analysis and data extraction was per-
formed using Agilent Whole Human Genome Oligo
Microarrays 8x60K V2 and Agilent Feature Extraction
Software  (Agilent  Technologies, = Waldbronn,
Germany) by Genomics Services from Miltenyi Biotec
(Bergisch Gladbach, Germany). Raw data was prepro-
cessed and analyzed using the limma package from
bioconductor for R [89]. We removed features that
had in at least 50% of the cases either a saturated sig-
nal or a signal not distinguishable of the background
noise. To account for illumination differences of the
different microarrays, the feature intensities of each
microarray were normalized using quantile normalization
[34]. Differential gene expression was determined using
linear models with young and old groups as variables [89].
The p-values were corrected for false-discovery rate using
the Benjamini-Hochberg approach [90]. Transcripts with
Benjamini-Hochberg adjusted p<0.01 and |log,(FC)| >
0.25 were considered significant.

To identify metabolic pathways with significantly over-
represented transcript changes we performed an enrich-
ment analysis on the differentially expressed genes using
KEGG metabolic pathway definitions specific for homo
sapiens (hsa) [49]. Significantly changing transcripts
(Benjamini-Hochberg adjusted p<0.01, |log,(FC)|>
0.25) were sorted lowest to highest p-values. The p-
values for the enrichment were calculated using a hyper-
geometric test defined as

Pprw (P IWHits | TOtﬂlAllDetected ) Pt WAllDetected 5 TOtﬂlHits)

Pt WAllDetected TOtalAllDetected -Pt WAllDetected
Pitwpygs Totalpiss—Ptwhis

To talAllDetected
Total

where Totaly;; is the total number of genes in the hit
subset, Totalajpetectea 1S the total number of detected
genes (background), Ptwyy, is the intersect of all genes
in the hit subset and genes involved in a given pathway
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and PtWaypereciea 1S the intersect of all genes and genes
involved in a given pathway. The hit subset for each
pathway and each comparison between two conditions
was defined recursively by first considering only the
most significant genes, and then increasing the hit sub-
set with the next best significant gene at each iteration
until all significant genes were in the hit subset. Enrich-
ment analysis was performed on each of those hit sub-
sets and the best p-value was used as p-value for the
enrichment of a given comparison and a given pathway.
We corrected the p-values as described before for
multiple testing by Storey's method (q-values) [88].
Pathways with g-values <0.01 were considered signifi-
cantly enriched.

Integration of transcriptome and metabolome data using
locality analysis

The integration of transcriptomics and metabolomics
data we performed using the previously described lo-
cality analysis on matched transcriptome and metabo-
lome data of 23 young and 23 old human donors
[60]. The algorithm scores enzymes according to the
weighted sum of the spearman correlation of their
gene expression with the levels of surrounding metab-
olites. Thereby the correlations are weighted accord-
ing to the distance of the metabolite to the enzyme
within the metabolic network. We used the KEGG
main reaction pair network specific for homo sapiens
generated with a modified version of the MetaboNet-
works toolbox [91] as metabolic model for the algo-
rithm. Moreover, we reannotated the ions from the
metabolomics dataset to metabolites defined in the
KEGG hsa database to fit the metabolic model [49].
The locality scores S(#;) for a given metabolic enzyme
coding transcript ¢; are calculated with

[rle D;E” ’ <1_pci.m) "Ci¢m|

M ~ ;
m=1 Di,fn ! (l_pCi_m)

S(ti) =

where i is the index for the transcripts t, m is the
index for metabolites, C;,, is the spearman correlation
between the transcripts and the metabolite levels,
D,,, is the network distance between metabolite m
and transcript £; and pc, ~is the p-value for the spear-

man correlation between the transcript and metabolite
levels. The significance of the final score was deter-
mined by comparing the real score to the score of
10000 random locality scores Sk At calculated using
randomly permuted versions of the distance matrix D
(Dyana)- In detail the randomly permuted scores are
calculated with
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-2
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where k is the index of the permutation. The p-value
p(S(t;)) for the locality score of a given transcript S(z;)
gets calculated with

sk (t:)=S(¢;
p(S(tl)) _ Zk( mnj((t) (t )) 7

)

where K is the total number of permutations (10000 in
this study). Locality scores with p < 0.05 were considered
significant. Genes with significant locality scores were
reduced to filtering them for transcripts with age-
dependent changes (p <0.1 of a Spearman’s correlation
comparing gene expression and donor age or Benjamini-
Hochberg corrected p < 0.1 of a univariate analysis com-
paring transcripts from young and old donors).
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