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Abstract

Background: The grass carp hemorrhagic disease caused by the grass carp reovirus (GCRV) is a major disease
that hampers the development of grass carp aquaculture. The mechanism underlying GCRV pathogenesis and
hemorrhagic symptoms is still unknown. MicroRNAs (miRNAs) are key regulators involved in various biological
processes. The aim of this study was to identify conserved and novel miRNAs in grass carp in response to GCRV
infection, as well as attempt to reveal the mechanism underlying GCRV pathogenesis and hemorrhagic symptoms.

Results: Grass carp were infected with GCRV, and spleen samples were collected at 0 (control), 1, 3, 5, 7, and

9 days post-infection (dpi). These samples were used to construct and sequence small RNA libraries. A total of
1208 miRNAs were identified, of which 278 were known miRNAs and 930 were novel miRNAs. Thirty-six miRNAs
were identified to exhibit differential expression when compared with the control, and 536 target genes were
predicted for the 36 miRNAs. GO and KEGG enrichment analyses of these target genes showed that many of
the significantly enriched terms were associated with immune response, blood coagulation, hemostasis, and
complement and coagulation cascades, especially the GO term “blood coagulation” and pathway “complement
and coagulation cascades.” Ten representative target genes involved in “complement and coagulation cascades”
were selected for gPCR analysis, and the results showed that the expression patterns of these target genes were
significantly upregulated at 7 dpi, suggesting that the pathway “complement and coagulation cascades” was
strongly activated.

Conclusion: Conserved and novel miRNAs in response to GCRV infection were identified in grass carp, of which
278 were known miRNAs and 930 were novel miRNAs. Many of the target genes involved in immune response,
blood coagulation, hemostasis, and complement and coagulation cascades. Strong activation of the pathway
“complement and coagulation cascades” may have led to endothelial-cell and blood-cell damage and
hemorrhagic symptoms. The present study provides a new insight into understanding the mechanism
underlying GCRV pathogenesis and hemorrhagic symptoms.

Keywords: Grass carp, Grass carp reovirus, microRNA, Hemorrhagic symptoms, Blood coagulation, Complement
and coagulation cascades

* Correspondence: wangyp@ihb.ac.cn

TEqual contributors

'State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of
Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China

Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3562-4&domain=pdf
mailto:wangyp@ihb.ac.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

He et al. BMC Genomics (2017) 18:195

Background

MicroRNAs (miRNAs) are a class of small non-coding
RNAs approximately 22 nucleotides in length that
regulate gene expression in both animals and plants [1].
MiRNAs can interact with specific mRNA targets by
binding to the 3'-untranslated region (UTR) of the
mRNA targets, leading to RNA degradation or transla-
tional repression [2, 3]. Generally, miRNAs participate in
a series of biological processes such as growth, develop-
ment, organogenesis, tissue differentiation, regeneration,
reproduction, endocrine activities, and immune responses
[4, 5]. An abnormal miRNA expression pattern is often as-
sociated with a disorder in an organism or is characteristic
of a disease [6—8]. Therefore, miRNAs could be used as
biomarkers for some diseases.

MiRNAs are key participants involved in virus—host
interactions [9]. Not only the host but also the virus
could produce miRNAs that participate in virus—host
interactions [10, 11]. Viral miRNAs may suppress the
expression of host genes to facilitate the replication and
spread of the virus; however, host miRNAs could target
viral genes to limit virus replication [12, 13]. With the
development of next-generation sequencing, an increas-
ing number of miRNAs have been reported to partici-
pate in virus—host interactions, for example, miR-148a
and miR-30a in cells infected by the hepatitis C virus
[14], miR-34a in cells infected by the influenza A virus
[15], miR-BART6-3p of the Epstein-Barr virus [16], and
miR-UL112-1 of the human cytomegalovirus [17].

The grass carp (Ctenopharyngodon idella) has been
an important aquaculture species in China for more
than 60 years, accounting for more than 18% of the
total freshwater aquaculture production. The produc-
tion of grass carp was 5.5 million tons in 2014, making
it the most highly consumed freshwater fish worldwide
[18]. However, frequent outbreaks of diseases occur in
the grass carp cultivation industry. Of these diseases,
grass carp hemorrhage disease caused by the grass carp
reovirus (GCRV) has received special attention because
it causes great economic loss [19]. Although many
studies on GCRV have been conducted, no effective
drugs or vaccines against GCRV have been developed
to date [20-26]. Moreover, the mechanism underlying
GCRYV infection is unknown, and the process of host—
GCRYV interaction is unclear.

In this study, grass carps were infected with GCRYV,
and spleen samples were collected before (control)
and after (1, 3, 5, 7, and 9 days) infection. Deep Illu-
mina sequencing was performed to identify the host
miRNAs or possible GCRV-encoded miRNAs involved
in the host—-GCRYV interaction. Moreover, differentially
expressed miRNAs before and after GCRV infection
were characterized, and the putative target genes were
predicted. Our study would provide new insights into
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understanding the
infection.

mechanism underlying GCRV

Methods

Ethics approval and consent to participate

Animal welfare and experimental procedures were
performed in accordance with the Guide for the Care
and Use of Laboratory Animals (Ministry of Science
and Technology of China, 2006), and the protocol was
approved by the committee of the Institute of Hydrobi-
ology, Chinese Academy of Sciences (CAS). All surger-
ies were performed under eugenol anesthesia, and all
efforts were made to minimize suffering.

Experimental fish

Healthy full-sib grass carps were used at 3 months of
age (weight, 3—-5 g; average length, 8 cm). The fish were
obtained from the Guan Qiao Experimental Station,
Institute of Hydrobiology, Chinese Academy of Sciences,
and acclimatized in a circulating water system at 26-28 °C
for 1 week before processing. The fish were fed with a
commercial diet twice a day. If no abnormal symptoms
were observed for 1 week, the fish were selected for
further experiments.

Virus challenge experiment and sample collection

After no abnormal symptoms were observed for 1 week,
150 grass carps were used for the virus challenge experi-
ment. Before that, 10 fish were collected, and their spleens
were sampled as an uninfected control. The remaining
fish were infected with 200 ul of GCRV by intraperitoneal
injection (GCRV subtype II; 2.97 x 10® copies/pl). At 1, 3,
5,7, and 9 days post-infection (dpi), 10 fish were collected,
and the spleens were removed for analysis, respectively.
At each time point (before and after GCRV infection), the
spleen tissues of 10 fish were pooled together and used for
small RNA sequencing.

RNA isolation, library construction, and sequencing

RNA was isolated using the TRIzol reagent (Invitrogen,
USA), according to the manufacturer’s protocol. RNA
concentration was measured using the Qubit RNA assay
kit (Life Technologies, USA), and RNA integrity was
assessed with the RNA Nano 6000 assay kit (Agilent
Technologies, USA). RNA of sufficiently high quality
was used for library construction.

A total of 3 pg RNA per sample was used as the input
material for the small RNA library. Sequencing libraries
were generated using the NEBNext® Multiplex Small
RNA Library Prep Set for Illumina (NEB, USA), accord-
ing to the manufacturer’s recommendations, and index
codes were added to attribute sequences to each sam-
ple. Briefly, the NEB 3" SR Adaptor was directly and
specifically ligated to the 3" end of miRNA, siRNA, and
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piRNA. After 3’ ligation, the SR RT Primer was hybrid-
ized to the excess 3° SR Adaptor (that remained free
after the 3’ ligation reaction), which transformed the
single-stranded DNA adaptor to a double-stranded
DNA (dsDNA) molecule. This step is important to pre-
vent adaptor-dimer formation; besides, dsDNAs are not
substrates for ligation mediated by T4 RNA Ligase 1
and, therefore, do not ligate to the 5° SR Adaptor in
the subsequent ligation step. The 5° end adapter was
ligated to the 5° ends of miRNA, siRNA, and piRNA.
Then, first-strand cDNA was synthesized using M-MuLV
Reverse Transcriptase (RNase H). PCR amplification was
performed using the LongAmp Taq 2x Master Mix, SR
Primer for Illumina, and index (X) primer. The PCR prod-
ucts were purified on an 8% polyacrylamide gel (100 V,
80 min). DNA fragments corresponding to 140-160 bp
(the length of a small noncoding RNA plus the 3" and 5
adaptors) were obtained and dissolved in 8 ul of the elu-
tion buffer. Finally, library quality was assessed using the
Agilent Bioanalyzer 2100 system and DNA High Sensitiv-
ity Chips. The libraries were sequenced on the Illumina
Hiseq 2500 platform, and 125-bp single-end reads were
generated.

Data analysis

Raw data (raw reads) in the Fastq format were first proc-
essed using custom Perl and Python scripts. In this step,
clean data (clean reads) were obtained by removing the
reads containing poly-N, with 5 adapter contaminants,
without 3’ adapter or the insert tag, containing poly A or
T or G or C, and low quality reads from raw data. Simul-
taneously, Q20, Q30, and GC-content of the raw data
were calculated. Then, a certain range of length from the
clean reads was selected to perform all the downstream
analyses.

The small RNA tags were mapped to the reference se-
quence of grass carp [27] by Bowtie [28] with 1-nucleotide
mismatch to analyze their expression and distribution. To
avoid false-positive results, the small RNA reads with low
expression levels (sum of reads at six time points < 10)
were also discarded.

To remove tags originating from protein-coding genes,
repeat sequences, rRNA, tRNA, snRNA, and snoRNA, the
mapped small RNA tags were searched against the Rfam
database (http://rfam.xfam.org/), and the mapped tags
were ruled out. The remaining small RNA tags were used
to search for known miRNAs. miRBase 21 and some
known miRNAs of grass carp were used as references
(mismatch < 2) [29, 30], and modified software mirdeep2
[31] and srna-tools-cli were used to obtain potential miR-
NAs and draw the secondary structures. Custom scripts
were used to obtain the miRNA counts as well as base
bias on the first position of the identified miRNAs with a
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certain length and on each position of all the identified
miRNAs.

The small RNA sequences with no homologs in miR-
base but mapped to the grass carp genome and with pre-
cursors showing the RNA-loop structure were termed as
novel miRNAs.

Differential expression analysis and target gene prediction
Gene expression levels were calculated using the tran-
scripts per million (TPM) clean tags method [32].
Calculation of expression levels and identification of
miRNAs that were differentially expressed between the
libraries were performed using the Edge R package based
on TPM normalized counts. The settings “P value < 0.05”
and “|log2.Fold change.normalized|>1" were used as
thresholds for judging significant differences in transcript
expression.

Identification of miRNA targets was performed via
computational analysis. Two miRNA target prediction
algorithms, miRanda and PITA, were used to identify
the target genes of the GCRV infection-related miRNAs
[33, 34]. Sequences of 3'-UTRs obtained from the grass
carp genome were used for the analysis. The thresholds
of miRanda for candidate target sites were paring score
S 2200 and energy score AG < -20 kcal/mol, where S is
the sum of single-residue-pair match scores over the
alignment trace and AG is the free energy of duplex for-
mation from a completely dissociated state calculated
using the Vienna package. The score AAG < -15.0 was
used for PITA.

GO and KEGG enrichment analyses of the target genes
Gene ontology (GO) enrichment analysis of the target
genes was used for the target gene candidates of the
differentially expressed miRNAs. All GO enrichment
analyses were performed using a Cytoscape plugin,
ClueGO [35]. Only categories with a low P value
(<0.05) were considered as enriched in the network, as
determined by the hypergeometric statistical test using
the Benjamini and Hochberg false discovery rate
correction.

The Kyoto Encyclopedia of Genes and Genomes
(KEGQG) database is used to provide high-level functional
information on the biological systems of molecules, cells,
organisms, and ecosystems, and it is particularly used for
the evaluation of large-scale molecular datasets generated
using genome sequencing and other high-throughput ex-
perimental approaches [36]. In this study, KOBAS soft-
ware was used to test the statistical enrichment of the
target genes in the KEGG pathways [37]. KEGG terms
with corrected P < 0.05 were considered to indicate statis-
tical significance.
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Validation of the target genes and miRNAs by using RT-
qPCR

To confirm the reliability of the data obtained using
[lumina sequencing, five known and five novel miR-
NAs were randomly selected for RT-qPCR analysis by
using the oligo (dT) primer method [38]. Total RNA
was isolated using the TRIzol reagent (Invitrogen,
USA), according to the manufacturer’s protocol. First-
strand cDNAs of miRNAs were synthesized using the
miRcute Plus miRNA First-Strand ¢cDNA Synthesis Kit
(Tiangen, China). Then, the cDNAs were used as the
template for qPCR with the miRcute Plus miRNA
qPCR Detection Kit (Tiangen, China). RT-qPCR was
performed using a fluorescence quantitative PCR
instrument (Bio-Rad, USA). Each RT-qPCR mixture
contained 10 pl of 2x miRcute Plus miRNA Premix,
0.4 pl of the specific forward primer, 0.4 ul of the uni-
versal reverse primer, 2 pl of the cDNA template, and
7.2 ul of ddH,O. Three replicates were included for
each sample, and the 5S rRNA gene of grass carp was
used as the internal control for normalization of gene
expression. The primer sequences for the selected miR-
NAs are listed in Additional file 1. The program for
RT-qPCR was as follows: 94 °C for 2 min, followed by
40 cycles of 94 °C for 20 s and 60 °C for 34 s. The rela-
tive expression levels were calculated using the 27°°<*
method [39]. The data were represented as the mean +
standard deviation values of three replicates.

To analyze the expression patterns of the representative
target genes, 10 target genes involved in the “complement
and coagulation cascades” were selected for qPCR. The
primers are listed in Additional file 2. First-strand cDNAs
were obtained using a random hexamer primer and the
ReverTra Ace kit (Toyobo, Japan). RT-qPCR was per-
formed using the fluorescence quantitative PCR instru-
ment (Bio-Rad, USA). Each RT-qPCR mixture contained
0.4 pl of the forward and reverse primers (for each pri-
mer), 1 ul of the template, 10 pl of the 2x SYBR Green
master mix (Toyobo, Japan), and 8.2 ul of ddH,O. Three
replicates were included for each sample, and the B-actin
gene was used as the internal control for normalization of
gene expression. The program for RT-qPCR was as fol-
lows: 95 °C for 10 s, followed by 40 cycles of 95 °C for
15 s, 55 °C for 15 s, and 72 °C for 30 s. The relative ex-
pression levels were calculated using the 27°°“* method
[39]. The data were represented as mean + standard devi-
ation values of three replicates.

Statistical analysis

The statistical significance between the control and
treated groups was determined using one-way analysis
of variance. Differences were considered significant at
P <0.05.

Page 4 of 12

Results

Preliminary analysis of small RNA sequencing

At different time points before (control, 0 day) and after
(1, 3, 5, 7, and 9 days) GCRYV infection, the spleen tissues
of 10 fish were pooled together and used for small RNA
sequencing on an Illumina Hiseq 2500 platform. The six
libraries showed raw read numbers of 36,743,414,
34,760,645, 31,477,182, 31,399,413, 29,264,029, and
32,534,631 (Table 1). After removing the reads containing
poly-N, with 5" adapter contaminants, without 3" adapter
or the insert tag, <18-bp reads, >30-bp reads, and low-
quality reads from the raw data, the six libraries collected
clean read numbers of 28,545,325, 25,745,655, 24,897,550,
25,878,410, 23,411,251, and 274,55,120. These results con-
firmed the adequate depth of the sequencing data and
suitability for further analysis. The sequencing data of this
study have been deposited in the Sequence Read Archive
(SRA) at the National Center for Biotechnology Informa-
tion (NCBI) (accession number: SRP093335).

Size distribution of small RNAs

The small RNA size distribution patterns in the six li-
braries were examined. For all the six libraries, 23-length
nucleotides were the most abundant, followed by nucle-
otides with the lengths 24 and 22 (Fig. 1). These results
confirmed the homogeneity or uniformity of the sequen-
cing data in the six libraries.

Identification of miRNAs before and after GCRV infection

The clean reads of the six libraries were used to identify
known and novel miRNAs. After a series of selections,
a total of 1208 miRNAs were identified. Two hundred
seventy-eight could match perfectly or find homologs
in miRbase, were identified as known miRNAs, whereas
the remaining 930 that found no homologs in miRbase
but were mapped to the grass carp genome and had
precursors with the RNA-loop structure were termed
as novel miRNAs (Additional file 3). Specific, 777, 713,
651, 730, 681, and 745 miRNAs were expressed in the
libraries from 0 (control), 1, 3, 5, 7, and 9 dpi, respectively
(Table 1). In addition, 373 miRNAs were expressed in all
the six samples (Additional file 4). Interestingly, we found
that most of the known miRNAs, such as miR-143-3p,
miR-21, and miR-10a-5p, showed abundant expression in

Table 1 Preliminary analysis of the small RNA sequencing data

Samples Total reads Clean reads Number of miRNAs
Control 36,743,414 28,545,325 777
T 34,760,645 25,745,655 713
T3 31,477,182 24,897,550 651
T5 31,399413 25,878,410 730
17 29,264,029 23,411,251 681
T9 32,534,631 27,455,120 745
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Fig. 1 Length distributions of the sequencing reads in the six
libraries. The small RNA size distribution patterns in the six libraries
were examined after removing the reads containing poly-N, with 5
adapter contaminants, without 3" adapter or the insert tag, <18-bp
reads, >30-bp reads, and low-quality reads

9 dpi

all or most of the samples. However, many of the novel
miRNAs showed low expression or were only expressed at
some time points.

Moreover, we evaluated the correlation among the six
samples. The function plotMDS affiliated with the Edge R
package was used to produce a plot in which distances
between the samples corresponded to leading biological
coefficient of variation (BCV) between the samples
[40]. The control sample separated significantly from
the samples infected with GCRV (Fig. 2). Moreover, for
the samples post-infection, the correlation values were
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proportional to the time post-infection; the sample
from 9 dpi did not cluster with the samples from 1, 3,
5, and 7 dpi. These results suggested that the efficiency
of the GCRYV infection and difference existed in the
samples post-infection.

Differentially expressed miRNAs after GCRV infection

To identify the miRNAs involved in the GCRV infec-
tion, the expression profiles of the miRNAs were ex-
amined at 0, 1, 3, 5, 7, and 9 dpi. Because some
miRNAs were expressed at only one time point, to
avoid false-positive results, only miRNAs that were
expressed in at least three samples were selected for
the differential expression analysis. Moreover, |log,
(fold change)|>1 in at least three samples post-
infection was set as the threshold for significant differ-
ential expression. After selection, a total of 36 miR-
NAs were identified as differentially expressed, of
which 20 were known miRNAs and 16 were novel
miRNAs. The expression pattern of the 36 miRNAs
was shown in Fig. 3. Information on the differentially
expressed miRNAs is listed in Additional file 5.

Prediction of the target genes of the differentially
expressed miRNAs

PITA and miRanda software were used to predict the
target genes of the 36 differentially expressed miRNAs.
A total of 536 target genes were predicted for the 36
miRNAs (Additional file 6). Interestingly, we found that
many genes could be targeted by one miRNA. For ex-
ample, for miR-34c-5p, cid-miR-nov-562, and miR-34b-
5p, 94, 86, and 65 target genes, respectively, were
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predicted (Fig. 4). However, for some miRNAs, such as
miR-2188-5p and cid-miR-9, only one target gene was
predicted. The target genes are involved in a series of bio-
logical processes. Specifically, many genes involved in the
immune response, inflammatory response, and blood co-
agulation, such as interleukin-6 (IL6), interferon regula-
tory factor 2 (IRF2), complement C3 (C3), and grass carp
reovirus induced gene 2i (Gig2i), were targeted by these
differentially expressed miRNAs.

GO and KEGG enrichment analyses of the target genes

GO and KEGG enrichment analyses were performed to
investigate the possible roles of the target genes. For
the GO enrichment analysis, most of the GO terms
belonged to the biological process category, suggesting
the occurrence of a series of molecular events in grass
carp after GCRV infection. Many of the significantly
enriched GO terms were associated with immune re-
sponse and blood coagulation, such as wound healing,
regulation of body fluid levels, blood coagulation,

hemostasis, and coagulation. The top 10 enriched GO
terms of the target genes are listed in Table 2, and
details of the GO terms are shown in Additional file 7.
Moreover, KEGG enrichment analysis was performed.
The results showed that the enriched KEGG terms were
associated with blood coagulation and response to
stress, such as complement and coagulation cascades,
prion diseases, African trypanosomiasis, proteoglycans
in cancer, and Staphylococcus aureus infection. The top
10 enriched GO terms of the target genes are listed in
Table 3, and details of the KEGG terms are shown in
Additional file 7.

Expression patterns of the representative target genes

The above-mentioned results show that many of the tar-
get genes are involved in blood coagulation or comple-
ment and coagulation cascades. Coincidently, GCRV can
cause hemorrhagic symptoms in infected fish; however,
the underlying mechanism is unknown. This strongly
implies a correlation between these target genes and the
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Table 2 Top 10 enriched GO terms for the target genes

GO ID GO terms Number of genes Corrected P value
GO:0042060 Wound healing 31 1.02E-08
GO:0050878 Regulation of body fluid levels 30 3.24E-08
G0:0007596 Blood coagulation 29 2.77E-09
GO:0007599 Hemostasis 29 2.39E-09
GO:0050817 Coagulation 29 2.75E-09
GO:0019725 Cellular homeostasis 28 8.54E-08
G0O:0032101 Regulation of response to external stimulus 28 2.22E-08
GO:0006954 Inflammatory response 27 5.36E-08
G0:0072562 Blood microparticle 24 367E-16

GO:0055082 Cellular chemical homeostasis 23 2.92E-06
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Table 3 Top 10 enriched KEGG terms for the target genes
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KEGG ID KEGG terms Number of genes Corrected P value
KEGG:04610 Complement and coagulation cascades 19 149E-16
KEGG:05020 Prion diseases 5 0.001678
KEGG:05143 African trypanosomiasis 4 0.011383
KEGG:05205 Proteoglycans in cancer 9 0.02236
KEGG:05150 Staphylococcus aureus infection 4 0.039114
KEGG:04115 p53 signaling pathway 4 0.06146
KEGG:05133 Pertussis 4 0.068774
KEGG:05222 Small cell lung cancer 4 0.081635
KEGG:04672 Intestinal immune network for IgA production 3 0.084715
KEGG:05134 Legionellosis 3 0.085593

hemorrhagic symptoms. To verify this correlation, 10
representative target genes that involved in pathway
“complement and coagulation cascades” were selected
for qPCR to examine the expression patterns at the six
time points. These genes included C3, complement
factor B (CFB), coagulation factor II (F2), coagulation
factor IX (F9), fibrinogen alpha chain (FGA), kininogen
I (KNG1), blood coagulation factor XIV (PROC), vita-
min K-dependent protein S (PROS), antithrombin-III
(SERPINCI), and vitronectin (VIN). Surprisingly, all
the 10 selected genes shared similar expression patterns
(Fig. 5). Specifically, when compared with the control
(0 days), most of the genes showed slight changes at 1
dpi and were downregulated significantly at 3 and 5 dpi.
However, a marked upregulation of most of these genes
was observed at 7 dpi, suggesting the activation of the
“complement and coagulation cascades.” This upregula-
tion was not persistent, and it declined at 9 dpi.

Confirmation of miRNAs by using qPCR analysis

Five known and five novel miRNAs were randomly
selected for the RT-qPCR analysis. These miRNAs were
miR-34b-5p, miR-144-5p, miR-212-5p, miR-215-5p,
miR-2188-5p, cid-miR-nov-287, cid-miR-nov-449, cid-
miR-nov-634, cid-miR-nov-735, and cid-miR-nov-1024.
The relative expression level of the miRNAs on differ-
ent dpi were calculated as the ratio of the gene expres-
sion levels relative to those at 0 dpi. For most of the
examined miRNAs, the expression patterns identified
using qPCR were similar to those obtained using the
RNA-seq analyses, although the relative expression level
were not completely consistent (Fig. 6). Therefore, the
results of the qPCR analysis confirmed the reliability and
accuracy of the RNA-seq data.

Discussion
In this study, using deep Illumina sequencing, we revealed
conserved and novel miRNAs in grass carp in response to

GCRYV infection. After a series of stringent selections, a
total of 1208 miRNAs were identified at six time points,
of which 278 were known miRNAs and 930 were novel
miRNAs. Interestingly, the number of miRNAs found
in our study was more than that in other fish, such as
the Japanese flounder [12], olive flounder [41], Chinese
rare minnow [42], and rainbow trout [43], but similar
to that in the Japanese puffer [44]. The large number of
miRNAs identified in this study may be due to the deep
sequencing of the libraries. Each of the six libraries
showed clean reads>20 M. Most of the known miR-
NAs showed abundant expression levels regardless of
the time points, whereas many of the novel miRNAs
showed low expression levels or were only expressed at
some time points. These results suggest that deep se-
quencing is essential for identifying novel miRNAs with
low expression level.

During virus infection, not only the host but also the
virus can encode miRNAs [45]. Many studies have re-
vealed the role of miRNAs encoded by fish viruses dur-
ing pathogenesis [12, 46]. In our study, we also
attempted to find the miRNAs encoded by GCRV.
Some short nucleotides (20-25 nucleotides) from the
clean reads were mapped perfectly to the genome of
GCRYV after alignment (data not shown). However, no
precursor sequences with the RNA-loop structure were
found for these short nucleotides. Therefore, these
short nucleotides were not miRNAs encoded by GCRV.
Previous studies have suggested that only viruses from
the families Alpha-herpesvirinae, Beta-herpesvirinae,
Gamma-herpesvirinae, Polyomaviridae, Ascoviridae,
Baculoviridae, Retroviridae, and Adenoviridae can en-
code miRNAs or miRNA-like molecules [45, 47]. These
viruses are DNA viruses or have a period with a DNA
genome. For RNA viruses, no viruses that encode miR-
NAs have been reported; only engineered RNA viruses
can express biologically active miRNAs or miRNA-like
molecules [48, 49]. Thus, GCRV and other reoviruses
may not have the ability to encode miRNAs.
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Using a rigorous standard for the selection of differential
expression, only 36 miRNAs were identified to exhibit dif-
ferential expression. However, a total of 536 target genes
were predicted for the 36 miRNAs. Interestingly, many of
the genes could be targeted by one miRNA, such as miR-
34c-5p, cid-miR-nov-562, and miR-34b-5p. One miRNA
targeting many genes may suggest that the miRNA may

participate in a series of biological processes. Previous
studies have also shown that miR-34b-5p and miR-34c-
5p are involved in many biological events [50-53]. GO
and KEGG enrichment analyses were performed for the
536 target genes. The results showed that a lot of GO
terms or KEGG pathways were enriched. Specifically, the
GO term “blood coagulation” and pathway “complement
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and coagulation cascades” were the most significantly
enriched. Coincidently, GCRV can cause hemorrhagic
symptoms in infected fish. Therefore, we hypothesized a
correlation between the hemorrhagic symptoms and these
GO terms or pathways. qPCR analysis of the representa-
tive genes revealed that most of the genes were upregu-
lated markedly at 7 dpi, suggesting the activation of

“complement and coagulation cascades.” This result was
strongly consistent with that of our previous study ([54],
He et al,, unpublished data), implying the facticity and reli-
ability of the experiment. Activation of the complement
cascade can lead to endothelial and blood-cell damage,
resulting in platelet activation and aggregation, hemolysis,
and prothrombotic and inflammatory changes [55, 56].
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Finally, the hemorrhagic symptoms could due to the over-
activity of the complement cascade. However, the upregu-
lation was not persistent, and it declined at 9 dpi. This
may be because death was observed at 9 dpi; the comple-
ment system was deactivated at this time point.

Conclusions

In conclusion, conserved and novel miRNAs in grass
carp in response to GCRV infection were identified.
Thirty-six miRNAs were identified to exhibit differen-
tial expression, and they targeted 536 genes. Many of
the target genes were involved in immune response, co-
agulation, hemostasis, and complement and coagulation
cascades. qPCR analysis of the representative genes sug-
gested that the pathway “complement and coagulation
cascades” was activated strongly, leading to endothelial-
cell and blood-cell damage and hemorrhagic symptoms.
The present study provides a new insight into understand-
ing the mechanism underlying GCRV pathogenesis and
hemorrhagic symptoms caused by GCRV.
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