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Abstract

Background: Malignant breast cancer with complex molecular mechanisms of progression and metastasis remains
a leading cause of death in women. To improve diagnosis and drug development, it is critical to identify panels of
genes and molecular pathways involved in tumor progression and malignant transition. Using the PyMT mouse, a
genetically engineered mouse model that has been widely used to study human breast cancer, we profiled and
analyzed gene expression from four distinct stages of tumor progression (hyperplasia, adenoma/MIN, early
carcinoma and late carcinoma) during which malignant transition occurs.

Results: We found remarkable expression similarity among the four stages, meaning genes altered in the later stages

showed trace in the beginning of tumor progression. We identified a large number of differentially expressed genes in
PyMT samples of all stages compared with normal mammary glands, enriched in cancer-related pathways. Using co-

expression networks, we found panels of genes as signature modules with some hub genes that predict metastatic
risk. Time-course analysis revealed genes with expression transition when shifting to malignant stages. These may
provide additional insight into the molecular mechanisms beyond pathways.

Conclusions: Thus, in this study, our various analyses with the PyMT mouse model shed new light on transcriptomic

dynamics during breast cancer malignant progression.
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Background

Breast cancer is a globally prevalent disease and a lead-
ing cause of cancer-related mortality among women of
all ages [1]. In 2008 there were 1.38 million new cases
worldwide, and the disease caused ~458,400 deaths [2].
The number increased to 1.67 million in 2012, account-
ing for 11.9% of all cancer new cases [3]. A malignancy
with a multistep pathological process, breast cancer in
humans starts with the premalignant atypical ductal
hyperplasia (ADH), followed by ductal carcinoma in situ
(DCIS) and subsequent malignant invasive ductal carcin-
oma (IDC) [4]. Patients surviving the primary tumors
often die of carcinoma-culminated metastasis [1]. Des-
pite widely recognized evidence that ADH and DCIS are
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precursors of IDC, few biomarkers identified from the
early stages can explain and predict tumor progression.
Many genes have been shown to contribute to breast
cancer development [5], but the molecular mechanisms
of its progression remains largely unknown, which
greatly limits our abilities for early diagnosis and treat-
ment of breast cancer patients with metastasis risk [6].
Transgenic mouse models have been widely used to
study breast cancer, and the PyMT mouse model is one
of them [7-9]. Expression of the oncoprotein, polyoma
middle T (PyMT) antigen from mouse polyoma virus, is
under the control of the mouse mammary tumor virus
(MMTYV) long terminal repeats (LTR) and is restricted
to mammary epithelia [10]. By stimulating multiple
signaling including Shc and PI3-kinase, the membrane
scaffold protein PyMT activates MAPK and PI3K pathways
that function in cell proliferation and survival [11, 12].
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Sharing both morphological and transcriptional features
with the human disease [10] and resembling the human
luminal B subtype of breast cancer on gene expression pro-
files [9], the MMTV-PyMT transgenic mice provide us a
reliable animal model for breast cancer progression. The
primary tumors developed in this mouse model go through
four stereotypical stages of cancer progression —
hyperplasia, adenoma/mammary intraepithelial neopla-
sia (MIN), early and late carcinoma — while progress
from pre-malignancy to malignancy.

Because most previous studies of PyMT mice focused
only on the carcinoma stages, little is known about gene
expression alterations in the early stages as well as their
impacts to the later stages. In this study, we examined
gene expression dynamics in the full range of breast
tumor development from hyperplasia to late carcinoma.
Using RNA sequencing instead of microarray, our data
had a wider dynamic range and a higher sensitivity to
better detect differentially or lowly expressed genes.
Moreover, to go beyond single gene inspected by earlier
studies, we explored biological networks to learn the
connections and interplays among genes. Networks are
powerful in interpreting the underlying mechanisms of
diseases by revealing disease modules, which are groups
of highly connected genes or gene products [13]. In this
study, we carried out differential gene expression profil-
ing, time-course analysis and network-based gene
screening to identify candidate genes that may contrib-
ute to breast cancer progression. We found that many
genes differentially expressed in the late carcinoma stage
initiated the expression alteration at the hyperplasia
stage. We also identified genes with disrupted expression
during the transition from premalignance to malignance.
Last, we found gene modules that co-expressed in tu-
mors with hub genes predict future metastasis. Thus, by
proposing novel candidate oncogenes that may promote
tumor progression and malignant transition, our study
helps to find genes as potential biomarkers and drug tar-
gets for breast cancer treatment.

Methods

Animals and tissue collection

This study of cancer in mice was approved by the Institu-
tional Animal Care and Use Committee (IACUC) of
Albert Einstein College of Medicine. All procedures
involving mice were conducted in accordance with the
National Institutes of Health guidelines concerning the
use and care of experimental animals. Male PyMT mice
(FVB/N-Tg(MMTV-PyVT)634Mul/] mice, Stock Number:
002374, the Jackson Laboratory) were randomly bred with
homozygous FVB females to obtain F1 female mice
(PyMT mice hereafter) heterozygous for the PyMT trans-
gene; they developed breast cancer and were used as cases.
Homozygous FVB females were used as controls.
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We selected four time points corresponding to different
tumor progression stages: hyperplasia at week 6, aden-
oma/MIN at week 8, early carcinoma at week 10, and late
carcinoma at week 12 [10]. At each time point, mammary
tumors and normal mammary glands were collected from
three PyMT mice and three age-matched FVB controls,
respectively. We snap froze all samples and kept them at
—80°C. We had a pathologist examined the morphology of
our PyMT tumor samples and observed typical features of
various tumor developmental stages (Additional file 1:
Figure S1A). We also estimated the percentage of infiltrat-
ing cells as the sample purity. By H&E staining, the path-
ology report showed less than 5% stromal and muscle
cells, with rare inflammatory cells in carcinoma samples.
In general, we had greater than 90% tumor cells in our
carcinoma samples, which surpassed the Cancer Genome
Atlas (TCGA) criteria (over 60% tumor cells for human
tumor samples) [14, 15].

Directional RNA sequencing

Total RNAs were extracted from frozen samples using the
miRNeasy mini kit (Qiagen) according to the manufac-
turer’s protocol. Agilent 2100 Bioanalyzer was used to
check RNA quality. The total RNA was treated with DNa-
sel, depleted of ribosomal RNA with Ribo-Zero Magnetic
Gold Kit (Epicentre), followed by ethanol precipitation.
Next, RNA was converted to cDNA using SuperScript III
First-Strand Synthesis Kit (Invitrogen) with 80ng random
hexamers and 50mM oligo-dT and subsequently ethanol
precipitated. Single-stranded cDNA was converted to
dsDNA by DNA polymerase I while incorporating dU/
VTPs (10mM). Samples were fragmented to 200—300bp
using Covaris. After fragmentation, samples were purified
using the MinElute PCR purification kit (Qiagen). Frag-
mented samples underwent standard end-repair, dA-tailing
and adapter ligation using Ilumina TruSeq adapters for
multiplexing. Adapter-ligated ¢cDNA was treated with
uracil-DNA glycosylase followed by enrichment PCR using
Kapa reagents for 14 cycles. Libraries were size selected for
150-600 bp on a 2% low-melt ultra low-range agarose gel
stained with SYBR Gold (Invitrogen) to eliminate adaptor
dimers. Purified libraries were used to sequence on
Hiseq2500 according to standard protocols. The PyMT
RNA-sequencing data is available in the Gene Expression
Omnibus (GEO) database as GSE76772.

Statistical analysis

Sequence data were preprocessed by WASP 3.0 [16], an
in-house pipeline. FastQC [17] was used for reads quality
control. The raw FASTQ files were trimmed for adapter
sequences using quart. Then GSNAP v2012-07-02 [18]
was used to align reads to mm9 reference genome with
default settings. Gene counts were given by HTSeq
v0.5.3p3 [19].
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All statistical analyses were carried out with R v3.0.1
[20]. After removing transcriptionally inactive genes
(read count per million < 1 in more than half of the sam-
ples) from raw RNA-sequencing gene counts, we got
high confident gene counts, which were then normalized
by DESeq [21]. The PCA analysis used method adopted
from DESeq. The R package edgeR v3.4.2 [22] was used to
perform statistical analysis on gene counts and to detect
differentially expressed genes. Differentially expressed
genes (DEGs) at each stage were analyzed for enrichment
on REACTOME [23] and KEGG [24] pathways using the
R package GOseq [25], which corrects bias owing to gene
length and expression variability. To reduce noise and re-
dundancy, we used GSEA (Gene Set Enrichment Analysis)
[26] to investigate hallmark gene sets (“Hallmark gene sets
summarize and represent specific well-defined biological
states or processes and display coherent expression”, as
defined by GSEA).

Weighted gene co-expression network analysis

We conducted the weighted gene co-expression network
analysis (WGCNA) using the R package WGCNA [27] to
identify co-expressed genes. We used the normalized ex-
pression values from aforementioned analysis as input to
construct a signed gene co-expression network. Then we
looked at module preservation to find the most robust
and generalized modules using a composite Z-summary
statistic. For highly preserved modules, we calculated the
module eigengene (the first principal component). Labels
that denote the disease stages (normal, hyperplasia,
adenoma/MIN, early carcinoma and late carcinoma) were
permuted. We permuted the labels 10,000 times, and used
an R package coin to test the statistical significance of
Spearman’s correlation coefficient between tumor progres-
sion stages and module eigengenes. The results were
exported to VisANT [28] for network visualization.

Time-course data analysis
To model the transitional changes in gene expression,
we calculated a log2 ratio change (LRC) of each gene be-
tween stages i+ 1 and i using results from the previous
DEGs analysis: LRC =log,RY"™Y — log,R?” (i=1, 2, 3;
stage 1 as hyperplasia). After normalizing LRCs to z-
scores, we categorized the transitional changes into posi-
tive (+1), negative (—1), and constant (0) transition sta-
tuses by their deviance from the mean. Since there are
three transitions and three transition statuses, altogether
we have 3° = 27 possible groups of transition patterns.
To find gene expression trends along tumor progres-
sion, we selected the top 1,000 genes with highest PCA
loadings, and divided the means of normalized expres-
sion at week 8, 10 and 12 by that of week 6 to get rela-
tive expression ratios. We then used k-means clustering
to group genes based on the ratio. We plotted the
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number of clusters against the total within cluster SS
(sums of squares) and selected the cluster value at the
first inflection point, which is 5.

Quantitative real-time PCR (qPCR)

The qPCR was performed using the 27#*“* method. The
RNA was converted to ¢cDNA using SuperScript III
First-Strand Synthesis Kit (Invitrogen), followed by reac-
tions using ABI StepOnePlus Real-Time PCR System in-
strument (Applied Biosystems). Each 10ul reaction
included 5ul Tagman Fast Master Mix, 2.5ul RNAse-free
water, 2ul ¢cDNA (10 nM) and 0.5ul Tagman primer set.
Actb was used as the internal control gene to give genes
tested a relative fold change using the 274" method.
The qPCR primers are by Tagman Gene Expression As-
says, catalog number 4448892.

Results

Differentially expressed genes are enriched in cancer-
related pathways and E2F targets

To determine the transcriptional distinction among differ-
ent cancer developmental stages, we first performed PCA
analysis (Methods). The PyMT tumor samples are clearly
separated from the FVB controls on PC1. There is also a
temporal separation among the PyMT samples from vari-
ous stages except for one adenoma/MIN sample (Fig. 1a,
Additional file 1: Figure S1B). In Fig. 1b, we showed con-
tributions to PCs from different biological and technical
conditions as covariates; it is clear that only biological
contribute to PCs, but not the technical ones. Disease
condition and stage strongly contribute to PC1, mouse
age contributes to PC3, and litter slightly contributes to
PC2. This means that the variance separating PyMT tu-
mors from FVB controls was the underlying biological fac-
tors, not the technical ones such as batch effect. In
addition, we examined genes with top loadings on PCl1
and found that only Fhl1 and Txnip are cell cycle-related
genes. This means that the difference we observed was
mainly due to something other than cell cycle.

We then examined differentially expressed genes
(DEGs) at each stage. At each time point (week 6, 8, 10
and 12), we compared three PyMT samples with three
FBV controls (Methods), and identified 2,070, 2,269,
2,489, and 3,476 DEGs respectively (fold change > 2, FDR
<0.05, Table 1 and Additional file 2: Table S1). The last
stage (late carcinoma) had the most DEGs and was with a
big increase on the DEG number comparing to all other
stages. We also found that more genes were down-
regulated than up-regulated ((1,430, 1,486, 1,609, 2,205)
vs. (640, 783, 880, 1,271) DEGs at each stage (Table 1).
Among the union of all 4391 DEGs, a significant propor-
tion of DEGs (27.2%, 1,211 genes) appeared at all four
stages (Fig. 1c). This is consistent with a previous human
study, which showed that gene expression in ADH, DCIS,
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Fig. 1 Differentially expressed genes along tumor progression. a PCA of PyMT and FVB samples. It shows the separation between tumor and
control samples. b Biological and technical confounders’ contribution to PCs. The heatmap shows —log10 p-value of linear regression of top PCs
on some known covariates. Red indicates significant correlation. The disease status, whether it is tumor or control, contributes most significantly
to PC1 and PC2. No technical covariates exhibited correlation to any PCs. Plotted with the ggplot2 R package [80]. ¢ Venn diagram of DEGs. A
majority of the DEGs at each one of the four time points were also detected in at least one another time point. d Mean expression of 79 E2F-
targeted DEGs at four stages. The red line denotes PyMT tumors, and the blue line controls. The normalized gene counts were plotted with the
error bar showing the standard deviation. 79 targets were differentially expressed in late carcinoma stage (week 12). H, hyperplasia; N, adenoma/
MIN; EC, early carcinoma; and LC, late carcinoma

J

and IDC are highly similar during tumor progression [4]. We then analyzed REACTOME, KEGG, and GSEA-
Yet, metastatic risk could be predicted based on gene hallmark enrichment (Methods) of the DEGs identified
expression profile of primary carcinoma [29, 30]. Among  at each stage. Of the KEGG pathways, the extracellular
these 4,391 key genes, 92 genes were among the 289  matrix (ECM) receptor interaction (KEGG:04512) and
breast cancer-related genes identified by MalaCards [5]. metabolic pathways (KEGG:01100) were enriched in the
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Table 1 Differentially expressed genes at four stages

Stage Down Up Total
Hyperplasia 1430 640 2070
Adenoma/MIN 1486 783 2269
Early carcinoma 1609 880 2489
Late carcinoma 2205 1271 3476
Union 2642 1749 4391

Note: Numbers of DEGs identified at the four stages

down-regulated DEGs; DNA-replication (KEGG: 03030)
and cell cycle (KEGG: 04110) in the up-regulated DEGs
(Fig. 2a). Of the REACTOME pathways, metabolism and
extracellular matrix related terms were also enriched in
the down-regulated DEGs; the up-regulated DEGs were
enriched on cell cycle and DNA methylation (Additional
file 3: Figure S2). Of the GSEA hallmarks, we uncovered
enrichment on the E2F targets, G2M checkpoint,
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MTORCTI signaling in the up-regulated genes (Fig. 2b).
We are mostly interested in the E2F targets because the
transcription factors E2Fs mediate G1/S transition in cell
cycles [31] and regulate tumor development and metas-
tasis as indicated by an early study using the PyMT mice
[32]. Interestingly, E2F2 was differentially expressed only
in hyperplasia stage with an increase of 3.7 fold (FDR <
0.05) but not in other stages; the E2F targets enrichment
was more significant in the later three stages, indicating
a possible time lag for the transcription factors to func-
tion. We found 79 E2F targets as DEGs from week 12;
their differential expression was much higher in the
PyMT mice than in controls and this difference main-
tained throughout tumor progression (Fig. 1d). Many
E2F targets showed a gradual reduction from week 6 to
week 12 in both groups, suggesting a higher activation
of development in early life, while some others main-
tained the high expression in PyMT mice, such as
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Dnmtl, Diaph3, and Prdx4 (Fig. 1d). Their functional
roles in processes other than cell cycles could also be
important for tumor progression.

We found genes in P53 signaling pathway with in-
creased expression at early carcinoma stage (Fig. 2a), for
example Rrm2, which functions in DNA repair and dam-
age prevention. Rrm2 encodes a ribonucleotide reduc-
tase and was reported as an indicator of tamoxifen
resistant in luminal patients as well as decreased survival
in patients of all breast cancer subtypes [33]. In our
study, the expression of Rrm2 increased throughout the
breast cancer development in PyMT mice (log2 fold
change in hyperplasia, adenoma/MIN, early carcinoma,
late carcinoma is 2.5, 4.0, 2.7, and 2.8, respectively) and
may serve as potential biomarker for diagnosis as well as
drug target.

In addition to terms related to cell cycle and prolifera-
tion, we also observed other significant enrichment such
as PPAR (peroxisome proliferator-activated receptor)
signaling (KEGG:03320) and drug metabolism- cyto-
chrome P450 (KEGG:00982) (Fig. 2b). In late carcinoma,
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Pparg was among the 26 down-regulated PPAR pathway
genes (Cd36, Sorbsl, Pparg, Angptld, Lpl, Fabp4, Acoxl,
Acadm, Mel, Cpt2, Slc27al, Scp2, Adipoq, Acsll, Fabp3,
Ppara, Plinl, Cyp27al, Acox3, Pltp, Pckl, Ilk, Aqp7,
Rxrg, Cptlc, and Nrih3); Cyp2el was among the 17
down-regulated drug metabolism-related cytochrome
P450 genes (Mgst3, Ugtla9, Adhic, Fmol, Gstzl, Aoxl,
Cyp2el, Gsta3, Gstt2, Maob, Cyp2d6, Fmo2, Gstml,
Ugtlas, Ugtla3, Gstm2, and Aldh3b2).

Hub genes from co-expression network modules predict
metastasis in human breast cancer datasets

To identify genes expressed together as modules on a
higher systems level, we explored coordinated transcrip-
tional activities among genes in co-expression networks to
reveal higher-order expression patterns and signatures of
tumors. This network-based method is useful to detect
potentially new biomarkers, and complements the identifi-
cation of individual DEGs. We carried out a weighted
gene co-expression network analysis (WGCNA). We first
calculated Pearson’s correlation coefficients to measure
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gene-gene co-expression in our mouse samples. Then we
used a topological overlap measure algorithm and identi-
fied 12 gene modules (Methods). Five of them are highly
preserved (Fig. 3a), i.e., gene-gene co-expression in these
five modules is similar in both PyMT tumors and controls.
Among them, four modules showed significant difference
between tumors and controls (Methods, Fig. 3b). Pathway
enrichment showed that the modules are enriched with
pathways of DNA replication (KEGG: 03030) and cell
cycle (KEGG: 04110); focal adhesion (KEGG: 04510) and
ECM receptor interaction (KEGG:04512); oxidative phos-
phorylation (KEGG: 00190) and TCA cycle (KEGG:
00020), and several metabolic pathways including insulin
pathway (KEGG: 04910), respectively (Table 2). Genes in
the black module (Additional file 1: Table S1) are involved
in DNA replication and cell cycle hence may shed light on
the molecular mechanisms of breast cancer in this mouse
model. This module is also enriched with targets of E2F
and targets of MYC (GSEA hallmark). Genes with the
most connections (‘hubs’) in a module capture most of the
expression variability and can be considered as the mod-
ule signature. The top 20 hub genes in the black module
are Uhrf1, Cct3, Dnmtl, Kifl1, Top2a, Ptma, Mcm6, Tpx2,
Smc2, Rrml, Mki67, Tacc3, Ncapd2, Prcl, H2afx,
Hist2h2bb, Histlhld, Npml, Histlh3c, and Hist1h2bb
(Fig. 3c). Nine genes in this module — Akt1, Brca2, Ccndl,
Dunmtl, Mki67, Palb2, Rrml, Timeless, and Top2a — are
known human breast cancer genes according to the Mala-
Cards database [5]; four of them are hub genes. Not sur-
prisingly, we found an overlap between hub genes and
previously identified DEGs, including Dwnmtl, Top2a,
Tacc3, Mcmé6, and Mki67.

The PyMT mice provide a very aggressive breast can-
cer model with a metastatic rate of over 90%. We hy-
pothesized that genes whose expressions correlate with
tumor progression may mark more aggressive tumors
and thus can be used to predict metastasis risk. To test
this hypothesis and to translate our model-based find-
ings to the human disease, we assessed the impact of
hub genes on distant metastasis-free survival (DMES)
using the Kaplan-Meier analysis by querying the Gene
expression-based Outcome for Breast cancer Online
(GOBO) [34]. Based on their high or low expression
levels, ten hub genes — H2AFX, KIF11, MCM6, MKI67,
NCAPD2, PRC1, SMC2, TACC3, TOP2A, TPX2 -

Table 2 WGCNA modules with high preservation
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separated breast cancer patients into high- and low-risk
groups, which showed statistically significant difference
in DMFS (Additional file 4: Figure S3). Using the ten
genes together as a panel also gave a significant predic-
tion but showed no increase on predicting power. In the
purple module, among top 15 genes that we selected as
module hubs, 12 (PEXI9, DHDH, ACSL1, ALDH6AI,
PNPLA2, PPP2R5A, IVD, MME, ADIPOR2, ALASI,
CDO1, and CHPTI) are non-cell cycle genes and as a
gene panel can separate patients with different risks by
Kaplan-Meier analysis (p-value <0.05), while the other
three cell cycle-related genes (AK7T2, INSR, and
YWHAG) cannot. Hubs from the other two models
showed no significant ability for separation.

Note that many hub genes as E2F targets are involved
in tumorigenesis. As an E2F target, Dmmtl (DNA
methytrasferase 1) showed differential expression
throughout tumor progression (expression fold changes
in PyMT tumors vs. FVB controls during hyperplasia,
adenoma/MIN, early carcinoma, and late carcinoma are
2.0, 2,5, 2.3, and 3.2 (FDR < 0.05), respectively). DNMT1
is crucial for the maintenance of DNA methylation,
which causes gene silencing and is known to regulate
many cancer-related genes including many tumor sup-
pressors [35, 36]. These gene expression changes suggest
a global methylation deregulation and a potential key
role of DNA methylation in breast cancer. In addition,
we have carried out an enhanced reduced representation
bisulphite sequencing (ERRBS) of the same PyMT
mouse model to examine DNA methylathion changes
during its cancer progression process in another study
to be published. Mki67 (Ki67) is a widely recognized
marker for cell proliferation and is associated with breast
cancer prognosis statistically [37]. Top2a codes for topo-
isomerase II Alpha, a key enzyme in DNA replication
that regulates gene expression and cell division and
whose amplification is a predictor for anthracycline
treatment in breast cancer [38]. Another hub gene Tacc3
plays roles in cell cycle, immune system development,
and microtubule cytoskeleton organization. An up-
regulation of Tacc3 was observed in breast cancer and it
was suggested that Tacc3 might be a deregulator of
DNA damage response and a predictor of survival for
breast cancer patients [39]. Mcm6 and Ncapd?2 are E2F
targets as well, and little is known about their roles in

Module Genes GO enrichment (FDR < 0.05) KEGG pathways enrichment (FDR < 0.05)
Green 663 Mitochondria, membrane Oxidative phosphorylation, TCA cycle
Red 550 Extracellular matrix, cell adhesion Focal adhesion, ECM-receptor interaction
Purple 357 Mitochondria, peroxisome Metabolism pathways, insulin pathway
Black 372 Cell cycle, M phase, mitotic DNA replication, cell cycle

Note: Gene numbers in each module with GO and KEGG term enrichment
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breast tumor progression. Mcmé6 is one of the mini-
chromosome maintenance proteins and has been sug-
gested as a prognostic marker in melanoma [40]. In the
black module, we found Mcm2-6 and Mcm9. The
Mcm2-7 and Mcm8-9 form protein complexes respect-
ively to function in DNA replication initiation and DNA
recombination repair [41, 42]. An early study showed a
strong association between the over expression of
Mcm2-7 and the short survival in a breast cancer cohort
[43] and suggested their roles in breast tumor progres-
sion. Here we added an additional layer of evidence.
Ncapd2 (non-SMC condensing I complex subunit D2) is
involved in mitotic sister chromosome segregation [44]
without notable involvement in breast cancer. We think
its alteration may represent elevated cell mitosis in tu-
mors like that of Mki67.

The green module showed a slight negative correlation
between eigengene and tumor progression compared to
controls. 20 genes from the TCA cycle pathway (Acly,
Aco2, Csl, Cs, Dlat, Dist, Did, Fhl, Idh2, Idh3a, Idh3b,
Idh3g, Mdh1, Ogdh, Pdhb, Pdhal, Sdha, Sdhd, Suclgl, and
Sucla2) were found in the green module. This enrichment
indicates a significant involvement of energy metabolism
in tumor progression. In the purple module, we found
Eif4ebp1 with reduced expression in tumor. This gene is a
eukaryotic translation initiation factor biding protein that
functions in the insulin-signaling pathway. It inhibits the
oncogene Eif4e, whose overexpression leads to human
hepatocellular carcinoma development together with Ras
activation [45].

Time-course analysis identifies expression patterns of
tumor progression and malignant transition

In PyMT mice, the malignant transition occurs between
adenoma/MIN (week 8) and early carcinoma (week 10),
so we first examined genes that showed fluctuation dur-
ing this time. We classified the union of all DEGs in
week 8 and week 10 (3,080 genes) into four groups
based on their up- or down-regulation patterns. 21 genes
exhibited up-/down-regulation and 20 genes exhibited
the opposite down-/up-regulation (Fig. 4a). Genes with
simple expression transition are surprisingly few. As an
alternative, we defined a type of statistically transition
(Methods). Based on their expression profiles, we clus-
tered the union of 4,391 DEGs into 26 groups of transi-
tion patterns (because there was no gene showed all
positive transition, left only 26 groups instead of 27
groups (Fig. 4b). As defined, most genes (3,116 genes in
group 2) showed no change for all three transitions. Since
the malignant transition happens between adenoma/MIN
and early carcinoma, we were mostly interested in genes
with a peak of either positive or negative change at the sec-
ond transition. The 193 genes — 113 in group 1 and 80 in
group 12 (Fig. 4b) — displayed this transition pattern.
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Enrichment (FDR < 0.05) revealed KRAS signaling up and
estrogen response early (GSEA hallmark); Calcium signal-
ing (KEGG: 04020) in these genes. The GSEA hallmark
E2F targets including Cdkl, Ccnb2, Plkl, Aurkb, and Spag5
were also enriched (FDR < 0.05) in the group 12. Moreover,
we found Erbb4 (log2 fold-change: 0.03, -0.18, 2.39, 2.05) in
the group 12. Erbb4 appears to be an oncogene in breast
cancers [46, 47], and Erbb2 has been suggested to help
Erbb4 carry out the oncogenic activities [46]. Interestingly,
Ingenuity Pathways Analysis (Ingenuity® Systems, http://
www.ingenuity.com) identified Erbb2 as a potential up-
stream regulator (Additional file 5: Figure S4) in week 10
(early carcinoma). Taken together, these two genes may
function simultaneously in malignant transition.

As a compliment to the transition analysis, we explored
the continuous monotonic pattern in tumor samples to
study genes with possible tumor maintenance functions
(Methods). We first isolated 1,000 genes with highest
PCA loading and divided the mean of normalized expres-
sion at each time point by that of week 6 to obtain the
relative expression ratio. Using k-means clustering, we
then separated these genes into five groups with three
major ones (Fig. 4c). Genes in red group mainly function
in cell adhesion (GO: 0007155) and biological adhesion
(GO: 0022610), maintained high expression as tumor pro-
gress. Genes in the blue group play roles in the immune
system such as antigen processing and presentation,
showed decreased expression especially at early carcinoma
stage. Genes in the grey group, enriched in response to ex-
ternal stimulus (GO: 0009605), showed no obvious change
as tumor progressed (Fig. 4d).

Novel genes involved in PyMT mouse model of breast
cancer

Using R package RISmed, we mined PubMed for the
functional relevance of the newly discovered genes in
tumor development. We used RISmed to extract biblio-
graphic data from PubMed, and examined if the official
symbols of genes that we are interested in concurred
with the key word “breast cancer” in article titles or ab-
stracts. If so, such genes are considered to have func-
tions related to breast cancer. Of the 4,391 DEGs, about
half have no reported roles in breast cancer. Of the 79
E2F targets we identified in late carcinoma, 14 genes
(H2afz, Spc24, Cenpm, Ginsl, Polal, Priml, Nop56,
Kif18b, Mms22l, Lyar, Tcf19, Cdca3, Tripl3, Ncapd?2) are
not previously described in breast cancer. Among those
five E2F targets correlated with malignant transition,
Cdkl and Plkl1 were well studied in breast cancer, but
much less so for Cenb2, Aurkb, and Spag5 (7, 10, and 3
reports, respectively). Among the 79 E2F targets, Hells,
Hmgb3, and Cit are of special interests because of their
functions. HELLS interacts with DNMT3A and
DNMT3B in the STRING protein-protein interaction
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database [48, 49], and is known to be involved in sur-
vival, de novo DNA methylation, and DNA methylation
maintenance [50]. It also cooperates with HDACI,
HDAC2, and DNMTs to silence transcription [51]. This
is consistent with our finding of increased Dnmtl
expression and global gene down-regulation. HMGB3
promotes cell proliferation in bladder cancer [52] and
interacts with TOP2A and TOP2B, two targets for some

anticancer agents. CIT, a serine/threonine-protein
kinase, functions together with Kifl4 (its expression in-
creased by more than four folds in the TCGA breast
cancer samples) in cell division. In summary, we propose
some less studied genes as potential new players in
breast cancer progression.

To investigate DEGs identified from PyMT mouse in
the context of human, we first used publically available
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RNA-sequencing data of human breast invasive car-
cinoma (BRCA) from the TCGA Research Network
(http://cancergenome.nih.gov/). We downloaded 115 lu-
minal B subtype BRCA patients data (classified by the
PAMS50 model [53] in this TCGA paper [14]), which most
closely resembles the PyMT mouse model [9]. Because we
had three samples at each stage, we only used 10 patient
samples with 10 matched adjacent normal mammary tis-
sue as controls thus not to inflate DEGs detecting power.
Their Level3 TCGA BRCA RNA-sequencing raw gene
counts were processed the same way as for our PyMT
data; 3,782 DEGs were identified (FDR<0.05, fold
change > 2). Among those 3,476 DEGs from PyMT late
carcinoma stage, 2,779 genes were with human homo-
logues, and 1,139 of them were significantly up- or down-
regulated in both PyMT mouse and human, 918 genes in
the same direction in both human and mouse (Fig. 5a).
Human homologs gene list was downloaded from MGI
[41, 54, 55] (Mouse Genome Informatics, http://
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www.informaticsjax.org/). Among these DEGs from
TCGA samples, the up-regulated ones were enriched in
cell cycle (REACTOME), E2F targets and G2M check-
point (GSEA hallmark, Fig. 5b), similar to the enrichment
profile of the PyMT mice. There were 100 E2F targets in
the 3,782 DEGs out of a total of 200 E2F targets defined
by GSEA, a very significant enrichment. We observed
significant (p-value < 0.05, t-test) increased expression of
the genes of interests discussed previously in the TCGA
luminal B patients except for Cit (Fig. 5c). Breast cancers
in human and PyMT mice are likely to share similar ex-
pression of certain candidate genes. The aforementioned
expression analysis of the TCGA data validated our RNA-
sequencing results.

To see how the differences in expression are reflected on
the gene product level, we queried The Human Protein
Atlas [56] for RNA expression and protein staining scores
in the metastatic breast cancer cell line MCF7. Of the ten
hub genes tested by the Kaplan-Meier analysis, seven
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showed significant protein expression (Additional file 2:
Table S6).

We also compared our results with other studies of
PyMT breast cancer. In a previous study, Andrechek et
al [57] compiled various PyMT datasets from the GEO
database and identified 4,184 DEGs between PyMT
mouse tumor and normal mammary gland. Comparing
this set of genes with our 3,476 DEGs from the late car-
cinoma stage, we found an overlap of 2,069 genes with
expression changes in the same direction. To see how
our DEGs behave in other mouse models, we compared
the same 3,476 DEGs from our study with 4,018 DEGs
identified in the same study [57] between carcinoma in
MMTV-Neu mice (a mouse model of breast cancer with
pulmonary metastasis) and normal mammary gland. We
found an overlap of 1,642 genes with expression change
in the same direction.

To verify our RNA-sequencing results, we performed
qPCR on the same samples used for sequencing. We con-
firmed increased expression of Top2a and Dnmtl in all
four stages (p-value < 0.05, Additional file 6: Figure S5A).
To validate that our findings are reproducible, we also car-
ried our qPCR on independent samples from PyMT and
FVB mice not used for sequencing. We selected six genes
showing increased expression in the PyMT mouse from
all stages, and observed similar expression in the qPCR re-
sults (Additional file 6: Figure S5B).

Discussion

A major challenge in breast cancer study is to understand
the molecular mechanisms of malignant progression.
Mouse models have been widely used to characterize the
molecular events in breast cancer. Compared to early
microarray-based gene expression studies of PYMT mouse
carcinoma [58—-60], we demonstrated for the first time
transcriptional changes associated with distinct stages in
breast cancer progression using RNA-sequencing and ob-
served temporal global mRNA expression deregulation in
the PyMT mouse model. Some previous studies used
PyMT mouse model to identify signature or biomarkers of
tumor virulence [61], or residual tumors and lung metas-
tases [58]. Another study [57] has indicated that highly
expressed genes in PyMT mouse are enriched for gene
that predict metastasis using the van’t Veer gene set [30].
Many more studies compared various breast cancer
mouse models as well as human samples to get mouse
model classes and general molecular features of the dis-
ease [9, 57, 59]. But none focused on the changes during
tumor progression.

We observed that most DEGs identified in the late
carcinoma stage first appeared in the much earlier
hyperplasia stage. This is consistent with previous hu-
man cancer studies, which reported substantial similarity
of transcriptional profiles in various pathological stages
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[4] and suggested that expression profiles of early pri-
mary tumors may tell progressive potential [29, 30].
Similar to our findings, earlier investigations with micro-
arrays also observed that more genes were down-
regulated in both PyMT mouse [9] and human luminal
B subtype [14]. Many of the significantly enriched path-
ways are actually part of the big “pathway in cancer”
(KEGG:05200), such as ECM-receptor interaction and
focal adhesion. Although not significant enriched in our
data, the PyMT oncogenesis causal pathway PI3K-AKT
signaling is also included in the “pathway of cancer” so
is linked to many of those enriched pathways. Metabol-
ism deregulation are widely recognized in cancer, such
that high calorie diet elevates cancer risk, especially on
glucose metabolism [62]. In both DEGs and WGCNA
module genes, we found enrichment of many metabolic
related terms and pathways, including the TCA cycle
pathway.

With the co-expression network analysis, we identified
genes that function together. Because co-expression net-
works derived from RNA-sequencing data exhibit higher
correlation and hence higher connectivity than ones de-
rived from microarrays [63], gene modules found in this
study could better explain molecular mechanisms of the
disease progression. One module with increased gene
expression in tumor is enriched with DNA replication
and cell cycle genes. Module hub genes are not only po-
tential prognosis biomarkers of the human disease dem-
onstrated by our Kaplan-Meier analysis with data from
human patients but also potential risk factors underlying
the molecular mechanisms of human breast cancer.
Some hubs in this module are known cancer-related
genes, however some have not been identified as onco-
genes or cancer biomarkers so far, such as Mcm6 and
Ncapd?2. Although many hub genes can predict future
metastasis with statistical significance, the high and low
risk groups show only small difference on risk for metas-
tasis. It is possible that individual genes have only lim-
ited predictive power and more genes need to be
combined into gene panels for finer separation of differ-
ent risk groups as shown in many gene signature studies
[29, 30]. The module enriched in oxidative phosphoryl-
ation and the TCA cycle showed decreased expression in
tumor, which is consistent with the facts that cancers
switch from oxidative phosphorylation to glycolysis due
to hypoxia and rely less on the TCA cycle [64]. The re-
duced expression of TCA cycle genes in carcinoma stage
has been reported before in the TAG mouse model [57].
It is very interesting that we observed metabolic changes
in the early stages; they can be potential biomarkers for
diagnosis. Nonetheless, we may not entirely rule out the
possibility that the changes were due to hypoxia induced
by the aggressive development for this particular mouse
model. Focal adhesion, ECM-receptor interaction, and
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insulin pathway in other modules were also discovered
in previous cancer DEGs studies.

E2F factors, including E2F1 to E2F3A, are well-known
transcription activators in cell cycle [65-67], apoptosis,
and proliferation [68]. Although we did not detect sig-
nificant variation in their expression, possibly due to low
expression levels, their target genes were enriched in
DEGs as well as in co-expression modules. Recent stud-
ies have unveiled other functions of E2Fs beyond cell
cycle [69]. E2F1 expression is suggested to correlate with
esophageal squamous carcinoma progression [70]. Its
knockdown reduced invasion potential but not prolifera-
tion [71]. E2Fs have been associated with relapse-free
survival time in Myc-induced tumors [72]. They mediate
tumor development and metastasis by regulating the ex-
pression of genes involved in angiogenesis [73], such as
Vegfa, Cyr61, and Angpt2, and thus remodeling cell sur-
vival and ECM [32]. Besides, among 200 E2F target genes,
there are 34 cell cycle genes and 22 DNA replication
genes. Because the overlap between E2F targets and prolif-
eration genes is only marginal, our enrichment result on
E2F targets reflects more than a mere effect on prolifera-
tion. Although the involvement of E2Fs and their targets
are well reported, here we proposed some new targets
whose functions in breast cancer have not been docu-
mented. More importantly, we studied the expression of
those E2F target in the early stages of tumor progression
to investigate their potentials for cancer early diagnosis.
The important roles that E2Fs play in metastasis warrant
further investigation of their novel target genes that were
discovered in this study. Moreover, the differential expres-
sion of Hells and Dnmtl suggests a crucial role of DNA
methylation in tumor development.

The enrichment analysis of DEGs confirmed the im-
portance of cell cycle process in the PyMT breast cancer
tumorigenesis. Indeed, cell cycle and proliferation genes
are strong predictors of metastasis [1]. Nevertheless, we
also found DEGs enriched in other pathways such as
PPAR signaling throughout tumor progression. PPAR
signaling commonly regulates fatty acids metabolism
and energy homeostasis and is part of the extensive
“pathways in cancer” as defined by KEGG. There is
emerging evidence of new cellular functions such as cell
differentiation and tumorigenesis for PPAR signaling
[74-76]. PPARY, encoded by PPARG, is involved in mul-
tiple types of cancer including colonic tumor and breast
tumor [74-76]. In breast cancer, PPARy promotes ter-
minal differentiation of malignant breast epithelial cells,
and its activation triggered by drugs like antidiabetic thia-
zolidinedione (TZD) is associated with reduced cell
growth and less malignancy [76]. Another down-regulated
pathway in PyMT was drug metabolism-cytochrome
P450. Cytochrome P450 (CYP) genes are responsible for
phase I drug metabolism and are key enzymes
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contributing to tumorigenesis through metabolic activa-
tion of precaricinogenes [77]. As drug metabolizing en-
zymes, they also have crucial impact on anticancer drug
treatment. CYP2EL], a feature gene in this pathway, was re-
ported to inhibit cell migration in breast cancer cell lines
on ectopic expression [78]. Taken together, some key
genes from these non-cell proliferation pathways may also
regulate tumorigenesis, and thus other genes in these
pathways are worth further investigation.

Even though PyMT mouse mimic the human disease, ex-
pression levels of some oncogenes vary between the two
species [79]. The PyMT oncoprotein is not expressed in hu-
man and the lung-specific metastasis nature in PyMT mice
may lead to a not generalized molecular signature of breast
cancer metastasis. Despite all the limitations, PyMT mouse
model is widely appreciated in breast cancer research.

Conclusions

We found remarkable expression similarity among hyper-
plasia, adenoma/MIN, early and late carcinoma samples,
meaning genes altered in the late stages showed trace in
the beginning of tumor progression. It is suggested that
we may use early stage expression profile to help diagnosis
and treatment. In addition, some E2F target genes identi-
fied by differential expression analysis, co-expression net-
work analysis and time-course analysis may promote
tumor progression and are new candidate for breast can-
cer that worth further investigation.

Additional files

Additional file 1: Figure S1. Quality controls. (A) Sample quality
control. Histopathology images with H&E staining showed typical
features of various stages (*40). (B) PCA plot without cell cycle and DNA
replication genes. Compared with Fig. 1a, the similar result indicates that
proliferation genes were not major contributors to PCs. (DOC 216 kb)

Additional file 2: Table S1-S4. DEGs from the four stages. Table S5.
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