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Abstract

Background: Among the different tobacco products that are available on the US market, cigarette smoking is
shown to be the most harmful and the effects of cigarette smoking have been well studied. US epidemiological
studies indicate that non-combustible tobacco products are less harmful than smoking and yet very limited
biological and mechanistic information is available on the effects of these alternative tobacco products. For the first
time, we characterized gene expression profiling in PBMCs from moist snuff consumers (MSC), compared with that
from consumers of cigarettes (SMK) and non-tobacco consumers (NTC).

Results: Microarray analysis identified 100 differentially expressed genes (DEGs) between the SMK and NTC groups
and 46 DEGs between SMK and MSC groups. However, we found no significant differences in gene expression
between MSC and NTC. Both hierarchical clustering and principle component analysis revealed that MSC and NTC
expression profiles were more similar than to SMK. Random forest classification identified a subset of DEGs which
predicted SMK from either NTC or MSC with high accuracy (AUC 0.98).

Conclusions: PMBC gene expression profiles of NTC and MSC are similar to each other, while SMK exhibit distinct
profiles with alterations in immune related pathways. In addition to discovering several biomarkers, these studies

support further understanding of the biological effects of different tobacco products.
Trial registration: ClinicalTrials.gov. Identifier: NCT01923402. Date of Registration: August 14, 2013. Study was

retrospectively registered.
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Background

The long-term health consequences of cigarette smoking
have been well documented [1]. For example, cigarette
smoking is a major risk factor for lung cancer, Chronic
Obstructive Pulmonary Disease (COPD) and Cardiovas-
cular Diseases (CVD), and smokers experience higher
rates of mortality relative to non-smokers for these
disease states [1, 2]. Cigarette smoking is known to exert
local (lung and buccal cavity) and systemic effects, and
hence adversely impacts multiple organ systems.
Smoking-induced oxidative stress and inflammation are
hypothesized as key mechanisms that drive smoking
induced diseases [2]. Smoking has been known to alter
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key signaling pathways and suppress immune responses,
among other physiological processes [2]. At cellular and
molecular levels, chronic smoking induces a wide range
of macromolecular and biochemical changes. For ex-
ample, several investigators have identified differentially
expressed genes in several organ/tissue systems, includ-
ing lung [3], nasal epithelia [4], buccal cells [4] and
peripheral blood mononcuclear cells (PBMCs) [5-7] in
smokers. Genes affected by cigarette smoke include
those involved in cell survival, inflammation, tumor
suppression, and apoptosis and are implicated in
smoking-related diseases [8].

Smokeless Tobacco Products (STPs) are a diverse
category of tobacco products that are consumed world-
wide. Consumption of STPs may be associated with an
increased risk for oral and other cancers as well as

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-017-3565-1&domain=pdf
https://clinicaltrials.gov/ct2/show/NCT01923402
mailto:prasadg@RJRT.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Arimilli et al. BMC Genomics (2017) 18:156

increased risk of mortality from ischemic heart diseases,
depending on the type of product usage [9]. Fermented
moist snuff, or dipping tobacco, is the widely consumed
oral STP in the US [10]. Existing US epidemiological
data suggests moist snuff consumption is generally asso-
ciated with reduced health risks, relative to smoking, al-
though risk for certain CVD mortality is elevated
compared to non-consumers of tobacco [9, 11].

Findings from epidemiological studies among cigarette
smokers and smokeless tobacco users in the US indicate
that relative to never tobacco use, smokeless tobacco use
has been associated with less mortality than cigarette
smoking. In particular, data from the American Cancer
Society’s Cancer Prevention Study II (CPS-II) indicate,
among male smokeless tobacco users compared with
male never users of tobacco, the adjusted risks of mor-
tality (i.e., hazard ratios) were 1.28 (95% CI: 0.71-2.32)
for chronic obstructive pulmonary disease; 2.00 (95% CI:
1.23-3.24) for lung cancer; 1.26 (95% CI: 1.08-1.47) for
coronary heart disease; and 0.90 (95% CI: 0.12-6.71) for
oropharynx cancer [12]. In contrast, data from the CPS-
II indicate, among male cigarette smokers compared
with male never users of tobacco, the adjusted risks of
mortality (i.e., hazard ratios) were 10.8 (95% CI: 8.4-
13.9) for chronic obstructive pulmonary disease; 21.3
(95% CI: 17.7-25.6) for lung cancer; and 1.9 (95% CI:
1.8-2.1) for coronary heart disease [13]. The relative risk
of mortality from oropharynx cancer in this cohort of
male cigarette smokers was estimated to be 27.48 (95%
CI: 9.96-75.83) [14].

Given the overall burden of disease and mortality due
to the consumption of tobacco products, particularly
cigarette smoking, harm reduction efforts have led to
the recognition of a continuum of risk among different
tobacco product categories. Whereas combustible to-
bacco products such as cigarettes are identified as the
most harmful, non-combustible tobacco products are
associated with substantially lower harm, relative to the
non-consumption of any tobacco as the baseline risk in
US [15-17]. Additionally, the available epidemiological
data from Sweden among snus (Swedish-type of oral,
non-combustible tobacco) supports the reduced risk and
harm of non-combustible tobacco relative to cigarettes
[18, 19]. Briefly, snus is manufactured from ground air-
or sun-cured tobacco and other ingredients using a
heat-treatment process that differs from the process of
manufacturing of US-style moist snuff [18].

While the harmful effects of cigarette smoking have
been extensively investigated and are better understood,
the effects of STPs, including moist snuff remain incom-
pletely understood. Previous work from RAI companies
evaluated the long-term effects of consumption of moist
snuff and cigarette smoking and evaluated several bio-
markers of exposure (BioExp) and biomarkers of effect

Page 2 of 13

(BioEff) in cross-sectional studies. In the first study, in
addition to several BioExp, some biomarkers related to
CVD were evaluated [20-22]. A second study, termed
biomarker discovery study, focused on BioExp and
BioEff in a different study cohort [23, 24]. Although the
moist snuff consumer cohort (MSC) in both studies
exhibited higher levels of nicotine biomarkers and to-
bacco specific nitrosamine biomarkers (TSNAs) com-
pared to the smoker cohort (SMK), combustion-related
biomarkers in the MSC were comparable to that found
in the non-tobacco consumer cohort (NTC) in both
studies referenced above. Select BioEff, including those
associated with arachidonic acid metabolism, were ele-
vated in both studies in SMK relative to MSC and NTC
[22, 23]. Further, global metabolomic evaluation of
plasma, saliva and urine collected in the biomarker dis-
covery revealed that SMK exhibit distinct metabolite
profiles compared to MSC and NTC cohorts [24].
Overall, BioEff indicative of vitamins C and E, and pur-
ine metabolism were altered in SMK, possibly due to
increased oxidative stress and inflammatory responses
in that cohort, relative to the MSC and NTC [24].

In our continuing efforts to further characterize the
physiological changes in long-term smokers and moist
snuff consumers, and to identify potential BioEff we have
investigated global gene expression changes in the tobacco
consumers in the biomarker discovery study cohorts (i.e.,
SMK, MSC and NTC). Additionally, these studies offer an
opportunity to evaluate the concept of risk continuum
among tobacco products at a molecular level. PBMCs
collected from the study subjects in the biomarker
study were utilized in this global gene expression pro-
filing study.

Methods

Study design and population

The study design and the cohort characteristics have been
previously described [23]. Briefly, this was a single-blind,
cross-sectional study of healthy volunteers conducted at
the High Point Clinical Trials Center, High Point, NC,
USA. The inclusion criteria for cigarette smoker (SMK)
group were: males aged 35-60 years; exclusive cigarette
smoker of any brand with >6 mg “tar”/cigarette by
Cambridge Filter Method'; consumption of >10 cigarettes/
day for >3 years according to self-report; and expired
carbon monoxide (ECO) level 10-100 ppm. The inclusion
criteria for moist snuff consumer (MSC) group were:
exclusive moist snuff consumer of any brand; consumption
of >2 cans moist snuff per week for >3 years according to
self-report; and ECO level 0-5 ppm. The inclusion criteria
for non-smoker (NTC) group were: individuals reporting
non-use of any tobacco or nicotine-containing products
for =5 years with an ECO level of 0-5 ppm. Subjects
provided written informed consent upon enrollment.
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The study conformed to ICH Good Clinical Practice
guidelines and was conducted according to the principles
of the Declaration of Helsinki. The study was approved by
a central institutional review board (Independent Investi-
gational Review Board, Inc., Plantation, FL, USA), and
registered at ClinicalTrials.gov (Clinical Trials.gov number:
NCTO01923402). Additional details on the subject
demographics are summarized in Additional file 1:
Supplementary Methods.

Blood sampling, PBMC preparation, and cell type analysis
Blood samples were collected from each subject on the
morning of day 1, under fasting conditions and before to-
bacco consumption. Blood was processed within 2 h of
blood collection. Peripheral blood mononuclear cells
(PBMCs) were isolated from whole blood as described pre-
viously [23, 25]. Blood samples were mixed with Isolymph
(CTL Scientific Supply Corp., Deer Park, NY, USA) and
incubated for 45 min, and the leukocyte layer was removed
and centrifuged at 200 x g for 10 min at room
temperature. After removal of the supernatant, the cell
pellet was resuspended in PBS at a ratio of PBS:volume of
top layer leukocytes drawn of 2:5 mL. Five ml of cell sus-
pension was layered onto 3 mL of Isolymph in 15 mL con-
ical tubes and centrifuged at 400 x g for 45 min at room
temperature. PBMC were collected from the middle layer
and washed with running buffer (Miltenyi Biotech, Au-
burn, CA, USA) at 400 x g for 10 min at 4 °C. The isolated
cell pellets were dissolved in RLT plus lysis buffer (Qiagen,
Valencia, CA, USA) with 1% 2-mercaptoethanol for
30 min on ice before freezing for storage.

After isolating PBMCs from blood by density gradient
centrifugation, PBMCs were labeled with different anti-
bodies to measure the distribution of different subsets.
Isolated PBMCs (100 pl) were labeled individually with
CD2-FITC (Clone RPA-2.10, BD Pharmingen), CD14-
FITC (Clone M5E2, BD Pharmingen), CD20-PE (Clone
2H7 BD Pharmingen) and CD56-PE (Clone NCAM16.2,
BD Biosciences) for differentiating T cells, monocytes, B
cells and NK cells, respectively. After labeling the PBMCs,
flow cytometry was performed with BD FACSCalibur (BD
Biosciences, San Jose, CA) and by enumerating 10,000
events (cells) per sample. Flow cytometer data was ana-
lyzed by using 9.3.1 version of flow Jo software (Flow]o,
LLC. Ashland, Oregon). The Tukey—Krammer honest sig-
nificant difference test (a = 0.05) was used to compare the
mean values of the PBMC subtypes among cohorts.

Microarray experiments

The RNA was prepared from PBMC lysates by Seq-
Wright DNA Technology Services (Houston, TX, USA).
Using standard procedures, total RNA was isolated using
the Qiagen RNeasy Plus Mini Kit (Qiagen, Valencia, CA,
USA), RNA concentrations were determined using a
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Nanodrop ND-100 spectrophotometer (Thermo Fisher
Scientific Inc., Wilmington, DE, USA), and RNA quality
was determined by Agilent Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA).

Gene expression profiling was performed using Affyme-
trix Human Genome U133 Plus 2.0 microarray (Affymetrix,
Inc,, Santa Clara, CA, USA). The expression of ~47,000
transcripts were analyzed by using 100 ng of RNA sample
for double-stranded cDNA synthesis, in vitro transcription
of cRNA with biotin labelling and hybridization of cRNA
on the microarray. The assay was performed using the
Affymetrix standard protocol GeneChip® 3° IVT Express
Kit User Manual (P/N 702646 Rev. 1) and the GeneChip®
Expression Analysis Technical Manual With Specific Proto-
cols for Using the GeneChip Hybridization, Wash, and
Stain Kit (P/N 702232 Rev. 3).

Microarray analysis
Microarray data analyses were performed using either Par-
tek’s Genomics Suite Software (Partek, Inc., St. Louis, MO,
USA) or the Bioconductor package in R [26]. Prior to ana-
lysis, the Partek Batch Remover method was used to re-
move batch effects caused by variability in reagents, arrays
and equipment. All data were normalized using the Robust
Multi-array Analysis (RMA) method. Statistical analysis
was performed using pair-wise Analysis of Variance
(ANOVA) and correcting for type-I error using the False
Discovery Rate (FDR) adjustment method [27]. A mini-
mum fold change of greater than 1.25 for up-regulation
and less than —1.25 for down-regulation was established as
the criteria for differential expression. An FDR adjusted p-
value of <0.05 was considered statistically significant. Hier-
archical clustering and Principal Component Analyses
(PCA) were performed using the subset of DEGs identified
by pairwise analyses to examine similarities between sub-
jects based on their gene expression profiles. Hierarchical
clustering was performed using Ward’s minimum variance
method, which aims to find compact spherical clusters by
minimizing the within-cluster variance using an optimal
value of an objective function (error sum of squares).
Random Forest classification models were built using
‘randomForest’ library in R. For each pair of groups
(NTC-SMK, NTC-MSC, and MSC-SMK), the data were
randomly divided into equal number of training and test
subjects. The Random Forest was built using the training
group and the accuracy, sensitivity, and specificity of the
model was determined using the test group. We re-
peated this process 50 times and calculated the average
classification accuracy, sensitivity and specificity for the
50 runs. The average Gini importance measure for the
50 runs is reported to indicate the influence of each gene
in correctly classifying samples in their appropriate
groups. Higher Gini values indicate the relative strength
of a particular gene in classifying the samples.
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Thomson Reuters (New York, NY, USA) performed
pathway analysis on the set genes whose expression
levels were significantly affected between SMK group
and either MSC or NTC group. This analysis utilized
data from the GeneGo Global Network, which contains
information on ~24,000 proteins, 2859 compounds, and
more than one million interactions. An enrichment ana-
lysis was performed, which evaluated the overlap be-
tween the differentially-expressed genes and gene
groupings from canonical pathway maps (biological
mechanism), process networks (metabolic and signaling
processes), toxic pathologies, and disease biomarkers.

Quantitative polymerase chain reaction

To confirm the results obtained by Affymetrix micro-
array, a TagMan-based quantitative polymerase chain
reaction (qPCR) assay was performed on all 120 sub-
jects in the study. Target genes (1 =44) were selected
based on the microarray results as well a selected
number of genes (AHRR, CCL4L1, CCR2, KLRDI,
MAF, S1PR5, SSPN, & TFEC) which are known to be
associated with smoking in the literature. A complete
list of genes and RT-PCR probes are provided in
Additional file 2: Table S1.

The qPCR analysis was performed by SeqWright DNA
Technology Services (Houston, TX, USA). Approxi-
mately 120 ng (n=118) or 40 ng (1 =2) total RNA was
digested with DNase I before cDNA synthesis in 10 pL
reaction volume using SuperScript VILO ¢cDNA Synthe-
sis kit (Life Technologies, Grand Island, NY, USA). Ten
microliters of cDNA reaction mixture from each sample
was mixed with 190 pL of nuclease-free water and
200 pL of 2 x Gene Expression Master Mix (Life Tech-
nologies, Grand Island, NY, USA), and 100 pL of this
mix was loaded into a 384-well The Low Density Array
(TLDA) plate. Each sample was loaded into the plate
four times. The Applied Biosystems 7900HT Fast System
with Software SDS 2.4 (Life Technologies, Grand Island,
NY, USA) was used for the qPCR, using the following
cycling conditions: stage 1, 50 °C for 2 min; stage 2,
94.5 °C for 10 min; stage 3, 97 °C for 30 s, 59.7 °C for
1 min (40 cycles).

The results of the qPCR analysis were reported as
threshold cycle (Ct) values, defined as the fractional
cycle number at which the labeled probe emits fluor-
escence above a fixed threshold. To give a relative
ratio of the abundance of the target gene in each
sample, the Ct of the target genes were normalized to
the Ct of a reference gene (glyceraldehyde 3-
phosphate dehydrogenase) using the SDS 2.4, RQ
Manager 1.2.1 and DataAssist v3.0.1 software pack-
ages (Life Technologies, Grand Island, NY, USA).
Statistical significance was determined by paire-wise
ANOVA and the p-values were adjusted using Benjamini-
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Hochberg false discovery rate to correct type-I error
(false positive).

Results

Study population

The characteristics of the patient population have been
previously reported [23, 24]. A total of 120 generally
healthy subjects completed the study, with 40 subjects in
each group (SMK, MSC, and NTC). The majority of pa-
tients were Caucasian, with a mean age ranging from
45.0 to 47.2 years. The mean years of product use were
25.1 and 20.6 in the SMK and MSC groups, respectively.
During the month prior to the study, the mean number
of cigarettes per day consumed by the SMK group was
21.5, while the MSC group consumed a mean 6.3 cans
per week of moist snuff.

PBMC populations in tobacco consumers

In an effort to understand how consumption of com-
bustible and non-combustible tobacco products impacts
gene expression in PBMCs, we first examined if there
were differences in PBMC levels between the three study
groups. Total PBMCs were significantly (o =0.05,
Tukey-Krammer) higher in SMK, relative to MSC and
NTC cohorts (Fig. 1). The percentage of CD2" cells (T
lymphocytes) in the isolated PBMCs was also signifi-
cantly higher in SMK, relative to MSC and NTC co-
horts. The number of PBMCs or the CD2" cells did not
differ significantly between MSC and NTC. In contrast,
the average number of CD56" cells (NK cells) was sig-
nificantly different across all three groups, with NTC
group showing the highest followed by MSC and then
SMK groups. No differences in monocytes and B
lymphocyte populations were detected across the three
groups (data not shown). These results suggest that
smokers and moist snuff consumers exhibit differences
in specific leukocyte subpopulations compared to non-
tobacco consumers.

Gene expression profiling

PBMC gene expression levels for 120 subjects were
examined using the Affymetrix HG U133 Plus 2 array,
which contains probes for over 47,000 human tran-
scripts. Pair-wise statistical analyses were performed
between SMK, MSC and NTC groups. Surprisingly, we
found no significant (ANOVA, FDR adjusted p-value
<0.05) differences in gene expression levels between
NTC and MSC groups (Fig. 2). In contrast, the expres-
sion levels of 100 genes were significantly (ANOVA,
FDR adjusted p-value <0.05) affected by more than
+1.25 fold between SMK and NTC groups. Notably, 85
out of the 100 genes were downregulated in SMK (Fig. 2;
Additional file 3: Table S2). On the other hand, only 46
genes were significantly changed by more than +1.25
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subjects/cohort) are shown on the top panel. % CD2 positive cells from SMK, MSC and NTC cohorts are shown in the middle panel. % CD56
positive cells from SMK, MSC and NTC cohorts are shown in the bottom panel. The Tukey-Krammer honest significant difference test (a = 0.05)
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fold between MSC and SMK groups and the majority of
the genes (31) were up-regulated in SMK (Fig. 2;
Additional file 4: Table S3). Importantly, 20 genes were
similarly affected (8 upregulated and 12 downregulated)
in both SMK-MSC and SMK-NTC comparisons (Fig. 2).

In general, the magnitudes of the gene expression
changes in both comparisons were very small; only five
genes were differentially expressed by more than 2-fold.
For instance, the expression of IGHA1l, GPR15 and
LRRN3 was changed by +2.14, +2.13 and +2.07 fold
between SMK and MSC, respectively. In addition, the
expression of CCL4 and LRRN3 was changed by -2.46
and +2.34 fold between SMK and NTC, respectively.
These results are expected since all of the individuals in
this study were generally healthy.

Since the magnitudes of the expression changes were
small, a total of 44 DEGs were selected for validation by
quantitative RT-PCR in the same 120 subjects. Among

the 20 DEGs which were similarly affected in both SMK-
MSC and SMK-NTC comparisons, only seven DEGs were
confirmed in SMK-MSC and 12 DEGs in SMK-NTC com-
parisons (Table 1). Generally, higher magnitude changes
were more likely to be confirmed by qRT-PCR. For
instance, all four DEGs with >2.0 fold change were vali-
dated by qRT-PCR, whereas only 23% (3 out of 13) and
45% (5 out of 11) DEGs with <1.5 fold change were
validated by qRT-PCR in SMK-MSC and SMK-NTC
comparisons, respectively (Table 1).

Functional analysis of expression data

To gain insights into the molecular and cellular pathways
which may be involved in smoking related outcomes, we
performed functional analysis on the DEGs to identify
enriched pathways, process networks and diseases avail-
able in the MetaCore platform. We found that GDNF sig-
naling (p<3.91E-03) and chemotaxis (p<3.53E-04)
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SMK-MSC SMK-NTC
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Differential MSCvs.NTC | SMKvs. MSC | SMK vs. NTC
Expression /
Up 0 31 15
Down 0 15 85 SMK-MSC ~ SMK-NTC
down down

Total 0 46 100

Fig. 2 Differentially expressed genes between SMK and either MSC or NTC samples. The number of genes which were significantly (g-value < 0.05)
up-regulated or down-regulated in pairwise comparisons are shown for each pairwise comparison. The Venn diagrams show the number
of overlapping up-regulated or down-regulated genes for SMK-MSC and SMK-NTC pairwise comparisons

73
(83%)

categories were significantly enriched in the SMK-NTC
differentially expressed genes (Table 2). In addition, SMK-
NTC differentially expressed genes were highly enriched
for pulmonary diseases such as obstructive lung disease
(p <2.10E-09), COPD (p <3.68E-08) and asprin induced
asthma (p < 3.70E-08) as well as vascular skin disease (p <
1.13E-08) and hypersensitivity (p < 6.14E-09). Importantly,
NK cell related inflammation networks (p < 1.53E-05) and
CD8+ Tcl cell related to COPD (6.56E-04) pathways were
enriched for SMK-NTC differentially expressed genes. In
contrast, no disease categories and very few pathways and
process networks were found to be significantly enriched
for SMK-MSC differentially expressed genes (Additional
file 5: Table S4).

Class prediction

To examine if PBMC gene expression profiling could be
used to classify individuals into SMK, MSC or NTC
groups, we utilized several different approaches. First,
hierarchical clustering was performed using all +1.25
fold differentially expressed genes (Additional file 6:
Figure S1). The results showed that individuals in the
three groups were interspersed and no clear gene ex-
pression pattern could be deduced by visual inspection.
This is not surprising since many of the low magnitude
changes by pairwise analysis could not be validated by
qRT-PCR assays (see above). Therefore, we performed
hierarchical clustering using the union of all +1.50 fold
differentially expressed genes, which vyielded only 25
unique genes (Fig. 3). At least 29 SMK subjects were
clustered together and showed a distinct pattern of up-

regulated genes. However, many of the remaining SMK
subjects were interspersed with NTC and MSC subjects.
In addition, NTC and MSC subjects were intermingled
and did not show a clear clustering pattern.

Next, we applied Principal Component Analysis
(PCA), which is a robust mathematical method for redu-
cing the dimensionality of the data, to visualize the rela-
tionships between subjects based on the variation of the
25 differentially expressed genes across all subjects.
When subjects were projected using the first three prin-
cipal components, which accounted for 52.6% of the
total variation, we found that the centroids of the MSC
and NTC samples were closer together than to SMK
samples respectively (Fig. 3b). These results were con-
sistent with the hierarchical clustering results and re-
vealed a number of SMK subjects whose gene
expression profiles were similar to NTC and MSC
subjects.

Lastly, to perform more rigorous classification analysis,
we utilized the Random Forest (RF) method, which is a
multivariate classification method based on randomized
decision trees. For each pairwise comparison, the RF
model was trained on 50% of the subjects in each group
and then tested on the remaining subjects. This process
was repeated 50 times and the average sensitivity and
specificity was calculated. The overall performance of
the RF classifier for each pairwise comparison is re-
ported as the Area Under the Curve (AUC) from the
Receiver Operator Characteristic (ROC) curve, which
displays sensitivity (true positive values) as a function of
false positive rate (1-specificity) at various thresholds
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Table 1 gRT-PCR validation of 20 DEGs that were similarly affected in SMK-MSC and SMK-NTC pairwise comparisons

SMK vs. MSC SMK vs. NTC
Microarray gRT-PCR Microarray gRT-PCR
Gene Symbol  Gene Name FC P-value (adj)¥ FC P-value (adj)¥ FC P-value (adj)+ FC P-value (adj.)f
Upregulated
GPR15 G protein-coupled receptor 15 213 0 475 0 200 0 427 0
LRRN3 Leucine rich repeat neuronal 3 207 0 2.18* 0.0105 234 0 2.16* 0.0069
SASH1 SAM and SH3 domain containing 1 193 0 174 0 197 0 184 0
ADAM-like decysin 1 150  0.002 1117 0837 145  0.007 1.07° 0.8469
ADAMDECT
PID1 Phosphotyrosine interaction 137 0.013 1.27° 0.0037 131 0.004 1.84° 0
domain containing 1
CLECT10A C-type lectin domain family 135 0.013 1.29% 0.0201 1.31 0.018 1.26° 0.0041
10, member A
TMEM45B  Transmembrane protein 458 131 0047 1.1 0.7332 153 0.004 141 0.0526
FUCA1 Fucosidase, a-L-1, tissue 129 0022 1.14 0.265 1.29 001 1.2 0.0805
Downregulated
PTGDS Prostaglandin D2 synthase -1.54 0.007 -2.18 0.0006 -1.86 0 -223 0
21 kDa (brain)
PRSS23 Serine protease 23 -154 0.046 -133 0.1248 -1.98 0 -1.78 0.0152
KLRB1 Killer cell lectinlike receptor -150 0 -1.79 0.1368 -1.47 0 -1.69 0.0041
subfamily B, member 1
PTGDR Prostaglandin D2 receptor (DP) -1.38 0.04 -141 0265 -155 0 -1.56 0.0391
FYN FYN oncogene related to SRC, FGR, —-1.38 0.045 -1.29" 05577 -1.34 0.022 -1.18% 0.029
YES
NKG7 Natural killer cell group 7 sequence -1.36 0.046 -1.51 0.0056 -157 0 -1.78 0.0001
GZMA Granzyme A (granzyme 1, cytotoxic -1.33 0022 -1.30 05038 -146 0 -1.50 0.1317
T lymphocyte associated serine
esterase 3)
TRD T cell receptor & locus -133 0047 - - -157 0 - -
SYTL3 Synaptotagmin-like 3 -132 0047 -1.19 0.1392 -1.28 0044 -1.13  0.1654
SEPT2 Septin 2 -130 0.034 -1.08 0837 -126 0033 =102 09315
CACNA2D2  Calcium channel, voltage-dependent,  —128 0.033 -122 0.6041 -148 0 -2.12 0.0423
a2/& subunit
GZMM Granzyme M (lymphocyte metase 1) -1.26 0025 -1.10 05993 -136 0 -1.24  0.0805

Five out of eight up-regulated genes in both SMK-MSC and SMK-NTC comparisons were confirmed by qRT-PCR. Also, seven out of 12 down-regulated genes were
confirmed in SMK-NTC. In contrast, only two changes in SMK-MSC were confirmed by qRT-PCR analysis. Bolded values denote microarray changes that were
confirmed by gRT-PCR. *denotes multiple qRT-PCR probes were tested but only the best result, with respect to fold change or p-value, is reported here. ¥,
p-values were adjusted by FDR method for microarray experiments and by Benjamini-Hochberg method for qRT-PCR

(Figs. 4 and 5). The highest AUC for both SMK-MSC
and SMK-NTC comparisons was 0.98 (Figs. 4a and 5a),
which was achieved by using the top 15 and 20 DEGs,
respectively (Figs. 4b and 5b).

As a by-product of training the RF classifier, each gene
(variable) can be scored with respect to its influence on
splitting a sample into different classes, referred to as
the “Gini Importance” value. Using this approach, the
influence of each gene on the class prediction can be
determined, thereby allowing us to identify the most
impactful biomarker genes that distinguish between
SMK, MSC, and NTC subjects. GPR15 was the best
gene predictor of SMK for both MSC and NTC

comparison (Gini values of 9.21 and 7.25, respectively).
In addition LRRN3 was the second highest predictor,
but with substantially lower Gini values in both compar-
isons (Gini values 3.86 and 2.74). Significantly, all 15 of
the top predictor genes in SMK-MSC were also top
ranked for predicting SMK from NTC. These results
indicate that there is a distinct set of biomarker genes
that distinguish SMK from NTC and MSC groups.

Discussion

In this study, we demonstrated that cigarette smoking
results in significant changes in the expression of a small
number of genes in PBMCs compared to either moist
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Table 2 Top pathway maps, process networks and diseases for
DEGs in SMK-NTC

Top scoring key ontology terms p-value
Key Pathway Maps
Role of CD8+ Tc1 cells in COPD 6.56E-04
Development_GDNF signaling 391E-03
Generation of cytotoxic CD8+ T cells in COPD 4.24E-03
Development_Role of CDK5 in neuronal development 7.75E-03
Immune resonse_HMGB1/TLR signaling pathway 867E-03
Key Process Networks
Inflammation_NK cell cytotoxicity 1.53E-05
Chemotaxis 3.53E-04
Development_Blood vessel morphogenesis 4.85E-03
Inflammation_Protein C signaling 6.66E-03
Reproduction_Feeding and Neurohormone signaling 1.54E-02
Key Disease
Lung diseases, Obstructive 2.10E-09
Hypersensitivity 6.14E-09
Skin Disease, Vascular 1.13E-08
Pulmonary Diseases, Chronic Obstructive 3.68E-08
Asthma, Asprin-Inudced 3.70E-08

P-values (unadjusted) were calculated using the hypergeometric test. Only the
top five categories are reported for each map

snuff consumers or people who do not consume tobacco.
Notably, this is the first study in which gene expression
profiling is conducted in moist snuff consumers. As dis-
cussed in the Background section, epidemiological data
indicate that US and European smokeless products (snus,
in particular) have been associated with reduced risk com-
pared to cigarettes. Consistent with our published work
[20, 22-24], which showed that MSC are exposed to
reduced levels of combustion-related biomarkers of
exposure, MSC exhibited similar gene expression profiles
as observed in NTC, but different profiles from SMK.
Although the gene expression data are derived from a
cross-sectional study, they could support the epide-
miological findings in consumers of different classes of
tobacco products.

Through Random Forest classification approach we
were able to identify a group of genes whose expression
levels in PBMCs could accurately (AUC of 0.98) predict
SMK from either MSC or NTC groups (Figs. 4 and 5).
The top predictor genes for SMK included GPRI15,
LRRN3, PRSS23, SASH1 and COCH among others.
Separately, a 11 gene signature derived from whole
blood, consisting of LRRN3, SASH1, PALLD, RGL1,
TNFRSF17, CDKN1C, 1G], RRM2, ID3, SERPING], and
FUCAL1 genes was reported to distinguish current smokers
from nonsmokers and former smokers [28]. Interestingly,
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several genes (LRRN3, SASHI1 and IGJ) were common to
the discriminating set of genes for SMK-NTC comparison
(Fig. 5) and the published signature [28].

GPR15 gene encodes a G protein coupled receptor
which acts as a chemokine receptor. Consistent with our
findings, several studies have shown that GPR15 expres-
sion levels and methylation status is associated with
smoking and chronic inflammatory pathologies [29-32].
Similarly, the expression and methylation levels of
LRRN3 (Leucine rich repeat protein 3) have been associ-
ated with smoking in various studies [5, 32, 33]. SASH 1
(SAM and SH3 domain containing 1) expression levels
have also been associated with smoking and smoking-
related atherosclerosis [28, 34]. SASH1 is believed to be
a tumor suppressor in breast and colon cancer and has
been shown to inhibit cell migration and enhance cell
adhesion of epithelial cells [35]. An increased expression
of SASHI in our study may reflect a host immune
response to counteract smoking. The PRSS23 (protease,
serine 23) belongs to trypsin family of serine proteases.
The PRSS23 gene methylation status is correlated with
smoking, but its expression does not appear to be differ-
ent in the whole blood cells from smokers [36]. Our
data, however, show that there is a downregulation of
PRSS23 in PBMCs of SMK when compared to NTC and
MSC (micro array data), and in SMK vs NTC (RT-PCR)
(Table 1). PRSS23 is suggested to regulate cellular prolif-
eration and cancer [37]. In contrast, there is no evidence
in the literature which associates COCH (cochlin) with
smoking. Thus our studies have identified several estab-
lished gene expression markers for smoking and have
revealed additional marker genes which may provide
insights into future smoking research.

Cigarette smoke exposure appears to affect pathways
involved in immune response, chemotaxis, as well as
inflammatory disorders and lung diseases. Genes in-
volved in stress response or metabolism known to be
associated with smoke exposure were not identified in
the functional analysis in either the SMK versus MSC
comparison or the SMK versus NTC comparison. This
suggests that the effect of different categories of tobacco
products on molecular pathways could be tissue specific
and product category specific. For instance, in airway
epithelium and the nasal and oral mucosa, cigarette
smoke has been shown to affect pathways involved in
inflammation, cell adhesion, tumor suppression, oxi-
dative stress, detoxification, and carcinogen metabolism
[3, 4, 38—42]. Studies of the effect of cigarette smoke on
monocytes support the results of the present study, with
genes related to inflammation, immune response, cell
survival, and protein transport affected by cigarette
smoke or its constituents [43—-45].

Our previous work showed that combustible tobacco
product preparations (TPPs) cause DNA damage and
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and either MSC or NTC subjects. a Hierarchical clustering and heatmap representation of expression values for genes (rows) across 120 subjects
(columns), where low expression is denoted by green and high expression by red. The expression of each gene was normalized across all
samples. Subjects were categorized into SMK (blue), MSC (red), and NTC (green). b Principal Component Analysis. Subjects were projected
according to the first three principal components, which accounted for 35.7% (PC1), 10.0% (PC2) and 6.9% (PC3) of the gene expression variance.
Subjects were categorized into SMK (blue squares), MSC (red spheres), and NTC (green triangles). The centroid of each group is depicted by a larger
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are more cytotoxic than non-combustible TPPs [46,
47]. Previous work from us [48] and other researchers
[49] has shown that exposure to cigarette smoke con-
stituent phases suppresses several immune responses,
such as cytokine secretions in response to stimulation
to Toll-like Receptors with agonists, and impairs cyto-
Iytic functions of the effector cells in PBMCs. Such
compromised immune responses, particularly of NK
cells, are hypothesized to contribute to increased sus-
ceptibility of smokers to microbial infections and
cancer [49]. Further, the levels of perforin, which is
an important cytolytic protein, are also suppressed in

PBMCs exposed to the constituent phases of cigarette
smoke [48]. Consistently, the gene expression results
show that PRF1, which codes for perforin, is down-
regulated in SMK relative to MSC and NTC; interest-
ingly no significant differences were detected between
NTC and MSC (Table 3).

Our qRT-PCR experiments confirmed some well-
known complexities associated with global profiling
methods in general, and microarray approaches in this
particular case. First, not all probes on the microarray
may be appropriate for detecting the transcript levels for
a given gene. For instance, microarray analysis did
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Fig. 4 SMK-MSC Random Forest Classification. a Average AUC for
different number of genes are shown in this figure. The highest AUC
of 0.98 is obtained using 15 genes. b Average Gini importance of
genes across 50 runs of the model indicates the influence of the
genes in correct classification (distinction) of SMK and MSC samples.

¢ ROC curve associated with the model achieving highest AUC

not detect a change in aryl hydrocarbon receptor re-
pressor (AHRR) gene between SMK and NTC. AHRR,
a well-established repressor and regulator of aryl hydro-
carbon receptor (AHR) [50], is widely reported to be
hypermethylated in smokers [51]. In contrast to micro-
array results, our qRT-PCR analysis showed that AHRR
transcript was elevated in smokers and was expressed at
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Fig. 5 SMK-NTC Random Forest Classification. a Average AUC for
different number of genes are shown in this figure. The highest AUC
of 0.98 is obtained using 20 genes. b Average Gini importance of
genes across 50 runs of the model indicates the influence of the
genes in correct classification (distinction) of SMK and NTC samples.
¢ ROC curve associated with the model achieving the highest AUC

.

comparable levels in both SMK-NTC and SMK-MSC
comparisons (Table 3). Our finding that smokers exhibit
higher levels of AHRR in PBMCs differs from that of other
investigators [36] who did not find differences in AHRR
transcript levels between whole blood of smokers and
non-smokers, perhaps reflecting on the cell types that
comprised the starting materials for gene expression
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Table 3 gRT-PCR validation of expression changes that were unique to either SMK-NTC or SMK-MSC comparison

Gene Symbol Gene Name

SMK vs. MSC SMK vs. NTC
FC P-value (adj)+ FC P-value (adj)¥ FC

MSC vs. NTC
P-value (adj.)+

Unique to SMK vs. NTC

ADRB2 adrenoceptor beta 2 -1.44 0.0037 -1.61 0.0003 =111 05527
B3GNT7 UDP-GIcNAcbetaGal beta-1,3-N-acetylglucosaminyltransferase 7 —1.13  0.6507 -1.95 0.0358 -1.73 02651
CcCL4 chemokine (C-C motif) ligand 4 267 04409 —743 0.0815 -19.84 0254
CCR2? C-C motif chemokine receptor 2 -1.13 0648 115 04312 1.09 0.741
CD160 CD160 molecule -1.16 04317 -1.64 0.0008 -142 00572
CST7 cystatin F -1.52 0.0045 -1.71 0 =113 05229
DTHD1 death domain containing 1 -1.55 0.0221 -1.57 0.0312 -101 09647
ENPP5 ectonucleotide pyrophosphatase/phosphodiesterase 5 -1.03 0945 -141 03163 -137 04482
GPR56 G protein-coupled receptor 56 -1.73 0.0079 -1.78 0.0002 -1.02 08987
GZMH granzyme H -1.61 0.0234 -1.96 0.0039 =122 05751
HHEX hematopoietically expressed homeobox 100  0.9664 1.09 05279 1.08 0.7028
KLRD1? killer cell lectin like receptor D1 -1.36 0.0201 -1.71 0.0001 -126 02944
KLRF1 killer cell lectin like receptor F1 1.07 09335 -134 05279 -143 05229
LPAR6 lysophosphatidic acid receptor 6 -1.49 0.0215 -1.07 0759 139 02651
MAF® v-maf avian musculoaponeurotic fibrosarcoma 1.70 0.0215 -130 0.0566 -173 01712
oncogene homolog
PRF1 perforin 1 -1.40 0.0091 -1.67 0.0002 -1.19 04482
S1PR5? sphingosine-1-phosphate receptor 5 165 00676 -1.82 0.0391 -3.00 0.0284
SH2D1B SH2 domain containing 1B -1.16 0648 -1.70 0.0312 -146 0254
SOCS6 suppressor of cytokine signaling 6 1.05 08367 112 05279 1.06 0.741
TBX21 T-box 21 =127 0.079% -1.52 0.0009 =120 02997
TFEC? transcription factor EC 134 05993 -1.09 0.8409 -146 05229
TGFBR3 transforming growth factor beta receptor Il [ -1.38 0.0079 -1.60 0.0001 -1.16 04726
Unique to SMK vs. MSC

ADM adrenomedullin 1.66 0.0215 -1.19 04309 -1.98 0.0393
SSPN? sarcospan -1.71 0648 -1.30 0.1379 -128 05164
AHRR? aryl-hydrocarbon receptor repressor 3.54 0.0037 3.11  0.0041 -1.14 08324

The expression of AHRR gene was also examined since it has previously been linked to smoking. Bolded values denote microarray changes that were confirmed
by qRT-PCR. *denotes multiple gRT-PCR probes were tested. Only the best result, with respect to fold change or p-value, is reported here. %, p-values were

adjusted by Benjamini-Hochberg method for qRT-PCR

analysis. Second, microarray analysis did not reveal any
statistically significant differences between MSC and NTC
groups after FDR correction. However, qRT-PCR ana-
lysis revealed at least two genes (ADM and S1PR)
which were significantly changed between SMK and
MSC. It is generally recognized that FDR adjustment
methods, while necessary to correct for multiple hy-
pothesis testing error, can be too stringent and result
in false negatives [27, 52-54].

Several previous studies (reviewed in [51]) have shown
that AHRR hypomethylation occurs in smokers, poten-
tially activating aryl hydrocarbon receptor signaling
pathway. Consistently, we have found that in buccal cells
collected from the same cohort of SMK, several AHRR

gene loci were prominently hypomethylated. AHRR
methylation is not altered in MSC relative to NTC
(manuscript in preparation).

Conclusions

In summary, in this first genome-wide expression ana-
lysis of moist snuff consumers, we found MSC expres-
sion profiles are very similar to NTC, while SMK
exhibit a distinct gene expression profile. Specifically,
previously described markers associated with smokers,
such as AHRR, GPR15, LRNN3, COCH and PRSS23
may serve as biomarkers to distinguish different to-
bacco product consumers.
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Endnotes

'Under the Family Smoking Prevention and Tobacco
Control Act, FDA has banned the terms “Full Flavor
Lights” or “Full Flavor” as a cigarette descriptor as of
June 22, 2010. However, at the time of this study, these
terms were used (based on tar content/cigarette), thus
the “tar” term is included in this manuscript as it accur-
ately reflects the products evaluated prior to such date.
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Additional file 4: Table S3. SMK-MSC 1.25FC. (XLSX 16 kb)
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Additional file 6: Figure S1. Clustering of 120 subjects based on blood
expression profiles which were significantly different by £1.25 fold
between SMK and either MSC or NTC subjects. (A) Hierarchical clustering
and heatmap representation of expression values for genes (rows) across
120 subjects (columns), where low expression is denoted by green and
high expression by red. The expression of each gene was normalized
across all samples. Subjects were categorized into SMK (blue), MSC (red),
and NTC (green). (B) Principal Component Analysis. Subjects were
projected according to the first three principal components. For
additional details, see the caption for Fig. 3. (TIF 4567 kb)
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