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Small RNA profiling and degradome @
analysis reveal regulation of microRNA in

peanut embryogenesis and early pod
development
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Abstract

Background: As a typical geocarpic plant, peanut embryogenesis and pod development are complex processes
involving many gene regulatory pathways and controlled by appropriate hormone level. MicroRNAs (miRNAs) are
small non-coding RNAs that play indispensable roles in post-transcriptional gene regulation. Recently, identification
and characterization of peanut miRNAs has been described. However, whether miRNAs participate in the regulation
of peanut embryogenesis and pod development has yet to be explored.

Results: In this study, small RNA and degradome libraries from peanut early pod of different developmental stages
were constructed and sequenced. A total of 70 known and 24 novel miRNA families were discovered. Among
them, 16 miRNA families were legume-specific and 12 families were peanut-specific. 30 known and 10 novel miRNA
families were differentially expressed during pod development. In addition, 115 target genes were identified for 47
miRNA families by degradome sequencing. Several new targets that might be specific to peanut were found and
further validated by RNA ligase-mediated rapid amplification of 5" cDNA ends (RLM 5-RACE). Furthermore, we
performed profiling analysis of intact and total transcripts of several target genes, demonstrating that SPL (miR156/
157), NAC (miR164), PPRP (miR167 and miR1088), AP2 (miR172) and GRF (miR396) are actively modulated during
early pod development, respectively.

Conclusions: Large numbers of miRNAs and their related target genes were identified through deep sequencing.

These findings provided new information on miRNA-mediated regulatory pathways in peanut pod, which will
contribute to the comprehensive understanding of the molecular mechanisms that governing peanut embryo
and early pod development.
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Background
Peanut (Arachis hypogaea L.) is an important crop
grown world widely for both oil and protein production.
The development of peanut embryo is inhibited by light
above ground, and the development of embryo and pod
resumes after the elongated ovaries are buried into soil
[1-3]. This special developmental process of peanut fruit
is a complex, genetically programmed process involving
many gene regulatory networks at the transcriptional
and post-transcriptional levels. Dissecting the molecular
mechanism governing peanut embryo and early pod de-
velopment is helpful to broaden our knowledge on plant
embryogenesis. Previous studies demonstrated that pea-
nut embryogenesis and pod development were affected
by different wavelengths of light. For example, continu-
ous irradiation with white, red or blue light inhibited
embryogenesis and pod development whereas darkness
or far red light promoted this process [4—7]. Gynophore
elongation responded to light in the opposite manner,
which was stimulated when grown in white, red or blue
and inhibited when grown in darkness or far red light
[6]. Besides, plant endogenous hormones such as auxin
(IAA), gibberellic acid (GA), ethylene, abscisic acid
(ABA) and brassinolides (BRs) are well known to play
critical roles in embryo and fruit development [8, 9]. In
peanut, it was reported that either the content or the
distribution patterns of hormones significantly changed
during peanut early pod development [10-12]. It has
been shown that low concentration of IAA promotes
peanut pod development, whereas high level inhibits
peanut gynophore elongation [13, 14]. GAs can also pro-
mote the growth of gynophores in peanut. However,
how light regulates hormone biosynthesis and signaling
to initiate this interesting biological process is unknown.
MicroRNAs (miRNAs) are a class of small non-coding
RNAs with approximately 20-22 nt in length. MiRNAs
regulate gene expression at the post-transcriptional level
in almost all eukaryotes [15]. In general, miRNAs specif-
ically target messenger RNAs (mRNAs) to inhibit their
translation or induce their cleavage through partially or
fully sequence complementary with their targets [16, 17].
The past decade has witnessed an explosion in our know-
ledge on miRNA regulation in various biological processes
in plants. MiR156 and miR172 coordinately regulate the
timing of juvenile-to-adult transition during shoot devel-
opment [18]. Overexpression of miR167 in wild tomato
causes a defect in flower development and female sterility
through suppressing Auxin Response Factor 6 (ARF6) and
Auxin Response Factor 8 (ARFS8) [19]. Both miR156 and
miR397 are involved in the regulation of seed develop-
ment by controlling grain size and shape in rice [20, 21].
Increasing evidence indicated that miRNA and hormone
signaling interact to regulate those physiological processes.
For examples, GA was shown to modulate miR159 levels
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during Arabidopsis seed germination [22]. However, our
knowledge on miRNA functions controlling the species-
specific biological processes in plants is quite limited.

Our previous report has identified miRNAs from pea-
nut root, leaf and stem using deep sequencing approach
[23]. However, there is no report on miRNA regulation
in peanut embryogenesis and early pod development
and no functional miRNA-mRNA modules have been
identified from peanut pod. To gain a better understand-
ing of the function of miRNA in peanut embryogenesis
and early pod development, the current study character-
ized the expression profiles of miRNAs in gynophores of
three developmental stages during which the repressed
embryo and ovary reactivate for further development.
Additionally, the degradome library sequencing for glo-
bal identification of miRNA targets in peanut was per-
formed and new target genes were discovered., many of
which involved in plant hormone signal transduction
processes. These findings hinted at the important roles
of miRNAs in regulating peanut embryogenesis and
early pod development and constructed an outline for
the interaction between light signal, hormone and miR-
NAs during peanut embryo and early pod development.

Results

Overview of small RNA profiles in peanut gynophores

To assess the regulatory roles of miRNAs in peanut em-
bryogenesis and early pod development, we profiled SRNA
accumulation in S1, S2 and S3 gynophores (Fig. 3a). More
than 12 million total reads and 6 million unique reads
(stand for read species) were produced from each sample.
About 78% of the total reads and 81% of the unique reads
were perfectly mapped to peanut genome, and the rates of
genomic match were similar across these three stages
(Additional file 1: Table S1). The correlation coefficients
were more than 0.97 between two biological replicates
(Additional file 2: Figure S1). As shown in Fig. 1, 24 nt
class of sSRNAs showed the highest abundance (~60% of
the total and 78% of the unique reads). The secondly
abundant class of total reads was 21 nt sRNAs (~19%).
This result was consistent with that found in rice [24],
tomato [25], soybean [26] and a previous study in peanut
[23], but different from that of wheat and grapevine
[27, 28]. The proportion of unique reads has no obvious
difference among three stages. Interestingly, the propor-
tion of 21 nt total reads decreased slightly and the propor-
tion of 24 nt total reads increased at S3 compared with S1
and S2 (Fig. 1). The size distribution of 20, 22 and 23 nt
total reads has no obvious difference among three stages.
After removal of rRNA, tRNA, snRNA, snoRNA, repeats
sequence and exon sequence (for statistics on read counts,
see Additional file 1: Table S1), the remaining unique
reads that present in two biological replicates were used
to identify miRNAs subsequently.
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Fig. 1 Length distribution of small RNA reads in S1, S2 and S3 gynophores. a The distribution of unique small RNAs that present in two biological
replicates. b The distribution of total small RNAs that present in two biological replicates

Identification of known and novel miRNAs in peanut
gynophore

To identify known miRNAs in peanut, all the unanno-
tated unique reads that perfectly mapped to peanut gen-
ome were aligned to plant miRNAs in miRBase (Release
21.0, June 2014). A total of 104 known miRNAs belong-
ing to 70 families were identified (Table 1). Among
them, 39 families were known and well conserved that
present in two or more plant species. In addition, 19
families were also known but less conserved that present
only in one plant species including miR894, miR1088,
miR1520, miR2199 and others. Furthermore, 12 peanut-
specific miRNA families loaded in miRBase were also
detected in our study, for example, miR3508, miR3509,
miR3511, and miR3512. After identification of known
miRNAs, the remaining unique reads were used to iden-
tify novel miRNAs by predicting the hairpin structures
of their precursor sequences. 27 novel miRNAs belong-
ing to 24 families were identified in this study and were
named as miRnl to miR24 (Additional file 3: Table S3).
The corresponding miRNA* sequences of 15 novel miR-
NAs were detected, further supporting the existence of

these miRNAs. Most novel miRNAs could only be pro-
duced from one locus, except miRnl0 and miRn23,
which were produced from three and four loci, respect-
ively (Additional file 3: Table S3). Stem-loop RT-PCR
was performed to validate the predicted new miRNAs
and 15 predicted miRNAs were found to be expressed in
peanut gynophore (Additional file 4: Figure S2).

Differential expression of miRNAs during peanut pod
development

After normalization, we analyzed the expression pattern
of all miRNAs identified in this study (for detailed statistics
analysis of all miRNAs, see Additional file 5: Table S2). In
total, 40 miRNA families exhibited differential accumula-
tion during early pod development. Of them, 15 known
miRNA families and four novel miRNA families were
differentially expressed between S1 and S2, whereas 16
known miRNA families and seven novel miRNA families
showed different expression between S2 and S3 (Fig. 2). 22
known miRNA families and nine novel miRNA families
showed differential accumulation between stages S1 and
S3 (Fig. 2). To validate the sequencing data, qRT-PCR was
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Well-conserved

miR156

miR157

miR159

miR160

miR162

miR164

miR165

miR166

miR167

miR168

miR169a

miR169b

miR171

miR172

miR319
miR390

miR391
miR393

miR394

Mature sequence
UGACAGAAGAGAGUGAGCAC
UUGACAGAAGAGAGUGAGCAC
UGAUAGAAGAGAGUGAGCACA

UUGACAGAAGAGAGUGAGCACA

UUGACAGAAGAUAGAGAGCAC
UGACAGAAGAUAGAGAGCACA
UUGACAGAAGAUAGAGAGCA

UUUGGAUUGAAGGGAGCUCUA

UUUGGAUUGAAGGGAGCUCU
UGCCUGGCUCCCUGUAUGCCA

UCGAUAAACCUCUGCAUCCAG

UGGAGAAGCAGGGCACGUGCA
UGGAGAAGCAGGGCACGUGC

UGGAGAAGCAGGGCACGUGCAA
UGGAGAAGCAGGGCACGUGCAAU

UCGGACCAGGCUUCAUUCCUC
UCGGACCAGGCUUCAUUCC
UCGGACCAGGCUUCAUUCCCC
UCUCGGACCAGGCUUCAUUCC
UCGGACCAGGCUUCAUUCCC
UCGGACCAGGCUUCAUUCC
UGAAGCUGCCAGCAUGAUCUU
UGAAGCUGCCAGCAUGAUCU

UGAAGCUGCCAGCAUGAUCUUA

UCGCUUGGUGCAGGUCGGGAA
UCGCUUGGUGCAGGUCGGGA

CGCUUGGUGCAGGUCGGGAAC
AAGCCAAGGAUGACUUGCCGG
GGCAGGUCAUCUUGUGGCUAU

GGCAGGUCAUCUUGUGGCUAUA
GGAUAUUGGUGCGGUUCAAUG
UAUUGGUGCGGUUCAAUGAGA

AGAAUCUUGAUGAUGCUGCAU
AGAAUCUUGAUGAUGCUGCA

UUGGACUGAAGGGAGCUCCCU
AAGCUCAGGAGGGAUAGCGCC

UGUCGCAGGAGAAAUAGCACC
UCCAAAGGGAUCGCAUUGAUC

UUGGCAUUCUGUCCACCUCC

Length(nt)
20
21
21
22
21
22
20
21
20
21

21

21
20
22
23
21
19
21
21
20
19
21
20
22

20
21
21
21
22
21
21
21
20
21
21

21
21

20

Star(*)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

No

Yes

Yes

References

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al,, 2010 [24];
Chi et al, 2011 [35].

Zhao et al,, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Conserved in other plants

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.
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miR396

miR397

miR398

miR399

miR403
miR408

miR414
miR477

miR482a
miR482b
miR530
miR845
miR1507

miR1509

miR1511

miR1515

miR2111

miR2118

miR4376

miR4414

miR5225

Less-conserved

miR829
miR894

miR1088

miR1520

miR2084
miR2199
miR2628

UUCCACAGCUUUCUUGAACUU
GCUCAAGAAAGCUGUGGGAGA
CUCAAGAAAGCUGUGGGAGA

UCAUUGAGUGCAGCGUUGAUG

UGUGUUCUCAGGUCACCCCUU

GGGCACCUCUUCACUGGCAUG

UUAGAUUCACGCACAAACUUG
CUGGGAACAGGCAGAGCAUGA

AACAGAGCAGAACAGAACAGA
UCCCUCAAAGGCUUCCAGUA
UCCCUCAAAGGCUUCCAGUAU
GGAAUGGGCGGUUUGGGAUGA
UUCCCAAUUCCACCCAUUCCUA
UGCAUUUGCACCUGCACUUUA
CCAAGCUCUGAUACCAAUUGAUGG
CCUCGUUCCAUACAUCAUCUAA
CCCUCGUUCCAUACAUCAUCUA
UUAAUCAAGGGAAUCACAGUUG
UUAAUCAAGGGAAUCACAGUU
AACCAGGCUCUGAUACCAUGA
UCAUUUUUGCAUGCAAUGAUCC
AUCCUUAGGAUGCAGAUUACG
UUGCCGAUUCCACCCAUGCCUA
UUGCCGAUUCCACCCAUGCCU
ACGCAGGAGAGAUGGCGCUAU
UACGCAGGAGAGAUGGCGCUA
AGCUGCUGACUCGUCGGUUCA
AGCUGCUGACUCGUCGGUUC
UCUGUCGCAGGAGAGAUGACG
UCUGUCGCAGGAGAGAUGACGC
Mature sequence
AAGCUCUGAUACCAAUUGAUGGUU
CGUUUCACGUCGGGUUCACCA

UGACGGAAGAAAGAGAGCACA
UUGACGGAAGAAAGAGAGCAC
UUGACGGAAGAAAGAGAGCACA
AUGUUGUUAAUUGGAGGAGCGG
UGUUGUUAAUUGGAGGAGCGGU
CGUCAUCGUUGCGAUUGUGGA
UGAUACACUAGCACGGGUCAC
GAAGAAAGAGAAUGAUGAGUAA

21
21
20
21

21

21

21
21

21
20
21
21
22
21
24
22
22
22
21
21
22
21
22
21
21
21
21
20
21
22
Length(nt)
24
20

21
21
22
22
22
21
21
22

Yes
Yes
Yes

Yes

Yes

Yes

Yes
No

No
No
No
Yes
Yes
No
No
Yes
Yes
No
No
No
No
No
No
No
No
No
Yes
Yes
No
No
Star(*)
No
No

Yes
Yes
Yes
No
No
No
No
No

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35].

Zhao et al,, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24];
Chi et al, 2011 [35
Chi et al, 2011 [35
Zhao et al, 2010 [24];
Chi et al, 2011 [35].

1.
.

Chi et al, 2011 [35].

Chi et al, 2011 [35].
Chi et al, 2011 [35].
Chi et al, 2011 [35].
Chi et al, 2011 [35].

References

Zhao et al,, 2010 [24];
Chi et al, 2011 [35].

Chietal, 2011 [35].

Arabidopsis, Rice, Maize et al.

Arabidopsis, Rice, Maize et al.
Arabidopsis, Rice, Maize et al.
Arabidopsis, Rice, Maize et al.

Arabidopsis, Soybean et al.

Soybean, Maize et al.

Arabidopsis, Rice et al.

Physcomitrella patens, Grape et al.

Arabidopsis, Rice, Maize et al.
Arabidopsis, Rice, Maize et al.
Arabidopsis, Soybean, Alfalfa et al.
Arabidopsis, Grape et al.
Soybean, Alfalfa

Soybean, Alfalfa

Soybean, Alfalfa

Soybean, Alfalfa

Soybean, Alfalfa

Soybean, Alfalfa

Soybean, Tomato et al.

Soybean, Alfalfa

Arabidopsis, Soybean, Alfalfa et al.
Conservative in other plants

Arabidopsis

Physcomitrella patens

Physcomitrella patens

Soybean

Physcomitrella patens
Alfalfa
Alfalfa
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miR5021
miR5221
miR5227
miR5234
miR5244
miR5499
miR6300
miR6475
miR6478
miR7502
miR7696
miR8175
miR9666
Peanut-specific

miR3508

miR3509
miR3511
miR3512
miR3513
miR3514
miR3515
miR3516
miR3517
miR3518
miR3519
miR3520
Novel

miRn1

miRn2

miRn3
miRn4
miRn5
miRn6
miRn7
miRn8
miRn9
miRn10
miRn11
miRn12
miRn13

UGAGAAGAAGAAGAAGAAGAA
AGGAGAGAUGGUGUUUUGACUU
UGAAGAGAAGGGAUUUAUGAA
UGUUAUUGUGGAUGGCAGAAG
UGUCUGAUGAAGAUUGUUGGU
AAGGAAGAAUCAGUUAUGUACA
GUCGUUGUAGUAUAGUGGUGA
UCUUGAGAAGUAGAGAACCGACAG
CCGACCUUAGCUCAGUUGGUA
UAACGGUAGAAGAAGGACUGAA
UUGAAUUAUGCAGAACUUAUCA
CGUUCCCCGGCAACGGCGCCA
CGGUAGGGCUGUAUGAUGGCGA
Mature sequence
UAGAGGGUCCCCAUGUUCUCA

UGAUAACUGAGAGCCGUUAGAUG
GCCAGGGCCAUGAAUGCAGAA
CGCAAAUGAUGACAAAUAGACA
UGAUAAGAUAGAAAUUGUAUA
UCACCGUUAAUACAGAAUCCUU
AAUGUAGAAAAUGAACGGUAU
UGCUGGGUGAUAUUGACAGAA
UCUGACCACUGUGAUCCCGGAA
GACCUUUGGGGAUAUUCGUGG
UCAAUCAAUGACAGCAUUUCA

AGGUGAUGGUGAAUAUCUUAUCUU

Mature sequence
UUCCCAAUUCCACCCAUUCCUA
UUUUCCCAAUUCCACCCAUUCC
UUUUCAUUCCAUACAUCAUCUA
UUUUCAUUCCAUACAUCAUCU
UUUCAUUCCAUACAUCAUCUA
UAGAGGGUCCCCAUGUUCUCA
UGAAGCAAAGUGAUGACUCUG
UGUGUGGGUUUCUGGUCUCCAC
AUCCCUCGAAGGCUUCCGCUA
UUAUUGUCGGACUAAGGUGUCU
UUGAUGCAGUACGGACAAAAG
UUUGUGUGAAAGAUCUCCGGA
CGGUUGUGUGGAGUGCUACGG
AGGUGCCGGUGCAUUUGCAGG
AUGAGCUCAGUUGAAGAUUUG
GGAACAAAGAGUUUGAGAUGG

21
22
21
21
21
22
21
24
21
22
22
21
22
Length(nt)
21

23
21
22
21
22
21
21
22
21
21
24
Length(nt)
22
22
22
21
21
21
21
22
21
22
21
21
21
21
21
21

No
No
No
No
No
No
No
No
No
No
No
No
No
Star(*)
No

Yes
No
No
Yes
Yes
No
No
No
No
No
No
Star(*)
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes

Yes

References

Zhao et al,, 2010 [24];
Chi et al, 2011 [35].

Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].
Zhao et al, 2010 [24].

References

Arabidopsis

Alfalfa

Alfalfa

Alfalfa

Alfalfa

Rice

Soybean

Populus trichocarpa
Populus trichocarpa
Cotton

Alfalfa

Arabidopsis

Wheat

Conservative in other plants

Peanut

Peanut
Peanut
Peanut
Peanut
Peanut
Peanut
Peanut
Peanut
Peanut
Peanut

Peanut

Conservative in other plants
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Table 1 Known and novel miRNA families identified in peanut gynorphore (Continued)

miRn14 AAAUUGAUUGAUUAUUCCUGA
miRn15 UUGCUAGGAUCGUUUGGCGAU
miRn16 UGCUUAGGAAGGAUUGUCUUA
miRn17 AGGGCGUUAUGUAGGGCAUC

miRn18 UUGGUAGUAGAAGAAGGAGAU
miRn19 UCUGAAUGGGAUGAAAACGCU
miRn20a UUUGGAAAUUCGGUACAUUAA
miRn20b UUUGGAAACUCGGUACAUUAA
miRn21 UUACGUGUACACAAAAAAUCA
miRn22 UGAAAGUGGAAUUAAAGCAAG
miRn23 GUCGACUUUACAUGAAGUUGA
miRn24 UUUGGGUCUUGAGAGUACAUG

21
21
21
20
21
21
21
21
21
21
21
21

Yes
Yes
Yes
No
No
No
Yes
Yes
No
No
Yes
No

* means star sequence of miRNA

S2/81 S3/82 S3/81

B
-5.0 0.0 5.0

S2 and S1, S3 and S2, S3 and S1

Fig. 2 Clustering and differential expression analysis of miRNAs across
S1,52 and S3 using deep sequencing data. Data was presented as
log,fold change by comparing miRNA abundances (TPM) between

performed to examine the expression of several miRNAs
that maybe related to early pod development and the re-
sults were in agreement with the sequencing data except
for miRn7 where the sequencing result and qRT-PCR
showed different patterns (Fig. 3b). As shown in Fig. 3c,
miR164, miR167, miR172, miR390, miR7502 and miR9666
were up-regulated significantly, while miR156, miR396,
miR894, miR1088, miR4414 and miRn8 were significantly
down-regulated during early pod development (Fig. 3d).
Different accumulation levels of miRNAs between different
developmental stages suggested a possible miRNA-mediated
regulation of gene expression during peanut embryo and
early pod development in a temporal manner.

Degradome sequence analysis and target gene
identification

To gain a better understanding of the regulatory role of
miRNAs during peanut early pod development, it is
necessary to identify their target genes that could pro-
vide valuable information for miRNA function during
this process. Two degradome libraries from gynophores
that unburied and buried in soil for about three days
(named as D1 and D2) were constructed separately. By
sequencing these two libraries, 17.2 and 23.8 million
clean reads were obtained and more than 99% of the
sequences were 20 or 21 nt in length. In total, 3,896,267
(53.34%) and 4,600,466 (52.95%) unique reads were
mapped to peanut cDNAs which were subjected to
target identification (Additional file 6: Table S5). The
cleaved transcripts were categorized into three classes
(Class 0, 1 and 2), as reported previously [29]. Class 0
transcripts contained only one maximum peak from
miRNA-directed cleavage, representing perfect data with
no other contamination. Class 1 transcripts contained
more than one maximum peaks and the miRNA cleaved
peaks are equal to the maximum. Class 2 was transcripts
with the peaks from miRNA-directed cleavage lower
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than the maximum. In this study, a total of 105 target
genes for 40 known miRNA families and 10 target genes
for seven novel miRNA families were identified (Table 2).
Among the 115 identified targets, 79 targets (71%) be-
longing to class 0, whereas 17 and 19 were classified into
class 1 and Class 2, respectively. Most of the cleavage
sites were located in CDS region, and only a few cleav-
age sites were located in 5'-UTR or 3'-UTR (Table 2).
The abundance of cleaved transcripts was normalized
using ‘reads per 10 million’ (RP10M) method. Interestingly,
the cleaved transcripts of many target genes were differ-
ently accumulated between these two libraries (Table 2),
providing important evidence for miRNA function during
early pod development in peanut.

Most targets of the conserved miRNAs were transcrip-
tion factors such as the squamosa promoter binding-
Like (SPL), TEOSINTE BRANCHED1/CYCLOIDEA/
PRO-LIFERATING CELL FACTOR1 (TCP), MYB, ARF,
NAC, GRAS and AP2, which have been identified

previously in diverse plant species [30, 31]. MiR399,
miR482, miR1507 and miR2118 have been found to
target disease resistance protein genes, and miR168 was
found to target gene encoding AGO]1, a key component
of RNA-induced silencing complex (RISC). Additionally,
one TAS3 was identified as target of miR390 that give
rise to the production of phased ta-siRNAs from that
precursor. For the less conserved miRNAs, the targets
were not enriched in transcription factors and were
more likely to be involved in metabolic and signal trans-
duction. Most peanut-specific miRNAs did not have
detectable sliced targets in the degradome libraries. Only
two genes encoding pentatricopeptide repeat protein
(PPRP) were detected as miR3514 targets. This may be
explained by the low abundance of these miRNAs or
their sliced targets in peanut gynophore. In addition to the
previously identified conserved targets we also identified
many new targets in peanut for the known miRNAs. These
putative novel targets include digalactosyldiacylglycerol
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Table 2 miRNA-MRNA target pairs identified in at least one library of peanut gynorphore with p-value < 0.05
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miRNA Target gene Target annotation Cleavage Target site Class Abundance in  Abundance in
site(nt) location D1 (RP10OM) D2 (RP10M)
ahy-miR156/ Araip.QT8AK.1  Squamosa promoter binding protein 999 cDS 0 93 54
157 Araip.0ZF73.1  Squamosa promoter binding protein 2069 3-UTR 0 27 28
Araip.lI3JP.1 Squamosa promoter binding protein 1557 3-UTR 0 628 127
Araip.RD4BX.1  Squamosa promoter binding protein 1423 3"-UTR 0 64 124
ahy-miR159 Araip.BTU9G.1  MYB transcription factor 661 (@) 0 7 33
Araip.0279H.1  MYB transcription factor 1506 CcDS 0 2 3
ahy-miR160 Araip.NYM6Q.1 Auxin response factor 1364 DS 0 67 46
Araip.BYV33.1  Auxin response factor 1429 DS 0 257 430
Araip.18474.1  Digalactosyldiacylglycerol synthase 1629 (@S 1 2 0
Araip.9V70N.1  Solute carrier 955 CcDS 0 15 72
ahy-miR164 Araip.D25HB.1  Transcriptional factor NAC 786 (@) 0 60 130
Araip.DLE10.1  Heat shock protein 580 (@S 1 10 12
ahy-miR166 AraipIT7G.1 ARF GTPase-activating protein 1048 (@) 0 4 3
Araip.P57FD.1  Serine/threonine kinase 552 (@M 0 10 40
Araip.80WHH.1  Peroxidase 828 (@S 1 11 5
Araip.8GH41.1  Plastidic glucose transporter 120 CDS 0 2 10
ahy-miR167 Araip.7M6VI.1  Pentatricopeptide repeat protein (PPRP) 1005 (@) 0 0 118
Araip.R1QSY.1  Auxin response factor 568 CcDS 2 0 2
ahy-miR168 Araip.FPV8R.1  Argonaute protein 1 379 DS 0 113 188
ahy-miR169 Araip.T3WCA.1  Nuclear transcription factor Y 971 3-UTR 0 45 130
ahy-miR171 Araip.EOOUL.T  Transcription factor GRAS 542 DS 0 209 845
Araip.2715U.1  Gibberellin receptor 290 DS 1 0 5
ahy-miR172 Araip.YO7A4.1  Ethylene-responsive transcription factor AP2 1253 5-UTR 0 476 965
Araip.AE7EH.1  Cell division protease 825 DS 0 4 1
Araip.HRN64.1  Embryogenesis abundant protein 55 5-UTR 1 3 7
ahy-miR319 Araip.5Z7Q5.1  Monodehydroascorbate reductase 1263 DS 0 88 52
Araip.Z17TF.1  Transcription factor TCP 1688 CDS 0 41 55
Araip.KK7TK.1  DELLA protein 939 DS 1 0 3
ahy-miR390 AraipVT2PQ.1  TAS3 342 0 0 25
Araip43TDN.1  Solute carrier family 50 (sugar transporter) 96 (@S 0 1 45
ahy-miR391 Araip.5A463.1  Aluminium induced protein 309 CDS 2 6 15
Araip.HW8E3.1 Homeobox-leucine zipper protein 2183 (@) 2 2 2
Araip.65ETM.1 LA RNA-binding protein 2280 (@S 2 0 2
ahy-miR393 Araip.774UX.1  Auxin signaling F-box protein 1906 DS 0 589 968
Araip.0E251.1 Auxin signaling F-box protein 1710 CDS 0 296 429
Araip.0XA60.1  Auxin signaling F-box protein 297 (@S 2 4 5
Araip.NRD2A.1  Brassinosteroid receptor kinase 79 CDS 2 0 3
ahy-miR394 Araip.YBEUA.1  Glutathione S-transferase 760 DS 0 5 0
ahy-miR395 Araip.BCOAA.T  Cellulose synthase 1531 (@S 0 6 3
ahy-miR396 Araip.6YN77.1  Growth-regulating factor 922 DS 0 422 97
Araip.SE9FW.1  MADS-box transcription factor 313 (@) 0 0 11
ahy-miR397 Araip.QA79V.1  Laccase 10 (lignin catabolic process) 743 DS 0 8 5
Araip.Z5USZ.1  Laccase 11 (lignin catabolic process) 746 DS 0 3 2
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Table 2 miRNA-MRNA target pairs identified in at least one library of peanut gynorphore with p-value < 0.05 (Continued)

ahy-miR398 Araip.SEZ68.1  Calcium-dependent protein kinase 1309 (@) 1 2 0
ahy-miR399 Araip.G5CUD.1  Disease resistance protein 4095 DS 0 2 24
Araip.RXA31.1  Expansin-Ad(cell wall organization) 958 5-UTR 0 8 4
Araipl7ZGU.1  Unknown protein 173 (@) 0 8 11
ahy-miR414 Araip.lJ273.1 Ribosome biogenesis protein 1818 (@B 0 8 20
Araip467MQ.1  Serine/threonine-protein phosphatase 1586 cDS 0 10 13
Araip.HJ37G.1  Phosphoinositide phospholipase C 1118 (@) 0 19 24
Araip.Y25R8.1  ARF guanine-nucleotide exchange factor 755 CDS 0 23 38
Araip.98Q8H.1  Sequence-specific DNA binding transcription factor 359 (@) 0 7 0
Araip.FPJTM.1  DDB1-CUL4 associated factor (protein binding) 5387 CDS 0 0 1M
ahy-miR477 Araip6lZ1V.1  Mitogen-activated protein kinase 147 (@B 0 2 2
Araip48K15.1  Heat shock cognate protein 190 (@M 2 7 7
Araip. A6M6K.1  Cytosolic ascorbate peroxidase 163 DS 2 30 37
Araip.BPOMY.1  Myo-inositol-1-phosphate synthase 34 5-UTR 0 0 15
Araip.NODQO.1  Dual specificity protein phosphatase 33 5-UTR 0 0 2
Araip.N1PSJ.1  Glutamate synthase 22 DS 0 0 5
Araip.SJE6C.T  Unknown protein 64 (@) 0 0 16
ahy-miR482 Araip.61TH7R.1 WD repeat-containing protein 57 (@) 0 4 16
Araip.9TOHK.1  E3 ubiquitin-protein ligase 1029 (@) 0 48 44
Araip.313YK.1  E3 ubiquitin-protein ligase 4548 DS 2 0 3
Araip.6W5RU.1  E3 ubiquitin protein ligase 1890 cDS 2 0 3
Araip.NX28V.1  Disease resistance protein 3219 3'-UTR 2 0 4
Araip.BX1V3.1  Disease resistance protein 4147 DS 2 0 2
ahy-miR530 Araip.87MXF.1  Nuclear protein required for cytoskeleton 2092 CcDS 1 7 0
organization
Araip.X3V04.1  Unknown protein 481 (@) 0 [§ 0
Araip.YGJ1S.1  Leucine-rich repeat receptor kinase 1659 (@) 0 0 2
ahy-miR1088 Araip.6BJ8Z.1  Pentatricopeptide repeat protein (PPRP) 27 5-UTR 0 113 0
ahy-miR1507 Araip.UGA40.1  LRR-NB-ARC domain disease resistance protein 4474 (@D 0 148 119
Araip.SJE6C.1  DUF4228 domain protein 64 5'-UTR 0 " 16
Araip4Q4DB.1  NBS-LRR domain disease resistance protein 1036 DS 0 21 0
Araip.AX6A6.1  Disease resistance protein 880 DS 0 14 0
Araip.KW5UK.1  Disease resistance protein 939 DS 0 14 0
Araip.L51CJ.1  Disease resistance protein 880 cbS 0 14 0
ahy-miR1511 Araip.08WOL.1  Protein binding protein 174 DS 0 0 2
Araip.PD52B.1  Aluminum sensitive protein 345 CDS 0 9 10
ahy-miR1515 Araip.9C688.1  Chlorophyll a-b binding protein 375 DS 1 17 1
Araip.UBQGY.1  DNA-lyase-like isoform 963 CDS 0 0 9
Araip.5RQ6Z.1  ATP binding protein 3153 (@) 0 32 0
ahy-miR1520 Araip. AW9H3.1 DNA methyltransferase 687 DS 0 2 0
Araip.5K8JY.1  DNA methyltransferase 576 CDS 1 3 0
Araip.LK5X5.1  Protein kinase 2471 CDS 2 0 5
Araip.UOMS2.1  Zinc finger CCCH domain-containing protein 1559 3-UTR 2 0 2
ahy-miR2111 Araip.KV8TN.1  Ubiquitin carboxyl-terminal hydrolase 79 CcDS 0 5 1
Araip.85C4l.1 Anaphase-promoting complex subunit 426 (@) 1 2 0
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Table 2 miRNA-MRNA target pairs identified in at least one library of peanut gynorphore with p-value < 0.05 (Continued)

Araip.QWO087.1  Dihydroorotate dehydrogenase 46 5-UTR 0 0 2
ahy-miR2118 Araip.B2Q36.1  Translation initiation factor elF 1643 (@B 0 38 18
Araip.QG6DX.1  Zinc finger protein 3535 DS 0 4 0
Araip.NPOKT.1  Carboxylate dehydrogenase 1932 3"-UTR 2 2 4
Araip.E41BL.1  Disease resistance protein 344 (@B 0 0 9
Araip.IKJEN.1 Disease resistance protein 666 DS 2 0 4
ahy-miR2199 Araip.11L37.1 bHLH transcription factor 741 (@) 0 593 312
ahy-miR2628 Araip.LY8H2.1  Protein kinase 55 5-UTR 0 24 22
ahy-miR3514 Araip.GQ8VC.1  Pentatricopeptide repeat protein (PPRP) 360 [@bN) 0 2699 435
AraipN7IGZ.1  Pentatricopeptide repeat protein (PPRP) 1134 cDS 0 53 4
ahy-miR4376 Araip.0K3S5.1  Cullin-like protein 2083 DS 2 2 0
Araip.Q4HT6.1  Methyltransferase 2372 DS 0 9 0
Araip.NS167.1  ATP-dependent RNA helicase-like protein 2264 DS 0 0 8
ahy-miR4414 Araip.B5L53.1  DNA binding transcription factor 989 DS 1 2 0
ahy-miR5021 Araip.166TL.1T  MADS-box transcription factor 189 5-UTR 0 3 0
ahy-miR5225 AraipWG5D6.1  Histidine kinase 180 (@S 1 0 2
ahy-miR6300 Araip.VJ5LB.1  Dehydroascorbate reductase 70 (@) 2 62 198
ahy-miR9666 Araip.99HRK.1  Protein kinase (protein ubiquitination process) 537 cDS 1 2 0
ahy-miRn1 Araip.9TOHK.1  E3 ubiquitin protein ligase 1260 (@) 0 45 43
Araip.71CS3.1  Transcriptional factor NAC 1420 DS 0 81 241
Araip.QG6DX.1  Zinc finger protein 3535 3"-UTR 0 4 0
ahy-miRn2 Araip.COZFN.1  LRR-NB-ARC domain disease resistance protein 704 (@) 0 17 45
Araip.18lY2.1 TIR-NBS-LRR domain disease resistance protein 3782 DS 1 17 0
ahy-miRn4 AraipJPM97.1  Receptor kinase 533 (@) 0 4 9
ahy-miRn5 Araip.3TX6Y.1  Unknown protein 300 (@) 0 0 5
ahy-miRn7 Araip.K65JZ.1  Major intrinsic protein (transporter activity) 189 DS 0 319 1084
ahy-miRn10 Araip.T99DR.1  DNA polymerases (DNA replication) 20 (@) 1 11 0
ahy-miRn24 Araip.NF709.1  Cytochrome P450 protein 386 (@S 0 4 9

RP10M reads per 10 million clean reads

synthase and solute carrier (miR160), heat shock pro-
tein (miR164), serine/threonine kinase (miR166), PPRP
(miR167), DNA methyltransferase (miR1520 and miR4376)
and others (Table 2). Interestingly, one embryogenesis
abundant protein gene was shown to be target of miR172,
one GA receptor gene and one BR receptor kinase gene
were shown to be target of miR171 and miR393. These
results were independently verified by RLM 5'-RACE
analysis (Fig. 4). These conserved miRNAs regulated
non-conserved targets in addition to the conserved tar-
gets may be specific to peanut and play important roles
in pod development. As shown previously in soybean
and tomato, the targets of novel miRNAs were not
enriched in transcription factors [26, 31]. The present
data confirmed these results. Among the 10 targets of
novel miRNAs, only one target encoding transcriptional
factor (miRnl). Two targets of miRn2 are involved in
disease resistance (Table 2). Meanwhile, novel miRNAs

targeted a number of functional genes, such as E3
ubiquitin-protein ligase gene (miRnl), major intrinsic
protein gene (miRn7), DNA-directed DNA polymerase
gene (miRnl0) and cytochrome P450 gene (miRn24).
However, the function of these newly identified targets,
and their regulation by miRNA in peanut pod remains
to be determined.

GO enrichment and KEGG pathway analyses of target
genes

All 115 target genes identified in this study were sub-
jected to Gene Ontology (GO) functional classification
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis to perceive their biological roles using WEGO
toolkit [32]. A total number of 89 miRNA targets could
be annotated by GO classification. It was determined
that these target genes were involved in seven types of
cellular component, six types of molecular function and
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14 types of biological process with the cell part, binding
and metabolic process were the most abundant groups
in each category (Additional file 7: Figure S3A). Accord-
ing to KEGG analysis, 52 target genes were significantly
enriched in 11 pathways including plant hormone signal
transduction, ascorbate and aldarate metabolism, plant-
pathogen interaction, metabolic pathways and ribosome
biogenesis (Additional file 7: Figure S3B). Plant hormone
signal transduction pathway and the corresponding miR-
NAs are shown in Fig. 5. In this pathway, 12 genes are
targeted by seven miRNAs. In addition, miR390 targets
ARF genes indirectly by giving rise to the formation of
ta-siRNAs [33]. Moreover, three miRNAs (miR482,
miR9666 and miRn1l) are involved in ubiquitin-mediated
proteolysis process by targeting E3 ubiquitin ligase gene,
through which control the protein accumulation levels
of AUX and DELLA in IAA and GA pathways, respect-
ively. These findings highlight the significant regulation
of miRNAs on peanut early pod development by effect-
ing hormone signaling transduction pathways.

Correlated analysis between miRNAs and target mRNAs
during early pod development

Integrated analysis of miRNAs and their targets expres-
sion can help to understand the regulatory pathways of
miRNAs and identify functional miRNA-mRNA mod-
ules involved in peanut embryo and early pod develop-
ment. Here, we profiled the accumulation of six target
mRNAs validated by degradome sequencing in peanut
gynophore using qRT-PCR. To determine exactly how
much of the mRNA were cleaved by miRNA, we detected

the total mRNA and the intact mRNA that uncleaved by
miRNA using two pairs of primers designed in the 3'-
UTR region and spanning the miRNA target site, respect-
ively [31]. As shown in Fig. 6, the total mRNA of all the
target genes increased during early pod development and
the intact mRNA were also increased except for AP2
which is targeted by miR172. Meanwhile, increased cleav-
age of the NAC, PPRP and AP2 transcripts (targeted by
miR164, miR167 and miR172, respectively) and decreased
cleavage of the GRF and another PPRP transcripts (tar-
geted by miR396 and miR1088, respectively) were ob-
served at S2 and S3 compared with S1 stage, which in
agreement with the miRNA expression profiling that
miR164, miR167 and miR172 were up-regulated while
miR396 and miR1088 were decreased during peanut early
pod development. These results suggested that miRNA
significantly modulate their intact target mRNAs accu-
mulation at the post-transcriptional level to regulate
them at appropriate expression levels, controlling pea-
nut early pod development.

Discussion

Roles of miRNAs during peanut embryogenesis and early
pod development

The early stage of peanut pod development including gy-
nophore elongation, pod enlargement, cell differentiation
and embryogenesis is a complicated biological process
regulated by coordinated gene expression. Increasing
evidence indicated that miRNAs play important regulatory
roles in cell differentiation and plant development. How-
ever, the function of miRNAs during peanut embryogenesis



Gao et al. BMC Genomics (2017) 18:220

Page 13 of 18

l PLANT HORMONE SIGNAL TRANSDUCTION
miR160
. miR166
¥ miR167
miR393 TasiRNA  miR414
O I o DNA
N e N A ¥
(s miin)- - +o— 3T R e —o =—stanl-—=| o
Auxin i g
proteolysis -
miR9666
miRnl
(miR171 | C©>[cip2
+
< DNA E -
: T : mbryogenesis and
m(iibbncllin O Induced genination pod development
! miR482
N\ Ubiguitin reedisted
iRt proteolysis ' miR9666
miRnl
miR393
Ol
BA&KI
biosynthesis _____ i BRI
Brassinosteroid \:P DNA
Cesk F—>{msu — 2 X ez o—*[TcH4|———» Cell elongation
\-cvcm —_— Cell division
Proteasomal
degradation
Fig. 5 KEGG pathways related to plant hormone signal transduction targeted by peanut miRNAs
J
Araip.II3JP1 (SPL) Araip.D25HB.1 (NAC) Araip.7M6VL1 (PPRP)
4 8 % 20
6 = Intact mIntact mIntact
> . m Total m Total 16 mTotal i
6 4
QO *
—_— 12
2 4
8 * * 8
— 1 24 s
w 4
)]
0 0 0
9 S1 S2 S3 S1 S2 S3 S1 S2 S3
@5
x
o Araip.Y0744.1 (4P2) Araip.6¥YN77.1 (GRF) Araip.6BJ8Z.1 (PPRP)
3 8 5
g u Intact mIntact ®Intact
— uTotal mTotal % LRl
(U i * 6 &
— .
& j_,_j_,_l 4
1 * 2
2
1
0 0
s s2 3

S1

S2

S3 S1

S2

S3

Fig. 6 qRT-PCR analysis of total and intact mRNA levels in peanut gynophore using two different primers sets. Error bars indicate the SD of three
biological replicates. The asterisk indicated a statistically significant difference (P < 0.05)




Gao et al. BMC Genomics (2017) 18:220

and early pod development has not been addressed. In pre-
vious reports, Zhao and Chi identified 22 and 33 known
miRNA families from libraries constructed using mixed
RNAs from peanut root, stem, leave and seed, respectively
[23, 34]. In the current study, deep sequencing of small
RNA libraries constructed using peanut S1, S2 and S3
gynophore RNAs led to the discovery of 69 known miRNA
families and 24 novel miRNA families. Interestingly, 34
known miRNA families were first identified in peanut,
suggesting that they were preferentially expressed and
specific to peanut gynophore or young pod. Among them,
10 known but less conserved miRNAs(miR1520,
miR2199, miR2628, miR4414, miR5221, miR5227,
miR5234, miR5244, miR6300 and miR7696) were only
identified in leguminous plants [35, 36]. In addition, 12
known but non-conserved miRNAs were also detected
in peanut gynophore with a lower abundance than that
of conserved miRNAs. It has been proposed that con-
served miRNAs are probably responsible for regulation
of the basic cellular and developmental processes, while
the species-specific miRNAs are involved in the regula-
tion of species-specific regulatory pathways [37, 38].
These legume- or peanut-specific miRNAs may function
in regulation of gene expression during peanut- or pod-
specific processes. Interestingly, miRn8 accumulated only
in S1 stage and peanut-specific miR3512 expressed only in
S2 and S3 stages, indicating that they act in a tissue- or
cell- specific manner and may play essential roles in pea-
nut embryo and early pod formation.

Putative mRNA-miRNA modules involved in peanut early
pod development

To further explore the regulatory roles of miRNAs dur-
ing peanut embryogenesis and early pod development,
we profiled their differential expression among three de-
velopmental stages. Based on the normalized abundance
of high-throughput sequencing data, 40 miRNA families
were differentially accumulated during early pod devel-
opment which may contribute to cell proliferation and
differentiation during embryogenesis and early develop-
mental stage of peanut pod. A large number of con-
served target genes for differentially expressed miRNAs
were identified, such as SPL, MYB, ARF, NAC, NF-Y,
GRAS, AP2 and TCP type transcription factors, which
have been experimentally validated by previous studies
[30, 31]. Based on the normalized abundance of degra-
dome sequencing data, miR156-mediated cleavage of
SPL (Araip.I3JP.1), miR164-mediated cleavage of NAC
(Araip.D25HB.1), miR167-mediated cleavage of PPRP
(Araip.7M6VIL1), miR171-mediated cleavage of GRSA
(Araip.EOOUL.1), miR172-mediated cleavage of AP2
(Araip.Y07A4.1), miR393-mediated cleavage of F-box
gene (Araip.774UX.1), miR396-mediated cleavage of
GRF (Araip.6YN77.1) and miR1088-mediated cleavage of
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another PPRP (Araip.6BJ8Z.1) were the most abundant
and differently accumulated between the two degradome
libraries. These miRNA-mRNA modules might be in-
volved in regulating biological processes that facilitate
peanut embryogenesis and pod development. Indeed,
miR156-mediated regulation of SPL transcripts has been
proved to play critical roles in regulating zygotic embryo
development in Arabidopsis [39]. MiR164-mediated sup-
pression of NAC is required for embryogenesis, shoot
meristem development, lateral root formation, senescence
and other developmental processes [40]. Our results
showed that miR156-directed cleavage of SPL declined
whereas miR164-directed cleavage of NAC transcripts
increased during early pod development (Fig. 6), which
consists with the earlier observed expression profiles of
miR156 and miR164 determined by qRT-PCR (Fig. 3).
Moreover, a large number of new targets were also
detected for conserved as well as non-conserved miRNAs,
although splicing frequency of these new targets was very
low. For example, one embryogenesis abundant protein
gene emerged as the target of miR172. Three miRNAs
(miR167, miR1088 and miR3514) target genes encoding
PPRP. PPRP has been demonstrated to play important
roles in the first mitotic division during gametogenesis and
in cell proliferation during embryogenesis [41]. These
results suggested the present of non-conserved miRNA-
mRNA modules that were specific to peanut and play
crucial roles in regulating peanut-specific biological pro-
cesses that promote embryo and early pod development.

Network consist of hormone, light signal and miRNAs in

regulating peanut embryo and early pod development

Peanut is a typical ‘aerial flower and subterranean fruit’
plant, and peanut fruit completes the development
process under ground. After fertilization, peanut zygote
divides few times and then the embryonic development
stops when exposed to light condition or normal day/
night period. Along with the elongation of gynophore,
the tip region (containing the embryo) of gynophore is
buried into soil, peanut embryogenesis and pod develop-
ment resumes in the darkness, indicating that light is an
important environmental signal that regulates pod for-
mation and development. Physiological studies demon-
strated that red light and white light inhibited the
growth of peanut ovules [6, 42]. Besides, multiple hor-
monal pathways are often modulated by light signal to
control diverse developmental processes. Given that the
critical roles of miRNA on plant embryogenesis, dissect
the crosstalk among light signal, endogenous hormones
and miRNAs would be of great interest. Our results
showed that the expression of many known and novel
miRNAs that involved in embryo development was af-
fected by light signal through profiling analysis between
S1 (light condition) and S2 (dark condition) such as
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miR167, miR390 and miR1088 (Fig. 7). MiR167 and
miR1088 mediated PPRP cleavage as well as miR390 me-
diated ARF cleavage were known to participate in em-
bryogenesis [41, 43]. This result suggests that miRNA
might be a molecular integrator that link light signaling
to the multiple hormone pathways such as auxin.

Plant endogenous hormones play vital roles in diverse
developmental processes. For instance, GA can regulate
gene expression to control stem elongation, seed ger-
mination and embryo development in plants [44-46].
Auxin is considered to be the main hormone involved in
plant differentiation through controlling cell polarity,
cell division and cell elongation [43, 47]. Furthermore,
miRNA regulation of auxin pathway plays an important
role during cotton somatic embryogenesis [48]. In
peanut gynophore, either the content or the distribution
patterns of IAA, GA and BR significantly changed from
S1 to S3, suggesting that these hormones are key regula-
tors of peanut embryo development and pod formation
[12, 49]. Here, it was found that eight target genes that
participate in auxin signal transduction, two genes that
participate in GA signal transduction and one gene that
participates in BR signal transduction were identified as
miRNA targets through degradome sequencing analysis
(Fig. 5). In addition, we also found that miR390 could
mediate the cleavage of TAS3 in peanut. The cleavage of
TAS3 by miR390 could induce the formation of phased
ta-siRNAs that mediate the regulation of auxin signal
and in turn influence diverse developmental processes in
flowering plants [33, 50]. Profiling analysis showed that
several miRNAs (miR167, miR319 and miR390) partici-
pating in auxin and GA signal transduction pathways
were differentially accumulated during peanut pod de-
velopment. These differentially expressed miRNAs and
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their hormone-related targets might be essential compo-
nents of the regulatory networks in peanut embryogen-
esis and early pod development (Fig. 7). Collectively,
miRNAs, hormones and light signal comprises a com-
plex network regulating specific biological processes
controlling peanut embryo and pod development.

Conclusions

High-throughput sequencing together with bioinformat-
ics and experimental approaches were used to explore
the function of miRNAs in peanut embryogenesis and
early pod development. A total of 70 known and 24
novel miRNA families were discovered. Among them,
many miRNAs were legume-specific or peanut-specific
and differentially expressed during early pod develop-
ment. In addition, 115 target genes were identified for
47 miRNA families. Several new targets that might be
specific to peanut were found and further validated by
RLM 5'-RACE. These peanut-specific and differentially
expressed miRNAs and their corresponding target genes
might be essential components of the regulatory net-
works controlling in peanut embryogenesis and early
pod development.

Methods

Plant materials and growth conditions

Plant materials were collected from cultivated peanut
(Luhua-14) grown in the experimental farm of Shandong
Academy of Agricultural Sciences with normal day/night
period. The gynophores were staged based on develop-
mental stage and visual morphology. The above ground
downward growing gynophores (with green or purple
color, 5-10 cm in length) were assigned as stage 1 (S1).
The stage 2 (S2) gynophores were those that buried in
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Fig. 7 Regulatory network consist of light, miRNAs and hormone during peanut embryo and early pod development. In green ovals are up-regulated
miRNAs and in red ovals are down-regulated miRNAs under dark condition
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the soil for about three days with thicker diameter than
S1 gynophores. S2 gynophores were white in color, the
enlargement of the ovary region was not observed. Stage
3 (S3) gynophores were those that buried in soil for
about nine days. The ovary regions of S3 gynophores
were obviously enlarged. About 5 mm tip region of gy-
nophore was manually dissected, frozen in liquid nitro-
gen and stored at —-80 °C for the following experiments.
Two biological replicates were prepared for each stage.
These samples were referred as S1-R1 and S1-R2, S2-R1
and S2-R2, S3-R1 and S3-R2 throughout the manuscript.

Small RNA and degradome library construction and
sequencing

Total RNAs were extracted from peanut gynophores
using CTAB reagent. For small RNA library construc-
tion, 18 to 30 nt small RNAs were fractionated through
polyacrylamide gel electrophoresis and ligated with 5’
and 3’ RNA adapter by T4 RNA ligase. Reverse tran-
scription reaction and a short PCR were performed to
obtain sufficient cDNA for sequencing. To identify the
potential targets, two degradome libraries were con-
structed from aerial grown gynophores (named as D1)
and gynophores that buried into soil (named as D2) sep-
arately. In brief, poly(A) RNAs that possess a 5'-phos-
phate were extracted and ligated to a RNA adaptor
containing a 3" Mmel recognition site by T4 RNA ligase.
Reverse transcription reaction and a short PCR were
performed to obtain double stranded DNA. The DNA
product was purified and digested with Mmel. Then a
double stranded DNA adaptor was ligated to the double-
stranded DNA. The ligated products were amplified by
PCR and gel-purified for sequencing. All small RNA and
degradome libraries were submitted to BGI (Shenzhen,
China) for 49-bp single-end sequencing on the Illumina
HiSeq 2000. The raw sequence data of small RNA library
and degradome library were available at NCBI Short Read
Archive (SRX2374091 and SRX1734291).

Bioinformatics analysis of small RNA sequencing data

The raw reads were preprocessed with Fastx-toolkit
pipeline (http://hannonlab.cshl.edu/fastx_toolkit/) to trim
the adapter sequences and filter out low-quality sequences
and repetitive reads. Reads larger than 30 nt and smaller
than 18 nt were discarded. Then the clean reads were
aligned to peanut reference genome (https://peanutba-
se.org/) using SOAP2 [51]. Only perfectly matched reads
were obtained and used for subsequent analysis. Reads
matched to rRNA, tRNA, snRNA, snoRNA and protein-
coding genes were excluded. To identify conserved miR-
NAs, we aligned all reads against known miRNA registered
in miRBase (Release 21.0, April 2014) allowing no mis-
match. For novel miRNA identification, their correspond-
ing precursor sequences were checked using mireap
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(https://sourceforge.net/projects/mireap/) to ensure the
miRNA precursors have their expected secondary struc-
tures. The expression of miRNAs during peanut pod de-
velopment was analyzed by reads per million (RPM). The
differential expression of miRNAs was performed using
DESeq package (version 2.14, http://www.bioconductor.
org/packages/release/bioc/html/DESeq.html) with a cri-
terion of |log,fold change|>1 and adjusted p-values
<0.05 [52].

Bioinformatics analysis of degradome sequencing data

Clean reads were obtained using Fastx-toolkit pipeline
(http://hannonlab.cshl.edu/fastx_toolkit/) to remove adaptor
sequences and low quality reads. Only 20 and 21 nt reads
that perfectly matched to peanut cDNA sequences were
collected and extend to 35-36 nt by adding 15 nt of up-
stream sequence for potentially cleaved targets identifica-
tion. The CleaveLand pipeline v3.0.1 was used to align the
35-36 nt sequence to peanut miRNAs [53]. All alignments
with scores up to 5 and no mismatches at the cleavage site
(between the 10th and 11th nucleotides of the miRNAs)
were considered candidate targets. Tag numbers for target
genes were normalized by RP10M (reads per 10 million).

Quantitative RT-PCR analysis

The stem-loop quantitative RT-PCR (qRT-PCR) was
performed to analyze the expression of miRNAs as de-
scribed previously [54]. Reverse transcription reactions
were performed at 16 °C for 30 min, followed by 60 cy-
cles at 30 °C for 30 s, 42 °C for 30 s, 50 °C for 1 s and
terminated by incubating at 85 °C for 5 min. U6 was
used as the internal control. For target genes, 2 pg
DNase I-treated total RNA was used to synthesize
¢DNA using olig(dT)18 primer, and peanut actin gene
was used as the internal control. Reverse transcription
was performed at 42 °C for 60 min and 85 °C for 5 min.
SYBR Green PCR Master Mix (Bio-Rad) was used in all
qRT-PCR reactions with an initial denaturing step of
95 °C for 5 min, followed by 45 cycles of 95 °C for 5 s,
60 °C for 5 s and 72 °C for 8 s. Three biological replicates
were prepared for each sample. The relative expression
changes of miRNAs were calculated using the 27°°“'
method. Student’s t-test was used to access whether the
qRT-PCR results were statistically different between two
samples (*P < 0.05). Primers used in all qRT-PCR experi-
ments were listed in Additional file 8: Table S4.

RLM-5" RACE

Total RNA (200 pg) from peanut gynophore was ex-
tracted using CTAB reagent and mRNA was purified
using the Oligotex kit (Qiagen). RNA ligase-mediated
rapid amplification of 5° ¢cDNA ends (RLM-5" RACE)
was performed with the RLM-RACE kit according to the
manufacturer’s instructions (Clontech). The final PCR
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product was extracted and purified from 2% agarose gel,
cloned into pMD18-T simple vector (Takara). Plasmid
DNA from 10 different colonies was sequenced. Gene
specific primers used for RLM-5" RACE experiments
were listed in Additional file 8: Table S4.

Additional files

Additional file 1: Table S1. Statistics of different small RNAs from small
RNA libraries. (DOCX 20 kb)

Additional file 2: Figure S1. The correlation coefficient of miRNA
expression between two biological replicates of S1, S2 and S3. (TIF 7318 kb)
Additional file 3: Table S3. Detailed information of novel miRNAs in
peanut. (XLS 46 kb)

Additional file 4: Figure S2. Validation of novel miRNAs by stem-loop
RT-PCR. No template: no RNA was added as a negative control. (TIF 3171 kb)
Additional file 5: Table S2. The miRNA normalization, fold change and
statistical significance of known or novel miRNAs in S1, S2, S3
gynophores. (XLSX 61 kb)

Additional file 6: Table S5. Statistics of different small RNAs categories
by degradome sequencing. (DOCX 17 kb)

Additional file 7: Figure S3. Summary of GO classification of miRNA
targets in peanut gynophore. (TIF 1258 kb)

Additional file 8: Table S4. Oligonucleotide primer sequences used for
gRT-PCR. (XLS 31 kb)
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